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ABSTRACT

In almost all large surveys, some form of imputation is used. This paper develops a method for variance
estimation when single (as opposed to multiple) imputation is used to create a completed data set.
Imputation will never reproduce the true values (except in truly exceptional cases). The total error of
the survey estimate is viewed in this paper as the sum of sampling error and imputation error. Conse-
quently, an overall variance is derived as the sum of a sampling variance and an imputation variance.
The principal theme is the estimation of these two components, using the data after imputation, that
is, the actually observed values and the imputed values. The approach is model assisted in the sense that
the model implied by the imputation method and the randomization distribution used for sample selection
will together determine the appearance of the variance estimators. The theoretical findings are confirmed
by a Monte Carlo simulation.
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1. DIFFERENT TYPES OF IMPUTATION

This paper reports work carried out in connection with the development of Statistics
Canada’s Generalized Estimation System (GES). Variance estimates are to be routinely
calculated in the different estimation modules that define the GES. There was a need to develop
suitable methods for variance estimation when the data set contains imputed values, which
is the case in practically all surveys.

Two principal approaches to estimation with missing data are weighting and imputation.
In the recent literature, the weights used to compensate for nonresponse are usually viewed
as the inverse of the response probabilities associated with an assumed response mechanism.
Since the response probabilities are ordinarily unknown, they need to be estimated from the
available data. Imputation, on the other hand, has the advantage that it yields a complete data
matrix. Such a matrix simplifies data handling, but it does not imply that ‘‘standard estimation
methods’’ can be used directly. The imputed values are sample-based, thus they have their own
statistical properties, such as a mean and a variance.

In our age, imputation is an extensively used tool. It is interesting to note what Pritzker,
Ogus and Hansen (1965) say about imputation policy at the US Bureau of the Census: ‘“Basically
our philosophy in connection with the problem of ... imputation is that we should get
information by direct measurement on a very high proportion of the aggregates to be tabulated,
with sufficient control on quality that almost any reasonable rule for ... imputation will yield
substantially the same results ... With respect to imputation in censuses and sample surveys
we have adopted a standard that says we have a low level of imputation, of the order of 1 or
2 percent, as a goal.”

! Carl-Erik Sarndal, Département de mathématiques et de statistique, Université de Montréal, C.P. 6128, succursale A,
Montréal (Québec) H3C 3J7.
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Ideally, we should still strive for the goal of only one to two percent imputation. But in our
time most surveys carried out by large survey organizations show a rate of imputation that
is much higher. Clearly, if 30% of the values are imputed, the effects of imputation can not
be ignored. Imputation can create systematic error (bias) in the point estimate; this is perhaps
the most serious concern. But even if an imputation method can be found such that there is
no appreciable systematic error, one must not ignore the often considerable effect that
imputation has on the precision (the variance) of the point estimate. There is a need for simple
yet valid variance estimation methods for survey data containing imputations, so that the
coefficients of variation of the survey estimates can be properly reported.

A variety of imputation methods have been proposed. These can be classified in different
ways. One way to classify is by the number of imputations carried out. In single imputation
methods, a single value is imputed for a missing value. A complete data matrix is obtained,
in which the imputed values are flagged. Estimates are calculated with the aid of the completed
set. In multiple imputation, two or more values are imputed for each missing value. Several
completed data sets are thus obtained. Estimates are calculated with the aid of the completed
data sets.

Imputation methods also differ with respect to the modeling underlying the imputation.
Some imputation methods use an explicit model, as when the imputed value is obtained by
a regression fit, a ratio or mean imputation. In other methods, the model is only implicit, as
in hot deck imputation and nearest neighbour donor imputation. The distinctions just made
are important for this paper.

Statistics Canada currently uses imputation methods such as nearest neighbour donor,
current ratio, current mean, previous value, previous mean, auxiliary trend. All of these are
single imputation methods. The imputed values originate in the Generalized Edit and
Imputation System (GEIS), from where they enter into the Generalized Estimation System
(GES), where the point estimates and the variance estimates are calculated in a number of
different estimation modules. This paper deals in particular with current ratio imputation, which
represents a case of explicit modeling.

