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Maximum Likelihood Estimation from Complex
Sample Surveys
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ABSTRACT

Maximum likelihood estimation from complex sample data requires additional modeling due to the
information in the sample selection. Alternatively, pseudo maximum likelihood methods that consist
of maximizing estimates of the census score function can be applied. In this article we review some of
the approaches considered in the literature and compare them with a new approach derived from the
ideas of ‘weighted distributions’. The focus of the comparisons is on situations where some or all of the
design variables are unknown or misspecified. The results obtained for the new method are encouraging,
but the study is limited so far to simple situations.

KEY WORDS: Design adjusted estimators; Ignorable and informative designs; Pseudo likelihood;
Weighted distributions.

1. INTRODUCTION

Survey data are often used for analytic inference about model parameters such as means,
regression coefficients, cell probabilities efc. The models pertain to the population data and
are therefore referred to as the census models. The problem in applying ‘classical’ maximum
likelihood methods to survey data is that the model holding for the sample can be very different
from the model holding for the population due to sample selection effects.

In order to illustrate the problem and some of the solutions proposed in the literature, consider
the following simple example. A population U is made up of N units labelled {1, ..., N }.
Associated with unit / is a vector (Y;,Z) of independent measurements drawn from a bivariate
normal distribution with mean ' = (uy,pz) and variance-covariance (V — C) matrix

o %/ Oyz
Y = , |-
Oyz, 02
The values (y;, z;) are observed for a sample s of n < < N units selected by a probability

sampling scheme. It is desirable to estimate uy and o%. We consider three cases distinguished
by the selection process and data availability.

Case A — The sample is selected by simple random sampling with replacement and only the
values { (¥;, z;), i€s} are known. Denoting the sample labels as {1, ..., n}, we have that
Yl9 v Yn ..:1 N(/J'Yx 0%’) yleldlng

N

fry = Js = L fowi/m; 5%=E7=1()’i—}75)2/n =S§ (1.1

as the MLE of puy and o2. Clearly Ey(fiy) = pyand Ey{ [n/(n — 1)16%) = oy where By (-}
defines the expectation under the model, with the sample units held fixed.
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Case B - The sample is selected with probabilities proportional to z; with replacement such
thatateachdraw &k = 1, ..., n, P. = P(i€s) = z;/ Zflzl z;. The data known to the analyst
are {y,z;i€s} and {z,41, ..., Zv}. Suppose that Corr(Y,Z) > 0. This implies that
P(Y; > uy | i€s) > 1/2 since the sampling scheme tends to select units with large values of
Z and hence large values of Y. Clearly, the estimators defined in (1.1) are no longer MLE in
this case.

The situation just described corresponds to the ‘classical’ example of missing data often
analyzed in the literature (Anderson 1957). The MLE of uy and 0% are now

py = 7, + b(Z — Z,); 67 = sy + b*(S; — s3), (1.2)

where Z =YL 1zi/N, z, =L/ zi/n, b =372 (v — F)(z — Z)/ L ii(z — %)%,
§2 =Y N (z; — Z)>/Nand s3 = ¥ "_,(z; — Z)*/n. Notice that the effect of the sample
selection can be dealt with in this case by modeling the joint distribution of the response variable
Y and the design variable Z. The sample selection process is then ignorable (see section 2.1).

Case C - Same as Case B but only the sample values { (v, z;), i€s} and the sample selection
probabilities {P;, i€s} are known. Even though the values of z;, i =1, ..., Nare known at
the sampling stage, it is often the case that information on the design variables or the inclusion
probabilities for units outside the sample is not included in the files released to analysts
performing secondary analysis.

The estimators defined by (1.2) are no longer operational in this case since the population
mean and variance of Z are unknown. For large populations, however, such that Z= constant,
an approximate MLE estimator of uy is obtained as u¥ = p, + b*(1/N — B,) where P, =
Y P/nand b* =Y (y; — ¥)(P. — P)/ Y™, (P; — P,)%. The rationale for uj is that
P, = Z;/NZ so that for Z = constant, (Y, P) is bivariate normal with P = ¥ . ,P/N = 1/N.
This estimator is an example of using the sample selection probabilities as surrogates for the
design variables when information on the latter is incomplete, as recommended in Rubin (1985).

