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REML Estimation in Empirical Bayes Smoothing
of Census Undercount

NOEL CRESSIE1

ABSTRACT

One way to assess the undercount at subnational levels (e.g. the state level) is to obtain sample data from
a post-enumeration survey, and then smooth those data based on a linear model of explanatory variables.
The relative importance of sampling-error variances to corresponding model-error variances determines
the amount of smoothing. Maximum likelihood estimation can lead to oversmoothing, so making the
assessment of undercount over-reliant on the linear model. Restricted maximum likelihood (REML)
estimators do not suffer from this drawback. Empirical Bayes prediction of undercount based on REML
will be presented in this article, and will be compared to maximum likelihood and a method of moments
by both simulation and example. Large-sample distributional properties of the REML estimators allow
accurate mean squared prediction errors of the REML-based smoothers to be computed.

KEY WORDS: Linear model; Maximum likelihood; Restricted maximum likelihood; Variance
components.

1. INTRODUCTION

Although a census attempts to carry out a complete enumeration of the population, for
various reasons the final tallies are inaccurate. Census personnel, from its director down to
the thousands of temporary enumerators, are part of a mammoth task whose accuracy relies
on everyone doing their jobs to perfection.

Moreover, events that are beyond human control (e.g. weather, natural disaster) must stay
within expected limits. Clearly, in a country the size of the U.S.A. (in terms of both population
and geography), many opportunities arise to give an imperfect census count. But size is not
the only problem; heterogeneity of both population and geography gives a differentially
imperfect count.

The inaccuracies are typically expressed in terms of undercount, so that a negative value
implies an overcount. Suppose the U.S.A. is divided into / = 1, ..., n areas (e.g. states,
including Washington DC). In the i-th area, let 7; be the true (unknown) count and C; be the
census count, Then the undercount, expressed as a percentage of the true count, is defined as,

Ui = (T, = C)/T;}100. (1.1)

The problem of differential undercount is a serious one when census counts are used to
apportion political power and revenue to areas and subareas. (Further discussion of these issues
can be found in Ericksen and Kadane 1985, Freedman and Navidi 1986 and Cressie 1988). States
like California, Texas, and New York would gain much from adjusting for undercount, i.e.
from replacing C; with F;C;, where F; is an adjustment factor.

The correct adjustment to use is,

Fi = T,/C,-, (12)
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which is related to undercount by,
F;= {1 — Uy100} 7%

As it stands, (1.2) is not helpful for adjustment, since the true count 7;is unknown. To obtain
extra information that will allow F; to be estimated, the U. S. Census Bureau conducts a post-
enumeration survey (PES) that determines whether people in the PES were or were not counted
in the census (e.g. Wolter 1986). The survey consists of several hundred thousand households,
yielding “‘raw’’ adjustment factors {Y;: i = 1, ..., n} that are in need of smoothing.

Assume that, given Fj,

Yi -~ Gau(Fiyaiz)’ (13)

i.e. Y;has, conditional on F;, a Gaussian distribution with mean ¥; and variance 67. Adding
the further assumption of independence, one obtains,

Y ~ Gau(F,4), (1.4)
whereY = (Yy, ..., Y,)', F= (F, ..., F,)’,and Aisthen X n diagonal matrix
diag{é?, ..., 62}.

Now assume that,
F ~ Gau(XB,I'(7%)), (1.5)

where X is an n X p matrix of explanatory variables, 3 is a p x 1 vector of (unknown)
coefficients of the linear model, I'(72) is an n X n diagonal matrix:

I'(s%) = 7*D (1.6)

and D = diag{1/C,, ..., 1/C,}. The heteroskedastic model (1.5) and (1.6) is discussed at
considerable length in Cressie (1990). It is intuitively sensible that the adjustment factor, for
an area whose population is large, has a smaller variance; Cressie (1989) provides both a
Bayesian and a frequentist justification for this intuition.

Another way to write the model (1.4) and (1.5) is:
Y=XB+r+te 1.7)

where the n x 1 vectors » and ¢ are statistically independent, » ~ Gau(Q,I‘(TZ)), and
e ~ Gau(0,A). Now, assuming that 8, ..., 62 are calculated using sampling-variance for-
mulas appropriate for the PES sampling frame, the only parameters left to estimate are 3 and
72. Thus, the two variance components A and I’ (72) only contribute one unknown parameter,
namely 72. It is worth noting that the methods developed in this article can be easily
generalized beyond this simple variance-components problem. The general linear model is
considered in Section 3.