2. SOME THOUGHTS ON MULTIPLE IMPUTATION

Multiple imputation was suggested by D.B. Rubin around 1977. His ideas are explained in
a number of papers, of which Herzog and Rubin (1983) and Rubin (1986) are expository, and
in a book, Rubin (1987). Multiple imputation has advantages as well as disadvantages; the same
is true for single imputation.

Rubin (1986) sees as a disadvantage of single imputation that ‘. .. the one imputed value
cannot in itself represent uncertainty about which value to impute: If one value were really
adequate, then that value was never missing. Hence, analyses that treat imputed values just
like observed values generally systematically underestimate uncertainty, even assuming the
precise reason for nonresponse are known.”’

Multiple imputation is attractive because it communicates the idea that imputation has variability.
It is precisely this variability - the variability within and between the several completed data
sets — that is exploited in the variance estimation methods proposed under multiple imputa-
tion. These methods make powerful use of basic statistical concepts. (On the other hand, one
can argue that sample selection also has variability, but most surveys cannot afford more than
a single sample, and estimation must be carried out with this unique sample.)

Simple examples show that treating imputed values just like observed values can lead to severe
underestimation of the true uncertainty; survey samplers have long been aware of this. And
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it is a fact that users sometimes treat imputed values just like observed values, with wrong
statement of precision as a result. With modern computers, it is easy to impute by some rule
or another, but not so easy to obtain valid variance estimates.

The citation above seems to conclude that because a single imputed value does not display
variation, we cannot obtain reasonable variance estimates; we are necessarily led to underestima-
tion. I do not share this opinion. The methods that I discuss show that valid variance estimation
is indeed possible with single imputation.

A method for variance estimation in the presence of imputed values should have the following
properties: (a) a sound theoretical backing; (b) robustness to the assumptions underlying the
imputation; (c) it must be practical, easy to carry out, and readily accepted by users.

While multiple imputation has the ingredients (a) and (b), it is clear that, in some applications
at least, it does not have the property (c). In the development of the GES we must depend on
procedures that are easy to administer and easy to accept by the user. The user of a data set
(someone who is not primarily a statistician) can easily understand that the statistician imputes
once, with the objective to fill in the best possible value for one that is missing. While it is true
that for some purposes, such as secondary analyses, it might be interesting to have several
completed data matrices, the costs of storage of multiple data sets will often rule out this option.

Multiple imputation may well be useful in other contexts and for other reasons than those
that are essential to the development of the GES. The multiple imputation method has indicated
one way of handling the problem of understatement of the variance, at least for some situations.
The method has recently come under criticism by Fay (1991) and is not the only answer. Let
us see what can be done with single imputation methods. The method described below is based
on Sirndal (1990).

3. IMPUTATION VARIANCE AND SAMPLING VARIANCE

An imputation rule corresponds to an (explicit or implicit) model for the relationship among
variables of interest to the survey. That is, when the analyst has fixed an imputation rule, he
or she has in fact chosen a model. The principle for the developments that follow is that if this
rule is considered good enough for the point estimates (no systematic error), the rule is also
good enough for the corresponding estimates of variance. In other words, the model maker
should take responsibility for control of the bias as well as for the appropriateness of the
variance estimate.

LetU = (I, ..., k, ..., N} bea finite population; let y denote one of the study variables
in the survey. The objective is to estimate the population total of y, ¢ = Y. (If Cis any set
of population units, where C € U, Y is used as shorthand for ¥ .c, for example, { = Y%
means ¥ 4 .) A probability samples s is selected with a given sampling design. The inclusion
probabilities are known, and ordinary design-based variance estimates would be obtained if
all units kes are observed. However, there are missing data. Let r be the subset s for which
the values y, are actually observed. For the complement, s — r, imputations are calculated.
The data after imputation consist of the values denoted y, ., k€s, such that

Vi if ker

Yok =
Yimp.k if kes—r,

where y, is an actually observed value, and yin,,, denotes the imputed value for the unit k.
The case r = s implies no imputation; all data are actual observations.
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Let us write the estimator of ¢ that would be used in the case of 100% response (thatis, r = s)
ast = Y e = X sWili, Where w is the weight given to the observation y,. For example,
in simple random sampling without replacement (SRSWOR) of # units from N, w, = N/n
for all k€s when the expanded sample mean is used to estimate ¢, and w, = (/%) (N/n) =
(Y uzr)/ (Xszy) for all kés when the ratio estimator is used with z as an auxiliary variable.