A possible way to obtain approximate MLE under Case C is to follow what is known in
the literature as the pseudo likelihood approach. We describe the approach in more detail in
section 2, but it basically consists of maximizing a design consistent estimator of the census
score function, that is, the score function that would have been obtained in the case of a census.
The latter is unaffected by the design. Application of this approach yields, under Case C the
estimators

fiy = Jps = 1 ?=1W?‘y,-/2 LwE 6y = sp = ) Wi — )7,;5)2/2 Wl (1.3)

where w} = (1/nP). Since 7, and s7 are design consistent for ¥ = ¥ i,y;/N and S3 =
YN (7 — Y)%/N respectively, they are also consistent for uy and ¢% in the sense that
plimn—> QO sN—o0 ()_)pw sz) = (puys 0%/) .

In this article we discuss a different approach for maximum likelihood estimation that is
operational in principle even when the only information available to the analyst is the sample
data. The method is derived from the theory of weighted distributions (Rao 1965, 1985, Patil
and Rao 1978) and it utilizes the sample selection probabilities. The method is illustrated for
the case of normal distributions with two different sampling designs and is shown to perform
well in these cases. Another apparent advantage of the proposed approach emerging from the
empirical study is that it is not very sensitive to misspecification of the design variables.
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In section 2 we review the different approaches for MLE from survey data considered in
the literature. Section 3 outlines the basic steps of the new approach. The empirical study is
described and summarized in section 4. Section 5 contains concluding remarks.

2. REVIEW OF APPROACHES CONSIDERED IN THE LITERATURE

In this section we review briefly the approaches considered in the literature for MLE or approx-
imate MLE from survey data. To better understand the complexity of the problem, we first
discuss the notion of ignorable sampling designs. For a more detailed review of maximum likelihood
and other approaches for analytic inferences from sample surveys see Pfeffermann (1993).

2.1 Ignorable and Informative Sampling Designs

LetZ = (Z), ..., Zx) represent K design (auxiliary) variables used for designing the survey
and denote by Z = (g, ..., gv) ' the N X K matrix of measurements on Z so that g, is the
vector associated with unit i. The design variables may include strata indicator variables and
quantitative measurements of cluster and unit characteristics. Let Y* = (Y}, ..., ¥,) represent
the survey response variables. We assume for convenience that Y'is separate from Z although
as we mention below and consider in the empirical study, the sample selection probabilities

may depend on the Y-values directly. The matrix Y = (yy, ..., yn) of the response variables
values can be decomposed as Y = [Y,,Y;] where ¥; = {y;i€s} and Y; = {y;,i¢s]. Let
I = (I, ..., Iy) be a vector of sample inclusion indicators such that I; = 1 for i€s and

I, = 0 otherwise.

The basic problem of MLE from complex survey data, as illustrated in the introduction,
is that in general, f( Y;;M*) # S J(Y:\)dY; where the symbol f( - ; -) defines probability density
functions (pdf). As further illustrated in the introduction, this problem can sometimes be
resolved by modeling the joint distribution of Y and Z. Thus, suppose that the values of Z
are known for every unit in the population and that Y is observed for only the sample units.
The joint pdf of all the available data can be written as

FYoLZ:9,6.0) = [ (Y, Y5 | Z8)P(I| Y, Zspy) g(Z;¢)dYs. 2.1

Ignoring the sampling selection in the inference process implies that inference is based on the
joint distribution of Y; and Z, that is, the probability P(I | Y, Z; p;) on the right hand side
of (2.1) is ignored. Hence the inference is based on

f(Ys, Z30,¢) = § f(Y, Y5 | Z38)) g(Z;9)dYs. (2.2)

The sample selection is said to be ignorable when inference based on (2.1) is equivalent to
inference based on (2.2). This is clearly the case for sampling designs that depend only on the
design variables Z, since in this case P(I | Y, Z;0,) = P(I | Z;p1). The exact conditions for
the ignorability of the sample selection process are defined and illustrated in the articles by
Rubin (1976), Little (1982) and Sugden and Smith (1984).

The complications of MLE from complex survey data based on (2.1) or (2.2) are now
apparent. First and foremost, it requires that all the relevant design variables be identified and
known at the population level. As often argued in the literature, (see Pfeffermann 1993 for
references), this is not necessarily the case. Secondly, it requires that the sample selection is
ignorable in the sense discussed above or alternatively that the probabilities P({ | Y,Z;p) be
modeled and included in the likelihood. Finally, the use of MLE requires the specification of
the joint pdf f(Y,Z:;0,¢) = f(Y | Z;01)8(Z; ¢).
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2.2 Exact MLE Based on Factorization of the Likelihood

Factoring the likelihood in the case of multivariate normal data was first suggested by
Anderson (1957). The factorization is possible when the observed data have a nested pattern,
that is, the set of survey variables X, ..., X, can be arranged such that X is observed for all
units where X, is observed, j = 1, ..., (p — 1). Extensions to other distributions and
more general data patterns are given in Rubin (1974). Holt, Smith and Winter (1980) apply
the ideas to MLE of regression coefficients from complex survey data.

