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ABSTRACT

Motivated by a business survey design at Statistics Canada, we formulate the problem of sample allocation
for a general two-phase survey design as a constrained nonlinear programming problem. By exploiting
its mathematical structure, we propose a solution method that consists of iterations between two
subproblems that are computationalty much simpler. Using an approximate solution as a starting value,
the proposed method works very well in an empirical study.
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1. INTRODUCTION

The purpose of this paper is to propose a method of sample allocation for two-phase survey
designs. Suppose it is necessary to stratify a population of size N into L strata according to
an auxiliary variable, z, whose information is not known before sampling. Values of a second
auxiliary (size) variable, x, that is correlated with the variable of interest, y, are known for
all units in the population. At the first phase of sampling, the population is divided into G
strata according to x. An initial sample is drawn from size stratumg(g = 1,2, ..., G), using
simple random sampling with sampling fraction v, and the z-value for each sampled unit is
observed. At the second phase, units in the sample from size stratum g with z-value in class
h(h = 1,2, ..., L), are subsampled using sampling fraction vg. The value of y is observed
for units in the second-phase sample.

In the case of no size stratification (G = 1) Cochran (1977) gives the allocation that
minimizes the variance of the estimate ¥ = ¥, Yieons ¥i/ (v - vy) of the population total
Y = Y,N, - Y, subject to a fixed survey cost, C, where Nj, and Y, are the population size
and population mean, respectively, for stratum 4 and ¥ ;cny ¥; denotes the sum of y-values
for units in the second phase sample, s2, with z-value in class 4. If survey estimates are used for
analytical purposes, the variance of the estimated total for z class A, Y, = Yieann Vil (v - vp),
is also of interest. Sedransk (1965), Booth and Sedransk (1969), Rao (1973) and Smith (1989)
have studied allocation problems involving the minimization of a function of variances of
estimated class totals, subject to a cost constraint.

The method described in this paper can be used to solve the allocation problem for general
G when there is a constraint on the variance of the estimated total for each z class. The method
was motivated by an application in a business survey conducted by Statistics Canada. The survey
involves the sampling of tax records for businesses.

Information about the population of taxfilers is made available to Statistics Canada by
Revenue Canada. There is a requirement to produce estimates of financial variables for domains
defined by a cross-classification of four-digit Standard Industrial Classification (SIC4) and
province. Only two digits of SIC are coded by Revenue Canada with sufficient accuracy. In
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order to standardize the precision of estimates for SIC4 domains within each province, a
two-phase sample design was implemented. The first-phase sample of taxfilers is selected at
Revenue Canada using strata defined using SIC2 and gross business income (size). Before the
second phase sample is selected, an SIC4 code, considered more accurate than codes available
from Revenue Canada, is assigned to each sampled unit by Statistics Canada. Strata defined
using SIC4 and size are employed during selection of the second-phase sample. The same size
boundaries are used for both phases of sampling. A detailed description of the sample design
can be found in Choudhry, Lavallée and Hidiroglou (1989b).

First-phase sample selection is done using Bernoulli sampling (also called Poisson sampling).
Suppose that taxfiler / falls in first-phase stratum g within a particular province x SIC2 cell.
To determine whether taxfiler /is included in the first-phase sample, a pseudo-random number
in the interval (0,1), say R, is generated using the taxfiler’s unique identification number. The
taxfiler is included in the first-phase sample if R;€(0,v,). Bernoulli sampling based on a
different set of pseudo-random numbers is used to select the second-phase sample. Using
Bernoulli sampling, selection and processing can begin before complete information about the
taxfiler universe is available. This advantage of Bernoulli sampling is important, since taxfiler
universe information is accumulated over a two-year period. Sample sizes obtained using
Bernoulli sampling are random. Choudhry, Lavallée and Hidiroglou (1989b) derive the variance
of ¥y_strar = % g Lies2ngnn Yi/ (Vg + vgy) using simple random sampling as an approximation
to Bernoulli sampling as discussed in Sunter (1986). Under the approximation, a simple random
sample of fixed size n; = v, - N, is selected in size stratum g at the first phase. Let ng, denote
the number of units with SIC4 4 in the first-phase sample for size stratum g. At the second
phase, a simple random sample of size n,, = vy, - ngy is selected for SIC4 A and size stratum
g, with vy, considered fixed. The variance of Y, _grrar is given by