When the data contain imputations, the estimator of ¢is f, = ¥ ,W,V4x. That is, we assume
that the weights w; are identical to those used when all data are actual observations. This
principle is used in the estimation modules of the GES. It embodies an assumption that
imputation by the chosen rule causes little or no systematic error in the estimates.

The variance of an estimated total is increased by imputation, because imputation does not
(except in truly exceptional circumstances) reproduce the true value y, . Concrete evidence of
this is the fact that if the imputation rule is applied to the actually observed sample units, there
will always be error. If the rule is not without error for the responding units, it is not without
error for the nonresponding units either. In Section 4 we express the variance of 7, as a sum
of two components, a sampling variance, and a variance due to imputation,

Viot = Veam + I/;mp-

The imputation variance ¥, is zero if all data are actually observed values, or if the impu-
tation procedure is capable of exactly reproducing the true value y, for every unit requiring
imputation. (Neither case is likely in practice.) The procedure given in Section 4 uses the data
after imputation, y,,, k€s, to obtain estimates of each of the two components, leading to

I;;ot = I7sam + I;imp-

The component V.., is calculated in two steps:

(1) Compute the standard design-based variance estimate using the data after imputation. (For
example, if SRSWOR is used, and » = s, the standard unbiased variance estimate of
Ny, is N (1/n — 1/N)S,(7x — 75)%/(n— 1). This formula, calculated on the data
after imputation, yields N*(1/n — 1/N) Y(Vox — Vos)?/(n — 1), where 7, is the
mean of the n values y,.)

(2) Add a term to correct for the fact that many imputation rules give data with ‘‘less than
natural’’ variability, which would lead to understatement of the sampling variance unless
corrective action is taken. Finally, the component I7imp is readily computed from the data
after imputation. The user will easily accept the argument that the variance obtained by
the standard formula is not sufficient in itself; something must be added because the imputa-
tion rule is less than perfect.

The method has the good property that if no imputation is required, that is, » = s, then
I7imp = 0 and V,,,, equals the ‘‘standard variance estimator’’ that one would have used with
100% actually observed values.

4. THEORETICAL DEVELOPMENTS

The total error of 7, is decomposed as

fy —t= (f—1) + (f, — ) = sampling error + imputation error.
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The imputation error is the difference between the unknown estimate that would have been
calculated if the data had consisted entirely of actual observations and the estimate that can
be calculated on the data after imputation. The imputation error is

fo — 1= — Ewkek,
S—=r
where

€ = Jk — Vimpsk

is an imputation residual which can not be observed for a unit K € s—r. The magnitude of e,
depends on how well the imputation model fits. The residuals are small if the imputation method
gives nearly perfect substitute values. To pursue the argument, different directions may be
taken. Here, we use a model assisted approach in which three different probability distributions
are considered. The corresponding expectation symbols are written as Ey, E, and E,. Here,
¢ indicates ““with respect to the imputation model”’; s indicates ‘‘with respect to the sampling
design”’, and r indicates “‘with respect to the response mechanism, given s”. T he model is
implied by the imputation rule, so it is known; the sampling design is the given probability
sampling distribution, so it is also known; the response mechanism is an ordinarily unknown
distribution governing the response, given the sample s.

The estimator 7, is overall unbiased in the sense that E E,E.(f, — 1) = 0if two conditions
hold:

(a) the order of the expectation operators can be changed so that E; E E, (- ) can be evaluated
as E;E{E:(-|s,r)}, and

(b) the imputation residual e, = y; — Yimp« has zero model expectation for every ke¢r, that
is, E;(e;) = 0, which implies that E (i, — 1) = 0.