Suppose that the sample selection is ignorable so that inference can be based on the joint
distribution f(Y;,Z;8,¢) = f(Y; | Z;0,) g(Z;¢) . The likelihood can be factored accordingly as

L(0,$:Y,2) = L(61;Ys | Z) L($:2). (2.3)

Assuming that the parameters ¢, and ¢ are distinct in the sense of Rubin (1976), MLE of §,
and ¢ can be calculated independently from the two components.

Application of (2.3) to the case where (Y/,Z/) are multivariate normal yields the following
MLE for py = E(Y) and ¥y = V(YY) (Anderson 1957).

(Z — %) ZA:Y = syy + B[Szz — sz71B7, 2.4)

[3~33
~

Il
1;<|
e’

where (7,Z) = Loz /n Z = L1 2/NSzz = Y121z — ) (% — £)'IN, 577 =
El—l(gt - Zs)(%z - gs) /n and@ = E:—I()fl .l/s) (gl - gs) SZZ /n.

The MLE of the coefficient matrix B, of the multivariate regression of Y; on Y, where
Y’ = (Y1,Y;) is obtained straightforwardly from (2.4). Thus, if

le’ 212
EZI’ 222

where
Yy =COVI(Y/,Y)'1, i,j=12 Bp=Y; L and By=YnYy
For the explicit expression of B, see Holt, Smith and Winter (1980).

2.3 Design Adjusted Estimators (DAE)

Assume that the sample selection mechanism is ignorable. Let £y(8;Y) denote the log
likelihood for @ that would be obtained in the case of a census. Denote by An(Y | Z,Y;; 65)
the conditional distribution of Y given Z and Y;and let £y (- | Z,Y,) define the expectation
operator under Ay. The DAE §xp of 8 as proposed by Chambers (1986) is defined as

Epy = tv(Gnp) | Z,Y] = min(E, [ — () | Z,Y,];6¢€0]. 2.5)

Notice that the expectation Eyp(0) = Ep,[Inv(0) | Z,Y] depends on the vector parameter
6§, of the conditional distribution f(Y | Z;§,). The estimator §yp of (2.5) is computed by
substituting g, for §, where §, is the MLE of §, obtained from the data ( ¥;,Z).
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Simple algebra shows that for the multivariate normal model considered in section 2.2, the
DAE of puyand Yy are the same as the MLE defined by (2.4). A possible advantage of this
approach, however, is that it can be applied to other loss functions.

2.4 The Pseudo Likelihood Approach

The prominent feature of this approach is that it utilizes the sample selection probabilities
to estimate the census likelihood equations. The estimated equations are then maximized with
respect to the vector parameter of interest. No information on the values of the design variables
is needed, although as illustrated in the empirical study, knowledge of these values at the
population level can be used to improve the efficiency of the estimators.

Suppose that the population values Y; are independent draws from a common distribution
f(Y:0) andlet in(0; Y) = % N | log f(Y;;0) define the census log likelihood function. Under
some regularity conditions, the MLE, ﬁ, solves the equations

U() = diy(6; Y)/df = Lilwu(8:y) =0, (2.6)

where ““d”’ defines the derivative operator and u(8,y;) = dlog f(Y;0)/d§. The pseudo MLE
of #is defined as the solution of [7 (8) = 0where U(9) is a design consistent estimator of U(§)
in the sense that plim,,_m,N_oo[Q(Q) — U(9)] = 0 for all §¢©. The commonly used
estimator of U(§) is the Horvitz-Thompson (1952) estimator so that the pseudo MLE of §is
the solution of U(8) = Y /= wfu(§; y;) = 0 where for selection without replacement
w* = [1/P(ies)] and for selection with replacement wf = (1/nP).

For the multivariate normal model, the pseudo MLE of yy and Yy are

o —

]
=

iy =Y mowiyi [Liawlhs Ly= LiawiQi - [ lwh @)

The pseudo MLE of the matrix coefficients B, is obtained as B, =¥, £ 3.

Various examples for the use of this approach under different models can be found in Skinner
et al. (1989). See also Binder (1983), Chambless and Boyle (1985), Roberts, Rao and Kumar
(1987) and Pfeffermann (1988).

Information on auxiliary design variables known at the population level can be used to
improve the efficiency of the design estimators of U(§). The ‘‘probability weighted MLE”
as proposed by Nathan and Holt (1980) and by Smith and Holmes (Skinner ef a/. 1989,
Ch. 8) are examples of the use of the population values of the design variables. The estimators
have the same structure as the exact MLE derived from (2.4) but with unweighted sample
statistics replaced by weighted statistics. For example, (J;,Z;) in (2.4) are replaced by
Y wl vz / L = wi, with similar substitutions for the other expressions.