1 1
I/h = Z <U T —_ 1> . Agh -+ Z <U— - 1) . th,
g " gh g 2

8

where

— 2
Agh - ]Vgh ) Sgh,

N, — Ny Y?
By, = <g g1> ’ <_gh_ngh),
Ny — 1 Nen
and ng,, is the population variance in the second-phase SIC4 X size stratum gh.

The plan of the paper is as follows. In Section 2, the optimal allocation problem is formulated
in the context of the two-phase tax sample. An iterative solution procedure, called the exact
method, is proposed. Section 3 includes a description of an approximation to the optimal
allocation that can be used to obtain starting values for the exact method. The results of an
empirical study involving comparison of various starting values for the exact method are
reported in Section 4. Section 5 concludes the paper.

2. EXACT METHOD

In this section the optimal allocation problem is described and an iterative solution method,
called the exact method, is proposed. To formulate the problem in the context of two-phase
tax sampling, it is sufficient to consider one SIC2 cell in a particular province containing N



Survey Methodology, December 1992 255

units. The cost of selecting a unit in the first-phase sample is K, regardless of the stratum in
which the unit falls, while the cost of selecting a unit in the second-phase sample is Kj,
regardless of stratum. Under Bernoulli sampling, the cost function is

F*:K]'an,+K2'ZEngh.
g g h

Since sample sizes n, and ngy, are random, we use the expected cost
F=K Y v -No+K- Y Y v v N (1)
4 g h

Rao (1973) and Smith (1989) also solve allocation problems for two-phase sample designs using
expected values of random cost functions. In the tax sampling context, the total cost for a
province is the sum of the costs for all SIC2 cells within the province. The estimated coefficient
of variation of the cost of two-phase tax sampling for the province of Quebec, calculated using
1988 data, was about 1.85%. Coefficients of variation for overall (national) costs were smaller.

It is necessary to minimize (1) with respect to v,, g =1, 2 ..., G, and vy, £ = 1,
2, ...,G, h=1,2, ..., Hunder the constraints

1 1

E( —1)-Agh+2<——1)-3ghsc,%-)f2, h=12,...,H, (2
Y,
g g g

Ug . vgh

0O<vy=1 g=12,...,0G,
0<uyp=<1 g=12,...,G, h=12 ..., H,

where C,, denotes the target coefficient of variation for SIC4 domain 4.

Attempts at direct solution of this problem using the IMSL (1987) implementation of the
successive quadratic programming algorithm of Schittkowski (1985) produced mixed results.
The algorithm worked well for problems with small numbers of variables and constraints.
However, satisfactory solutions for problems including more than approximately 35 variables
or more than approximately 50 constraints could not be obtained.

Some costs obtained using direct application of Schittkowski’s algorithm in the tax sampling
context are given in Table 1. The algorithm was applied to the allocation problems for some
SIC2 cells in the province of Quebec involving large numbers of variables and/or constraints
using data for tax year 1988. All first-phase and second-phase sampling fractions were started
at one when the direct approach was used. The lowest cost obtained using the method that
we call the exact method, which will be described later in this section, is also given. The
information in the table indicates that direct use of the IMSL implementation of Schittkowski’s
algorithm is an inappropriate strategy for SIC2 cells with large numbers of variables and
constraints.