Condition (a) is satisfied if the response mechanism is one that may depend on s and on
auxiliary data, but not on the y-values, y;, k€s. That is, the probability g (r) of realizing the
response set r is of the form g (r) = q(r| s, {x,:k€s}), where {x;:k€s} denote the auxiliary
data. The response mechanism can then be said to be ignorable.

We now examine the overall variance given by

Vieo = ELEE (T, = 1)),
which may also be called the anticipated variance under the imputation model £. We obtain
Viet = Eésr(fo) = EgEsEr[ ([0 - [)2}

EEE((f— 1+ (I, — D)

= E;V, + E;E,V, 4.1
where ¥, = E.{(f — t)}?is the design-based variance of 7, supposing 7 is design unbiased for
the total ¢. (For an estimator with some slight design bias, ¥, is the design-based mean square

error of 7.) Note that (7 — ¢) depends on s only, and not on r. Moreover,

Vie = Ec{(f, — D)?]| 5,1}
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is the model variance of the imputation error, conditionally on s and r. The subscript ¢ stands
for ““conditional’’. The derivation of (4.1) assumes that condition (a) holds so that the expec-
tation E; can be moved inside EE,, and that the mixed term

2ELE[(f — {E (T, — )| s}] 4.2)

vanishes or is sufficiently close to zero that we can ignore it. This would be the case if the
expected imputation error is zero or negligible under the response mechanism, conditionally
on the realized probability sample s. Even if (4.2) is not exactly zero for the mechanism that
determines the response, we can in many cases approximate (4.2) by zero and still use the method
below to obtain a variance estimate that is much better than pretending naively that imputed
data are as good as actually observed data. For ratio imputation and SRSWOR, which is an
application considered in Section 3, the term (4.2) is exactly zero.

If we denote Vo, = E¢V, and Vi, = EE, V. in (4.1), then
Viot = Veam + Vimp
or

overall variance = sampling variance + imputation variance.

The objective is to estimate the overall variance, so that a valid confidence interval for the
unknown # can be calculated. Our approach is to obtain separate estimates, V,,,,, and I7imp, of
the two components V,,, = E;V,and Vi,,, = E E,V,.. The data available for this estimation
are y,, k€s. The argument for obtaining ¥, and WV, is as follows:

(1) Estimation of the sampling variance component. Let I7p be the standard (design-unbiased
or nearly design-unbiased) estimator of the design variance V;. Denote by V, p the quan-
tity obtained by calculating V), from the data after imputation, y,, k€s. For many imputa-
tion rules, ¥, punderestimates V. The underestimation is compensated in the following
way. Evaluate the conditional expectation

Eg(V, — Vil s,r) = V.

Then for given s and r, find a model unbiased estimator, denoted Vj;, of V. This will
usually require the estimation of certain parameters of the model £. Consequently,

E(Vai| s,7) = Eg(V, = Vopl|s,1).
Then
Vam = I70p + Vs
is overall unbiased for the component V,,,, = E.V,, as the following derivation shows:
EEE,(Van) = EEAE(V,,) + E¢(Van) )
= EEE;(V,)) = E;E(V,)

= EEVp = Vam-
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(ii) Estimation of the imputation variance component. Simply find an estimator, 1756, that is
model unbiased for V.. That is, Es(Vgc) = Vgc Again, this may require the estimation
of unknown parameters of the model £&. Then Vgc is overall unbiased for the imputation
variance component ¥, since

ESErEg ( Vgc) = EsErV.Ec = I/imp .
Finally, an overall unbiased estimator of ¥, is given by
I7tot = Veam + I;imp

where Vigm = Vap + Virand Py = V. Note that the role of Vg is to correct for the fact
that the data after imputation may display ‘‘less than natural’’ variation. This often happens
when Yjmp « equals the predicted value from a fitted regression, that is, ‘‘the value on the line”’.
The variation around the line is not reflected in the predicted value.