An important property of pseudo MLE is that they are in general design consistent for the
population quantities that would be obtained by solving the corresponding census likelihood
equations, irrespective of whether the model is correct and/or whether the sampling design
is informative. See Pfeffermann (1993) for the implications of this property with references
to other studies. Other theoretical properties of pseudo MLE are studied by Godambe and
Thompson (1986).
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3. MLE DERIVED FROM WEIGHTED DISTRIBUTIONS

3.1 General Formulation

The weighted pdf of a random variable X is defined as
S(x) = wx)f(x)/w, (3.1

where f(x) is the unweighted pdf and w = Sw (x)f(x)dx = E[w(X)] isthe normalizing factor
making the total probability equal to unity. Situations leading to weighted distributions occur
when realizations x from f(x) are observed and recorded with differential probabilities w (x).
The expectation w is then the probability of recording an observation and f* (x) is the pdf of
the resulting random variable X”.

The concept of weighted distributions was introduced by Rao (1965). Patil and Rao (1978)
discuss various practical situations that give rise to pdf’s of the form (3.1). One special case
that occurs in many applications is when w(x) = | x| where| x | is some measure of the size
of x. The pdf obtained in this case is called ‘size biased’ or ‘length biased’. The properties of
that distribution under a variety of densities f(x) are examined in Cox (1969) and Patil and
Rao (1978). Estimation of weighted distributions is considered by Vardi (1982).

How can the concept of weighted distributions be utilized for analytic inference from complex
samples? Consider as before a finite population U = {1, ..., N} with random measurements
X(i) = x{ = (y/,z/) generated independently from a common pdf A(x;0) = f(y; | 2561)
g(z;;9). Suppose that unit i is sampled with probability w(x;«) that depends on the
measurements x; and possibly also on an unknown vector parameter «. Denote by X} the
measurements recorded for unit j€s. The pdf of X}” is then

R (x5 @, 8) = f(x; | ies) = Plies| X() = x;] h(x;38)/P(i€s)

w(xis @) h(xi58)] fw(xpe) h(x:0)dx;. 3.2)

Analytic inference focuses on the vector parameter § or functions thereof as the target
parameters. Let s = {1, ..., n} define a sample of fixed size n < < N selected with
replacement such that at each draw k = 1, ..., n, P(jés) = w(x;a),j =1, ..., N. The
joint pdf of { X", i = 1, ..., n} is then II'_ ;A" (x;5,8) so that the likelihood is

L(8;X,s) = const x TIZy h(x38)/[fw(x2)h(x:8)dx]", (3.3)

where X! = [x, ..., X,]. The likelihood (3.3) has the following properties:

(1) Itisdefined in terms of the vector parameter 6. This has an advantage over the use of the
factorized likelihood (2.3) where § does not enter the likelihood directly.

(2) It is a function of the selection probabilities w(x;;¢) that enter into the denominator.

(3) The likelihood relates to the conditional distribution of the sample data given the units
in the sample. This is different from the likelihood derived from the pdf in (2.1) which
is the joint pdf of the sample data and the vector [ of sample indicators. An example of
the use of the latter pdf in conjunction with weighted distributions for MLE is given in
Godambe and Rajarshi (1989).



Survey Methodology, December 1992 231

(4) The use of the likelihood (3.3) requires a definition of the joint pdf 4 (x;6) holding in the
population and a specification of the relationship between the sample selection probabilities
and the variables observed for the sample. The need to define the population pdf is common
to all of the approaches for MLE proposed in the literature. The specification of the func-
tions w(x) is unique to the present approach. This step can be carried out however by
modeling the empirical relationship in the sample between the selection probabilities and
the observed measurements. Having identified a suitable model, the probabilities w (x,o)
can be estimated from the sample and the estimates can be substituted into the likelihood.
In what follows we consider two examples which are analyzed empirically in section 4.

3.2 Examples

We assume the model considered in section 2 in which X/ = (Y/,Z/) are independent
realizations from a multivariate normal distribution with mean uy = (zypuz) and V — C
matrix

Z Yy Z Yz

ZZY’ ZZZ ‘

Consider the following sampling designs:

D1 - PPS selection with replacement: Let 7; = o Y; + o5 Z; define a single design variable
and suppose that the sample is selected with probabilities proportional to the T-values such
that at eachdraw k = 1, ..., n, P(i€s) = t/NT,i = 1, ..., Nwhere T = YL, t;/N. We
assume that N is large enough so that the difference between T and uy = E(T) can be
ignored. The coefficients & = (¢f,a3) are fixed. In special cases «; = O hence T'is a func-
tion of only the auxiliary design variables Z or o, = 0 in which case T is only a function of
the response variables Y. Suppose as before that it is desirable to estimate the mean uy and
the ¥V — C matrix ¥, or functions thereof.