The exact method is based on a substantial simplification of the problem defined by (1) and
(2) that can be achieved by exploiting its structure. In particular, we divide the problem into
two main steps that can be solved iteratively. At the first step, (1) is minimized with respect
tov, g =1,2, ..., G, conditional on values for all second-phase sampling fractions. This
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Table 1
Results for Direct and Exact Methods

SIC 2 No. of No. of Cost ($) - Cost ($) -

variables constraints direct exact
30 62 86 5155%* 1897
35 37 51 551 512
39 38 50 1667 1450
427* 39 48 27528%* 3383

* Three digits of SIC are used for first-phase stratification for construction industries.
** The IMSL routine terminated with an internal error that could not be rectified after consulting published
documentation.

step requires the use of nonlinear optimization techniques. The second step involves minimizing
(1) with respect to the second-phase sampling fractions, conditional on the values of the first-
phase sampling fractions obtained in the first step. No iterations are required for this minimiza-
tion, since it has a closed form solution. Furthermore, it can be done independently for each
h = 1,2, ..., H. After completion of the second step, the first step is repeated and the iterative
process continued. Convergence is declared when changes in the cost function between
consecutive iterations are small.

Let v{” and v/} denote the estimates of the optimal values of v, and v, obtained after i
iterations (each iteration including one repetition of the two steps described above). At the
beginning of iteration / + 1, the transformation of variables given by X" = 1/v{*!) — 1
is required. This transformation redefines the optimization problem involved in the first step
of the iteration as a problem with linear constraints and a convex objective function. Such a
convex programming problem is easier to solve. '

More precisely, each iteration involves:

(i) Minimization of
F = N, + % 4=b N, X+ 1)
E g K] E vgh gh ( g
g h

with respect to X{”, g = 1, 2, ..., G, subject to the constraints

R X9+ 1 0
Ch-Yh—Z £ 1 ~Ag,,—EXg "By =0, h=12,...,H

vg(;f_l) .
xP =0 g=12...,G
(ii) Calculationof v{” = 1/(X{" + 1),g = 1,2, ..., G. Minimization, independently for
eachh =1,2, ..., H,of

Fy= 35 u" - vid - No
g

with respect to v{’, ¢ = 1, 2, ..., G, subject to the constraints
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N 1 1
2 2
Ch"’h*E(,W—l)'Agh—Z(—
4 gh

g 4
0<vi =1, g=12,...,G,

where /4 is considered fixed.

It will be shown in Section 3 that solution of step (ii) does not require use of numerical
methods. Therefore, the exact method only requires the solution of a series of convex
programming problems, each involving only G variables. A convex programming problem is
much easier to solve than a general nonlinear programming problem. A local solution of a
convex programming problem is also a global solution.

Let F( denote the value of the cost function, (1), obtained using v{” and v/f’. The F”
values form a monotonically decreasing sequence and therefore converge to a limit. Whether
this limit value and the corresponding sampling fractions give the global minimum depends
on the starting value. This problem is caused by the geometry of the constraints in (2). In practice
one should try several starting values to get the best solution. One starting value is given by
the approximate method, which is described in the next section and does not require iterations.

3. APPROXIMATE METHOD

In this section, an allocation method that gives an approximation to the optimal allocation
is described. The method was first suggested by Choudhry, Lavallée and Hidiroglou (1989a).
Assuming that all the second-phase sampling fractions are equal to one, an approximation to
the optimal allocation of the first-phase sample is calculated. Then the second-phase sample
is allocated, conditional on the first-phase sampling fractions. Since the cost of sampling a
unit in both phases of sampling does not depend on the stratum in which the unit falls,
minimizing cost is equivalent to minimizing sample size at each step of this method.

At the first step of the method, an approximate solution to the optimal allocation problem
for a one-phase sample design is calculated. This step involves finding the minimum,
independently for each A, of

F® =37 van - N, ©)
g
with respect to vg 4, & = 1, 2, ..., G. The notation v, is used to denote the fact that a

sampling fraction for size stratum g is determined subject to only one precision constraint,
namely the constraint for SIC4 domain 4, where 4 is fixed. In particular, the minimization
must be done subject to the constraints

1
<— - 1> - (Ag + By) < C} - Y3, )

O<vu=1 g=12 ...,G. )