To be overall unbiased, the estimator ¥, constructed above requires that condition
(a) holds, that (4.2) is zero, and that the imputation model is correct, so that Vy and Vg
are model unbiased for Vy¢ and V., respectively. Mild departures from the assumed
imputation model may not have serious consequences, but if the imputation model is grossly
misspecified it is clear that V,,; may be considerably biased because of the model bias of Ve
and Vgc- Monte Carlo simulations reported in Lee, Rancourt and Sadrndal (1992) show that
the variance estimator ¥y, is fairly robust to imputation model breakdown. To add the terms
Vs and 1750 is in any case a vast improvement on simply using the naive uncorrected variance
estimator V,p

Note that if the imputation model holds, an unbiased variance estimate is obtained with
the method even if the response probabilities differ among units, as long as they depend
on the x,-values only. That is, we can allow a systematic response pattern such that large
x;-value units are less likely to respond than small x,-value units. If the response probabilities
depend explicitly the y,-values, then the situation is different; the response mechanism is
nonignorable and condition (a) does not hold. There will now be bias in V.o due to
nonignorability; the simulations in Lee, Rancourt and Sirndal (1992) throw some light on the
magnitude of this bias.

Example. The sample s is drawn with SRSWOR; n units from N. Let m denote the size of the
response set 7. Suppose the respondent mean is imputed for units requiring imputation. The
corresponding imputation model § states that ¥i = B + €, where the ¢, are uncorrelated
errors terms with Ez(¢,) = 0, Ve(e) = o%. That is, yo 4 = yiif kérand y,, = B = p.if
kes — r, and we obtain the estimator 7, = (N/n) Yyer = N¥,. Here the standard design-
based variance estimator for 100% response is V = N%*(1/n — 1/N) Z e — 7%/ (n = 1);
when this formula is computed on data after 1mputat10n we get V,p = N2(1/n — 1/N)
{(m — 1)/(n — 1)}Sy,, where Si, Y, (7 — ¥,)%/ (m — 1). Other derivations give lef =
N2(1/n — 1/N){(n — m)/(n — 1)}55, and Vlmp = N*(1/m — 1/n)S2,. Thus, Vim =
V + Vi = N*(1/n — 1/N)Sy,, and V., = N*(1/m — 1/N)Sy,, which is easy to accept
as a “‘good’’ variance estimator for this simple imputation rule. The following table shows
the contribution of each of the three terms to the total variance estimator ¥, for different
rates of imputation, assuming that N is large compared to m and n, and (m — 1)/m =
(n—1/n=1
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Imputation rate in % % contribution toV,,
100 (1 — m/n) Ves Vs Vip
10 81 9 10
20 64 16 20
30 49 21 30

The table illustrates the dangers of acting as if imputations are real data: with 30% imputed
values, the standard formula variance estimator V,p in this example covers less than half of
the correctly estimated total variance. Imputation by the respondent mean is useful as an
example; the results are particularly simple. But usually in practice, respondent mean imputation
is neither justified nor efficient. The underlying model is not sophisticated enough to avoid
systematic error in the point estimates, and the residuals e, = y, — J,can vary considerably.

5. APPLICATION TO IMPUTATION BY THE CURRENT
RATIO METHOD

The method assumes that a positive auxiliary value x; is known for every unit ke€s. If
k € s—r, we impute Yim,x = Bxg with B = (X,¥¢)/(X,x;). The data after imputation are

yo if ker

Yot =
Bx, if kes—r.

The model behind current ratio imputation is
Yi = Bxp + e, 5.1)
where the ¢, are uncorrelated model errors such that
E () =0, Vile) = ox;. (5.2)

Suppose that the sample s is selected by SRSWOR. Let the respective sizes of s, r, ands — r
be n, m, and n — m. If no imputation was needed, the estimator of r = ¥ ;;y, would be
f = Ny,.Using the data after imputation, we get

fo = (N/n) Y] Yor = NXJI,/%,. (5.3)

s

(Overbar and subscript s, r, or s — rindicates ‘‘straight mean’’, for example, 3, = ¥ ,y,/m,
X, =Y _,xx/(n — m), efc.) Using the results of the preceding section, we have V,,; =
Viam + Vimp With Vo = E{N*(1/n — 1/N)S3y} and Vi, = E.E{N*(1/m — 1/n)Cy0*},
where SﬁU =Yy — Ju)¥ (N = 1) and C, = X,%,_,/X,, a known constant. The mixed

term (4.2) is exactly zero in this case. Our method of variance estimation gives V, =
Viam + Vimp, where

Vam = N*(1/n — 1/N){S3,, + Coi*}, (5.4)
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Vip = N3 (1/m — 1/n)C,8%, (5.5)

where S? Yos = Ls(Ver — Fo 9% (n — 1) is the variance calculated on data after imputation,
and we have chosen to estimate o2 by the model unbiased formula

o = 1 Lk — Bx)?