When o, = 0 and T is known for every unit in the population, one can estimate the
unknown parameters using the factorization (2.3). The corresponding MLE are given in (2.4)
with Z replaced by T. Suppose however that the only information available to the analyst is
the sample values x/ = (y/,z/), { = 1, ..., n and the sample selection probabilities
P; = t;/NT. Under the assumption 7 = ur, the likelihood for [ux, ¥ ] can be written using
(3.3) as

Lpx, ¥ xx Xo8) = Iy (o' x)o(Xsmx Lax)/(@f y + o uz)", (3.5)

where ¢ (X;3ux, ¥ ) is the normal pdf with mean uy and V' — Cmatrix ¥, . The likelihood
in (3.5) is a function also of the unknown vector coefficients o. However, the values of o can
actually be found up to a constant ¢ (which cancels out in the likelihood) by regressing the sample
selection probabilities P, against .

In the simulation study described in section 4, we consider the case where not all the design
variables are known even for the sample units. Thus, suppose that Z; = (Z,;,Z,;) and that
the data available to the analyst consist of the selection probabilities P, i = 1, ..., nand
the observations {x}’ = (¥/,z1;), i = 1, ..., n}. The likelihood (3.3) is now
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L(pt, Y xx; X)) = I wxP) e (xFut X xx)/ (W)™, (3.6)

where w(x}) are the selection probabilities expressed as functions of x7. Clearly, the
probabilities w(x) are not fully determined by the values xJ unless oy, = 0. Assuming
normality

w(xpa) = of + of 'y + ofz; + €, 3.7

where {¢;} is white noise. Thus, the likelihood (3.6) can be approximated by substituting
w*(xF) = of + of 'y, + a3z for w(x}). The values of o* = (af, of,a3) " can be estimated
from the regression (3.7) and then substituted into the likelihood.

D2 - Stratified sampling with T as the stratification variable: Suppose that the population U
is divided into L strata Uy, ..., U, of sizesNy, ..., Ny, ¥ %_1 N, = N, based on the ascending
values of 7. Consider a simple random stratified sample of size n = ¥ %£_, n,, selected without
replacement with fixed sample sizes {n,}. The weighted pdf of X}*, the measurements
recorded for unit i€s is in this case [compare with (3.2)]

Pih(x;0)/w if ;=< t®
Ph(xs0)/w if D = ¢ <@
R (x30,8) = f(x; | i€s) = (3.8)
PLh(.ZC,;(E)/W if t(L_l) = ti
where P, = (n,/N,) and for {N,} sufficiently large, the probability w = P(i€S) can be
closely approximated as
(D () -
w = P(i€s) = Ply o(t)dt + L ESA P, § o(t)dt + P, | o(t)dt, (3.9)

T=1) JL=D

where ¢ (¢) denotes the normal pdf of T.
Suppose that the strata are large enough so that selection within the strata can be considered
as mdependent Define pr = E(T) = a'px, 0% = Var(7T) = a’Yxx o and let &, =

j’ :Z ¢ (t)dt. For given boundaries {t(’”} and the vector coefficients «, the likelihood for
§ can be written as

L(8; X,s) = const X TIf_ A (x;8)IT _ | P2 |

(Pr@ + X5z Pul®y — &yl + P[] — 3,1}, - (3.10)
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Hausman and Wise (1981) use a variant of the likelihood (3.10) for estimating the vector
of regression coefficients in a situation where the strata boundaries are determined by the values
of the dependent variable. They assume that the strata boundaries are known, but allow the
selection probabilities within the strata to be unknown in which case they are included in the
set of unknown parameters with respect to which the likelihood is maximized.

In many practical situations, the strata boundaries are unknown and have to be estimated
from the sample data. When the data include the values {#, i= 1, ..., n}, the vector o can
be estimated from the regression of #; on x;, as in the PPS example discussed before.
Furthermore, if (f(;y < ... =< () are the ordered values of the ¢/s, the strata boundaries
can be estimated as, ) = Vs(t(n) + L(nyany) .. 5TV = Yoty + tpeq1y) where
n* = ¥ k=l n,. Substituting these estimates into (3.10) yields an approximation to the
likelihood which can then be maximized as a function of 6.