One can show that the minimum of (3) is obtained when (4) holds with equality, so that
the problem defined by (3), (4), and (5) is equivalent to finding the critical point of the lagrangian
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1
L= Y vl + N> [cﬁ-yi—z (;—1)-(Agh+3g,,)].
g

B Uglh
Setting the derivatives with respect to v, equal to zero yields
i = ((Agw + Ba)/N))* - (=N, g=1,2,...,G. (6)

Setting dL/3N = 0 we obtain

(=N =Y ((Ag + By) ‘Ng>‘/2/<0% Y+ Y (Ag + Bgm). ()

g g

After substitution of (7) into (6), we obtain the optimal sampling fraction for size stratum g
given only one precision constraint, for SIC4 domain #4,

vEp = ((Agy + Bon) /N -

E ((Agh + th) : ]Vg)l/z/<c%l ) Y% + E (Agh + th)> . (8)
g

g

If one or more of the sampling fractions given by (8) are greater than one, one can set them
equal to one and solve a modified allocation problem with a reduced number of strata. This
approach corresponds to the overallocation procedure discussed by Cochran (1977). It is
necessary to calculate (8) for # = 1,2, ..., H. The approximate first-phase sampling fraction
for size stratum g, v}, is set equal to the largest value in the set {vg),, h=12,..., H} for
g = 1,2, ..., G,anapproach that ensures that the precision constraint for each SIC4 domain
will be satisified.

Given first-phase sampling fractions, optimal second-phase sampling fractions can be easily
determined. Assume that, for the SIC2 X province cell 4, the size strata included in the
allocation problem correspond to a set of integers, I'. We set the second-phase sampling
fractions equal to one for those size strata that are not included in the allocation problem.
Normally, one would have I' = {1, 2, ..., G} but because of overallocation during alloca-
tion of the second-phase sample, for example, I' may not include all integers between 1 and G.
The problem of allocating the second-phase sample is equivalent to the problem of finding
the minimum of

FhZEUgh'UE'Ngh )
gerl

with respect to y,,, g€, subject to the constraints

Z (i—1>~‘ig:sMh, (10)

ger  \Ugh Ug

0 < Vgh = 1, gEP, (11)
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where
1
My =Ci-Yi— ) (~*—1> - (Agr + Buy).

v
g g

Note that the expected number of units with SIC4 # in the second-phase sample for size

stratum g, v§ - Ny, is employed in (9). It is easy to show that (9) attains a minimum when the

constraint (10) holds with equality. Consequently, the minimization problem is equivalent to
finding the critical point of the lagrangian

_ - : vy (LY. @)
L, g Ugh © VE* Ney + N (Mh g% (Ugh 1) )
with respect to and v, g€I', and A, subject to the constraints
0 <y =<1, gel.
Setting the first derivatives of L, equal to zero and simplifying, one obtains

p = (= N = Agn/Ng)”* - (1/v), g€l (12)
(=N =Y (N * Ag)"/Drns (13)
&g

where

1 1
DFh=C%z'Y%rE <F> s A — E ('; - 1) - (Agn + By) -

v
gel’ g g g

Note that there is no solution to the allocation problem unless Dy, is positive. Substituting (13)
into (12) yields

vl = (Ag/Ng) " - (1/vF) - E (Ng, = Agn)”/ Dry. (14
gel

If v}, is greater than one for certain gh, the overallocation procedure described above can
obviously be employed. Note that (14) also provides the solution for step (ii) of each exact
method iteration.

4. EMPIRICAL STUDY

The approximate method serves two purposes. First, it provides a good starting value for
the exact method. Second, it may be easier to implement in practice. In this section, we report
the results of an empirical comparison using data from the province of Quebec for tax year
1988. Results obtained using the exact method with various starting points, as well as the
approximate method, are reported. Since the quantities Ny, Y and Sé?h required by both
methods were unknown, estimates based on the data were used.