%A1 — (1/m) (cevy)?) m — 1

where cv,, = S,,/%, is the coefficient of variation of x in the response set r. The constant Co
is obtained as

1
Er (53 — Ses)s

C():?

where
1
2 =2
Sys—n_lz(yk ys)
N
is the (unknown) sample variance based on data with 100% actual observations. After

evaluation,
2
X 1 X, xl.x
C {E X — k + = s—rtk™s k}'
n—1 X, x; n X x,

If m is not too small, the approximations 6> = (Y ,e2)/ (¥, x;) with e = y, — Bx, and
Cy = (1 — m/n)x,_, are sufficiently good for most applications.

We can write the imputation variance component as
Vimp = N*(1/m — 1/n)Ax,87,

where A = X,_,/%,. The constant A reflects the selection effect due to nonresponse. If large
units are less inclined to respond than small units, then 4 may be considerably greater than
unity, and, for a given a sample s and a given number m of respondents, the component I7imp
tends to be large, relative to a case where, say, all units are equally likely to respond. This
tendency makes good sense intuitively.

Two special cases are noted: (1) If all x; = 1, the estimated total variance becomes simply

I7t0t = I7S'a.m + Vim = Nz(l/m - I/N)Sy,,

where Sy, is the variance of the m actual observations y,. This agrees with the variance
obtained under a two-phase sampling design with SRSWOR in each phase. (2) If no imputa-
tion is required, that is, if s = r, then Vlmp = 0, and

I;Eot = I75'¢1m = Nz(l/n - l/N)Sﬁs

That is, our method yields the well known variance estimator for SRSWOR.

A Monte Carlo study with 100,000 repeated response sets r was carried out to confirm the
above results for current ratio imputation. A finite population of size N = 100 was generated
according to the model consisting of (5.1) and (5.2). The typical response set r was obtained
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as follows: Draw a SRSWOR sample s of size n = 30; given s, generate r by a response
mechanism in the form of independent Bernoulli trials, one for each k¢€s, with probability 6,
for the outcome “‘response’’. Three different response mechanisms were used: Mechanism 1:
6, increases with y, in such a way that 6, = 1 — exp(— a;y;); Mechanism 2: §, increases as
¥y decreases in such a way that 6, = exp(— a,,); Mechanism 3: 6, is constant at 0.7, that
is, a uniform response mechanism. The constants @, and a, in the first two response
mechanisms (which can be described as non-ignorable) were fixed to obtain an average response
probability of 0.7. The sizes of the realized response sets r thus varied around a mean of 21
for all three mechanisms. For each 7, the point estimate 7, given by (5.3) was calculated as
well as three different variance estimators, ¥ = V(7, ). These were: (1) the model assisted
variance estimator Vo = Vigm + Vimp €qual to the total of (5.4) and (5.5); (2) the two-phase
sampling variance estimator N*(1/n — l/N)Sir + N*(1/m — 1/n) Z,e%/(m — 1), an
estimator which follows from standard two-phase sampling theory with an assumption of
SRSWOR subsampling of m respondents from the » units in the initial sample (Rao 1990);
and (3) the standard unadjusted variance estimator N*(1/n — 1/N )Sﬁ, s obtained by acting
as if imputations are as good as actual data. The results are shown in the following table.