The situation is more complicated when the values ¢; are unknown even for units in the
sample. In the simulation study we attempt to deal with this problem by predicting ¢; using
Fisher’s Linear Discriminant Function, that is, specifying the vector coefficients & to be such
that it maximizes the ratio of the between groups sum of squares to the within groups sum of
squares of linear combinations o’ X;. The groups are the strata. Once the predictors L= &'x;
are formed, the strata boundaries are estimated as in the previous case but with 7; instead of
t. Also, jr = &'py and 0% = &’ ¥ vy @ Substituting these estimators in (3.10) yields an
approximation to the likelihood which can be maximized with respect to 6.

As in the PPS example, the likelihood (3.10) can be modified to the case where only some
of the design variables are known or observed. Maximization of the modified likelihood is
carried out following the same steps as above.

4. SIMULATION RESULTS

4.1 General

In order to illustrate and compare the performance of the various MLE procedures described
in this paper, we ran a small simulation study which consists of two stages. In the first stage
we generated a single finite population of size N = 8,000 such that x;" = (¥15Y20210%2i)»
i =1, ..., 8,000 are multivariate normal. In the second stage we selected independent samples
of size n = 800 using the two sampling schemes described in section 3.2 with two different
definitions for the design variable. The number of samples selected in each case was 300. We
computed the various estimators for each of the samples based on the available sample data
and then computed the empirical bias and root mean square error (RMSE) over the selected
samples. In order to study and compare the conditional properties of the estimators considered,
we classified the 300 samples selected in each case into 10 groups, based on the ascending values
of the sample mean of the design variable and computed the bias and RMSE within each of
the groups. In what follows we describe the various stages in some more detail.

4.2 Generation of the Population Values and Sample Selection Schemes

Values of z;; and z,; were generated independently from a normal (20, 102y distribution.
Values y,; were generated as y,; = zy; + 2 + €15 €;; ~ N(0, 10%). Values y,; were generated
as yy = yu + 0.5z; + 0.5z + €35 €3, ~ N(O, 20%).
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We employed the two sampling schemes described in section 3.2 using two different definitions
for the design size variable. (i) ; = 0.5(z; + 2oy and (i) #; = 0.25(yy; + Yo + zZii + 22)-
Thus, selection based on the first design variable satisfies the ignorability conditions defined
in section 2.1, provided that the data for (Z;,Z,) are known for the entire population. When
these data are only known for the sample, the sampling design is ignorable only with respect
to the conditional distribution f(¥;,, | 21,22). When selection is based on the second design
variable, the sampling design is informative.

For the stratified selection D2, we generated eight equal sized strata defined by the ascending
values of the size variable. The sample sizes within the strata were such that they increase with
increasing values of the #/s.

4.3 Estimators Considered

The parameters estimated in our study are the mean vector and the V' — C matrix of the
marginal distribution of (Y;,Y,). We consider seven different estimators for the design D1
and nine estimators for the design D2. See section 3.2 for description of the computations
involved in the derivation of the various estimators.

DESIGN D1

ML(Z,,Z,) — The exact MLE for the case where the design is ignorable, (equation 2.4).

WMIL(Z,,Z,) — The estimators obtained from ML (Z,,Z,) by replacing the unweighted
sample statistics by probability weighted statistics (see the discussion
below equation 2.7).

ML(Z) - Same as ML (Z,,Z,) but with Z; as the only design variable so that
~Z = Zl'

WML(Z,) - Same as WML (Z,,Z,) but with Z, as the only design variable.

CPL - The classical pseudo likelihood estimators (equations 2.7).

WDML (X*) - The (weighted distribution) estimators obtained by maximization of the

likelihood in (3.6).
WDML (X*,Z,) - The estimators obtained by maximizing the likelihood in (3.6) but with
the mean and variance of Z, fixed at their population values.

DESIGN D2

The first 5 estimators are the same as the estimators for the design D1. The other 4 estimators
are defined as follows:

WDML (X*) - The estimators obtained by maximizing the likelihood (3.10) with the a* -
coefficients [(equation (3.7)] estimated by the linear discriminant function.

WDML (X*,Z,) - Same as WDML (X*) but with the mean and variance of Z, fixed at
their population values.

WDML (X*,t;) - The estimators obtained by maximizing the likelihood (3.10) when the
values ¢, = (¢, ..., t,) are known for units in the sample.