260 Armstrong and Wu: Sample Allocation for Two-Phase Survey Designs

The size stratification used by the survey, including four take-some strata and one take-all
stratum, was employed. Allocations were computed for 64 SIC2 cells (all of the Quebec data
excluding a few small SIC2s). The number of sampling fractions determined in these allocations
ranged from 8 to 92 with a median of 24. The number of constraints ranged from 9 to 115
with a median of 31. There were 20 SIC2 cells involving more than 35 variables and 18 of these
cells also involved more than 50 constraints. A total of 1850 second-phase strata including about
230,000 population units were involved.

The first-phase sampling cost, corresponding to the cost of microfilming or photocopying
atax return at Revenue Canada, sending the information to Statistics Canada and determining
an SIC4 code, was set at $1.40 per unit. The second-phase sampling cost, corresponding to
the cost of transcribing values for financial variables, was set at $7.00. These costs are
comparable to those incurred during operation of the actual survey.

Allocations were computed using the exact method with three starting values: I - solution
of the approximate method; II - all first-phase sampling fractions set to one with the corre-
sponding conditionally optimal second-phase fractions; and III - a randomly chosen set of
feasible first-phase sampling fractions, with the corresponding conditionally optimal second-
phase fractions. In addition, the exact method was started at a perturbation of each of these
starting values. The perturbed value for the first-phase sampling fraction for size stratum g
for starting value I was v{¥ = 0.1 + 0.9 - v¥ where v} is the solution of the approximate
method. Second-phase sampling fractions were started at values that are optimal, conditional
on the perturbed first-phase fractions. Starting value III was perturbed analogously. The
perturbed value corresponding to starting value I was v$y) = 0.1 + 0.9 - vk where vijis
optimal, conditional on a census at the first phase of sampling. For each starting value, the
best result obtained using either the value itself or the corresponding perturbed value was
retained. Convergence was declared if the absolute relative change in the cost function between
consecutive iterations was less than 10 =%, The IMSL implementation of Schittkowski’s
successive quadratic programming algorithm was used to solve nonlinear programming
problems.

Results are reported in Table 2. Total costs for four alternatives are given. In addition, the
number of SIC2 cells for which each starting value for the exact method produced better results
than alternative starting values is shown. Computing costs are not reported, since they were
small enough to be inconsequential.

The results indicate that the approximate solution provided the best starting values for the
exact method. Although starting value II produced better results than starting value I for 17
SIC2 cells, the total cost associated with starting value II was higher than the total cost for
the approximate method. The exact method performed poorly when starting values were
determined by random selection of a feasible set of first-phase sampling fractions.

Table 2
Results for Exact and Approximate Methods

Exact - Starting value

Method Approximate
I 11 111

Total cost ($) 122779 139347 200998 130228

No. cells with best result* 48 17 1

* For two cells starting values I and II produced the same result, which had lower cost than the result obtained using
starting value I11. Consequently, the numbers reported in this row of the table add to 66 rather than 64.
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Although the total cost using the exact method with starting value I was only 5.7% lower
than the cost of the approximate method, it should be noted that the exact method with starting
value I can do no worse than the approximate method. The exact method with starting value 1
produced better results than the approximate method for 42 cells.

5. CONCLUSION

A sample allocation problem for two-phase survey designs is formulated as a constrained
optimization problem in Sections 1 and 2. If the numbers of variables and constraints involved
in the problem are small, the solution can be obtained through direct application of numerical
methods. However, the direct approach does not work well for large numbers of variables and
constraints.

By exploiting the mathematical structure of the problem, it can be divided into two sub-
problems: the first is a convex programming problem with linear constraints that involves a
much smaller number of variables, and the second can be solved without the use of numerical
methods. The algorithm proposed in Section 2 consists of iterations between the two
subproblems. It is computationally simpler and more effective in practice than the direct
approach for problems involving large numbers of variables and constraints. An approximate
solution to the sample allocation problem that does not require use of numerical methods is
proposed in Section 3. The empirical study in Section 4 shows that it works especially well as
a starting value for the algorithm proposed in Section 2.
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