Relative bias of Vin %

Estimator V

Mechanism 1 Mechanism 2 Mechanism 3
Model assisted -0.20 —4.64 —3.99
Two-phase 9.95 —-12.49 -1.11
Standard unadjusted —25.73 —-37.90 —-33.21

The relative bias of an estimator V¥ was calculated as {mean (V) — var(f,)}/var(,),
where mean (V) is the mean of the 100,000 values of ¥, and var (£, ) is the variance of the
100,000 values of 7,. The simulation shows that the model assisted variance estimator
Viot = Viam + Vimp is nearly unbiased for all three response mechanisms. In a way, this is not
surprising because the population was generated to agree with the ratio imputation model.
Mechanisms 1 and 2 are of the nonignorable kind and do not verify condition (a) of Section
4 required for unbiasedness of V... Interestingly, though, in this example the bias of ¥,
remains small despite this. The two-phase estimator works well for the uniform response
mechanism 3, the case for which it was conceived; otherwise it is biased. Finally, to act as if
imputed data are as good as actual data leads, as expected, to a dramatic understatement of
the true variance for all three mechanisms. A more extensive Monte Carlo study of ratio
estimation is reported in Lee, Rancourt and Sdrndal (1992). This paper gives an idea of the
effect of imputation model misspecification, which is also discussed in Rao (1992).

6. IMPUTED VALUES THAT HAVE AN ADDED RESIDUAL

We can distinguish two types of imputed values: (1) the imputed value y;y,, , consists of a
predicted value only, y,cq 4, as when the value on a fitted regression line or surface is used.
For example in the current ratio imputation method as used above, Vimp x = Vored k = BX
with B = (X,0%)/(¥,x); (2) the imputed value yiy, « consists of a predicted value and a
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residual, so that yinp x = Ypred,k + ef. The residual term, whose purpose is to make
imputed values more like actual observations, may be obtained by sampling the residuals
ex = Vi — Yprea,x calculated for the responding units k€r. A scheme for this is given below.
This type of imputation is sometimes recommended in the literature as a means of preserving
the distributions of the imputed data; see, for example, the discussion in Little (1988). The
imputation process then requires more effort to complete, and for the purposes of the GES
(whose principal aim is valid estimation of the precision of survey estimates), it is not clear
that the advantages gained are worth the extra effort.

Let us, however, indicate one scheme for imputation by ‘‘predicted value plus residual”’
in the case where the current ratio imputation model is taken as the point of departure: For
ker, calculate e, = y, — Bxy with B = (L0%)/(X,x;), then & = e;/Vx;. This gives a
supply of m “‘standardized residuals” &,. Then for a unit k& € s—r, calculate el = Vxé,
where &, is drawn by SRSWR from the supply, and x; belongs to the unit requiring imputa-
tion. Then large x-value units tend to obtain larger residuals e?, which is consistent with the
model. Then set ef = e) — (¥Ls_,e?)/(n — m). For k € s—r, impute Yinpx = Bx, + e},
k € s—r; for ker, we have actual observations, y;. Since the ef were made to sum to zero over
s — r, the point estimator is given by f, = (N/n) ¥ ¥4x = NX3,/%, as in Section 5, but its
variance is different. It can be shown that E, E,E,Ey(S;45 — Sy5) = 0, where E, denotes
average with respect to the random selection of a standardized residual. That is, the difference
between the variance calculated on data after imputation, Sﬁ,s, and the unknown variance of
a sample consisting entirely of actual observations, Sﬁ s» 1S approximately zero on the average.
We can use PV, = N2(1/n — 1/N)S2, as an approximately overall unbiased estimator of
the sampling variance component. There is no need now to add a correction V5. However,
an estimator of the imputation variance Vp,, = N2(1/m — 1/n)C, ¢ must still be calculated
and added to Vigp,.

7. CONCLUDING REMARKS

The continued work on the variance estimation techniques outlined in this paper has the
following objectives: (1) extensions to imputation procedures based on models that are implicit
only, in particular the nearest neighbour donor method; (2) extensions to the case where there
is a mixture of several imputation procedures in the same survey.

Deville and Sirndal (1992) present results for an extension in which the Horwitz-Thompson
estimator, 7 = Y ./, serves as the prototype. The estimator using data after imputation
is then

i = Y i+ ( y xk/wk> B=Y wim— Y em
r s—r s s—r

where e, = y, — x/B is the imputation residual for unit & obtained by multiple regression.
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