WDML (X*,t,,Z,) - Same as WDML (X*,£,) but with the mean and variance of Z; fixed at
their population values.
It should be emphasized that the estimators derived based on the weighted distributions are
not really MLE because of the approximations involved in the maximization procedures as
described in section 3.2 (see also comment 2 below).
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Comments

M

@

The estimators we consider can be classified according to the sample and population data
they use and according to whether the design variables are correctly specified and the
ignorability conditions are met. Thus, the estimators ML (Z,,Z,) and WML (Z,,Z,) use
the population values of Z; and Z, and the sample values of Y] and Y,. As mentioned in
section 2.4 and further discussed in Pfeffermann (1993), the use of WML (Z,,Z,) is to
protect against possible model misspecifications or informative sampling schemes. The
estimators ML (Z,), WML (Z,), WDML (X*,Z,) and WDML (X*,t;,Z;) use the known
population data for Z; but not the data for Z, even for the sample units. The use of these
estimators corresponds to situations where the design variables are misspecified or the values
of some of them are unknown. The estimator WDML (X*) uses only the sample
information for Y, Y, and Z, and the sample selection probabilities. The estimator
WDML (X*,1,) uses in addition the sampling values of the design variable. The estimator
CPL uses only the sample values of Y, and Y, and the sample selection probabilities.
We maximized the likelihood derived from the weighted distributions using a quasi-Newton
method in the subroutine library IMSL. The method employed requires partial derivatives
of the likelihood with respect to each of the parameters as user supplied input. An issue
that arose in the maximization is worth mentioning. It is easier to parameterize the
likelihood in terms of ¥ ~! where ¥ is the covariance matrix among Y;, Y, and Z;.
Furthermore, to insure that the six parameters that define ¥ —Iare unconstrained, we use
the elements of the upper triangular matrix B so that B'B = Y ~!. Any choice of the
values for B leads to a matrix ¥ ! that is positive semi-definite.

4.4 Results

We present the results obtained when estimating u; = E(Y;), o} = Var(Y;) and B, -

the slope coefficient in the regression of Y, on Y}, as representative of the results obtained
when estimating the other parameters. Tables 1-3 contain the RMSE of the various estimators
as obtained for the two sampling schemes and the two choices of the design variable. RMSE’s
dominated by large biases are indicated by an asterisk.

The main results emerging from the tables (and from estimating the other model parameters)

can be summarized as follows:

(1)

@)

€)

The estimator ML (Z,,Z,) outperforms all of the other estimators when the ignorability
conditions are met, but it is severely biased when the sampling design is informative. The
estimator WML (Z,,Z,) is essentially unbiased in all of the cases, but the use of the
sampling weights increases the variance. Still, this estimator dominates in general the
estimator CPL especially under the PPS design because of the use of the population values
of (Z,,7Z,).

The estimator ML (Z,) is severely biased in almost all of the cases. Notice in particular
the large biases in the case where ¢; = 0.5(z;; + z), illustrating the sensitivity of the
MLE’s to the exact specification of the design variables. Like with WML (Z,,Z,), the
estimator WML (Z,) is unbiased, and for the PPS design it outperforms the estimator CPL.
The estimator CPL is unbiased in all of the cases. An interesting result emerging from the
tables is that relative to the other estimators considered, it performs better in estimating
the mean than in estimating variances and covariances. An intuitive explanation for this
outcome is that in the latter case the sampling weights are used twice, thereby increasing
the variance.
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Table 1

RMSE of Estimators of u; for Different Sampling Schemes and Design Variables
(True Mean: u; = 40)

D1 - PPS Sampling D2 - Stratified Sampling

Estimators
ti = 05~z, ti = 0252(, ti = 05~Zl ti = 0252(,
MIL(Z,,Z5) 0.43 1.86% 0.47 3.43%
WML (Zy,Z5) 0.43 0.57 0.50 0.52
ML(Zy) 2.67* 4.38% 6.39* 8.32*
WML(Z;) 0.58 0.90 0.62 0.58
WDML(X*,Z,) 0.56 0.63 1.51% 0.59
WDML (X*) 0.80 0.90 3.59% 0.49
CPL 0.77 1.19 0.56 0.47
WDML(X*,t5) - - 0.74 0.43
WDML(X*,t5,Z1) - — 0.74 0.57
* RMSE dominated by bias.
Table 2

RMSE of Estimators of o% for Different Samyling Schemes and Design Variables
(True Variance: o7 = 300)

D1 - PPS Sampling D2 - Stratified Sampling

Estimators
f,' = 055, t,‘ = 0252(, [i = 0551 ti = 025261

ML(Z,,Z5) 12.33 18.35* 16.00 29.00*
WML(Z,,Z5) 14.00 18.72 20.87 19.83
ML(Z,) 24.32% 33.66* 35.16%* 53.66%*
WML(Z,) 18.61 26.61 24.22 20.35
WDML(X*,Z,) 14.36 17.41 26.94* 15.49
WDML (X*) 16.37 19.68 41.08% 15.34
CPL 21.11 29.06 24.19 20.18
WDML (X*,t) - - 26.18* 15.46
WDML (X*,t:,Z,) - — 25.70* 15.72

* RMSE dominated by bias.
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Table 3

RMSE of Estimators of By, for Different Sampling Schemes and Design Variables
(True Coefficient: By; = 1.33)

D1 - PPS Sampling D2 - Stratified Sampling

Estimators
t[ = 05~Z, l‘,‘ = 0253(, t,‘ = 05~Z, f,‘ = 0255,

ML(Z,Z5) 0.043 0.069* 0.048 0.120*
WML (Z,,Z3) 0.054 0.060 0.068 0.066
ML (Z;) 0.045 0.078* 0.056 0.134%
WML(Z,) 0.055 0.062 0.069 0.065
WDML(X*,Zy) 0.043 0.047 0.049 0.045
WDML (X*) 0.044 0.049 0.050 0.046
CPL 0.055 0.063 0.069 0.065
WDML (X*,t;) - - 0.048 0.045
WDML (X*,t5,21) - - 0.048 0.045

* RMSE dominated by bias.

“

&)

For the PPS design, the estimators WDML (X*) and WDML (X*,Z,) perform very well
with WDML (X*) clearly dominating CPL and WDML (X*,Z,) dominating WML(Z,).
Interestingly, the estimator WDML (X*) performs in general better than the estimator
WML (Z,) despite the use of less information. The fact that WDML (X*) outperforms
CPL could be explained by the fact that it is more ‘‘model dependent”, although as
discussed in section (2.4), one way of viewing CPL is as the estimator maximizing the design
unbiased estimator of the likelihood equations holding in the population.

Next consider the stratified design. In the case were ¢; = 0.25x;, the picture is very similar
to the PPS case with WDML (X*) dominating again both CPL and WML (Z;). Actually,
there is little to choose in this case among the four estimators derived from the weighted
distribution likelihood despite the use of different sample and population data by each
estimator. When 7; = 0.5z;, all of the four estimators are inferior to WML (Z,) and CPL
although interestingly enough, not with respect to the estimation of the regression coeffi-
cient where they all perform very similar to the optimal ML (Z,,Z,). The particularly poor
performance of WDML (X*) (and to a much lesser extent of WDML(X*,Z,)) in
estimating the mean and variance is mainly the result of incorrect specification of the strata
boundaries and hence incorrect specification of the denominator of the likelihood (3.10).
This problem can possibly be resolved by either including the strata boundaries and the
o* — coefficients relating the values 7; to the observed data (equation 3.7) as part of the
unknown parameters in the likelihood (3.10), or by replacing the linear discriminant func-
tion by some other (nonlinear) function such as logistic regression. The latter approach
has the advantage of reducing the number of parameters over which the likelihood has to
be maximized, which can be crucial when the number of strata is large.
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We considered so far the unconditional bias and RMSE of the estimators. As mentioned
in section 4.1, we studied also conditional properties by computing the bias and RMSE’s over
samples with similar sample means of the design variable. The conclusions reached from that
study are very similar to the conclusions stated before. Thus, estimators which are approx-
imately unbiased unconditionally are also approximately conditionally unbiased and vice versa.

This result is somewhat surprising because it has often been illustrated in the literature that
the CPL estimator, for example, has poor conditional properties. Possible explanations in our
case are that the sample size considered is large or that the division of the sample into the ten
groups was not sharp enough. Because of space limitations we omit the results illustrating con-
ditional properties of the estimators.

5. CONCLUDING REMARKS

The results of the simulation study show that estimators obtained by maximizing the
likelihood derived from weighted distributions are a favorable alternative to the pseudo
likelihood estimators obtained by maximizing design consistent estimators of the census
likelihood equations. The estimators perform particularly well in our study when using an
informative sampling scheme for which the “‘classical’”’ MLE can become severely biased. The
use of these estimators requires, however, the modeling of the relationship between the sample
selection probabilities and the observed sample data. As illustrated in the simulation study,
failure to model or estimate the relationship correctly may introduce large biases.

The key question to the practical use of these estimators is therefore whether the model
relating the sample selection probabilities to the observed response and design variables can
be successfully identified from the sample data. It would seem that this question can only be
answered by considering actual surveys that use common sampling designs. Other important
questions related to the use of these estimators are the availability of reliable variance estimators
so that accurate confidence intervals can be set and the protection against misspecification of
the parent distribution of the response variables in the population. These two questions are
common to other MLE procedures. We hope that the initial results of our study will encourage
further research on these and other related questions.
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