In Section 2, the Bayes predictor and the empirical Bayes predictor of F will be given.
Estimation of § is straightforward, but there are several possible ways 7% could be estimated.
Section 3 presents maximum likelihood (m.l.), method-of-moments, and restricted maximum
likelihood (REML) approaches. The effect of estimation of 72, on mean squared prediction
errors, is investigated in Section 4. Section 5 compares the approaches by simulation and by
example, and Section 6 presents conclusions and a discussion.
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2. EMPIRICAL BAYES PREDICTION

In this article, the true population of any small area is considered to be unknown. After
observing the corresponding census population, the uncertainties about the true population
are updated. Therefore, statistical models for undercount are conditional on the observed census
counts. The model (1.4), (1.5), and (1.6) has been introduced in Section 1, and will be assumed
throughout Sections 2, 3, and 4.

Using a matrix analogue of squared-error loss, the optimal predictor is E(F| Y) (Cressie
1990), which is,

P =TEH@A+TE)) 7Y + (I -T(H (A + T(7H)) "1 X8 2.1

and the mean-squared-prediction-error matrix is,
E{((F-p*@)(F - p*(¥))'} = I = T(H (A + T'(+H)) T (). 2.2)

For the loss matrix, L (F,p) = (F — p)(F — p)’, (2.1) is easily seen to be a Bayes predictor
of F. In reality, 8 and 72 are unknown and so (~2. 1) is not a statistic (i.e. is not a function only
of the data). The proper Bayesian approach would be to put further priors and hyperpriors
on all unknown parameters. (This solution to the conundrum of unknown parameters is
sometimes called hierarchical Bayes, and demands a prior knowledge of process variability
that many scientists do not feel they have. Nevertheless, noninformative priors and hyperpriors,
particularly, often yield sensible estimators.) Often the posterior distributions are analytically
intractable. Should the model and prior be specified according to their conditional distribu-
tions, the Gibbs sampler could be used to obtain, numerically, all required marginal and joint
distributions (e.g. Gelfand and Smith 1990).

An alternative approach, the one taken in this article, is to treat all parameters, except F,
as fixed but unknown, and to use the data} to estimate them. This approach is called empirical
Bayes. Although a parametric (conjugate) prior is assumed in this article, one could also work
with a nonparametric prior (e.g. Laird and Louis 1987).

Suppose now that § is unknown, but that 72 in (1.6) is (for the moment) known. Again,
using the matrix analogue of squared-error loss, the optimal linear unbiased predictor is
obtained by substituting the generalized-least-squares estimator:

B={X"(A+T(*))'X} X" (A + () "lY
into (2.1), yielding

) =T(EHA+T() 'Y + U -T(E) (A +T(+H)) )
X{X'(A+TEH)) X)X (A +T(#2) 7Y = A(FDY (2.3)

(Cressie 1990). The mean-squared-prediction-error matrix is,

My (%) = E{((F = p(Y; ™)) (F — p(¥; 7))}
= A(T)AA(TD) + (A(7Y) — DT () (A = D). 2.4

More realistically, 72 is also unknown. An empirical Bayes predictor is obtained by
substituting an estimator #2 into A (72) to yield,
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pY; %) = A(HY. 2.5)

It is easy to see that when #? is the maximum likelihood estimator of 72, then (2.5) is the
maximum likelihood estimator of the Bayes predictor.

The predictor (2.5) was suggested by Ericksen and Kadane (1985) (and criticized by Freedman
and Navidi 1986). Incidentally, the form of their predictors may look different to (2.1),
(2.3), and (2.5), but they are in fact identical upon using the identity: A(4 + B) "'B =
(A~! + B™') 7!, where 4 and B are square matrices such that A, B, and A + B have
inverses.

By substituting 72 into (2.4), an estimator of the mean-squared-prediction-error matrix:

M (#%) = AGHAA(FY) + (A(FY) — DT(EH(AGH - D)’ (2.6)

is obtained. Since (2.6) does not take into account the estimation of 72 in p(Y; #2), it is likely
to be a biased estimator of E{ (F — /(Y; P)(F - p(Y; #2))’}. Further discussion of this
important issue is given in Section 4. )

Having obtained 8 and #%, model diagnostics can be computed to check the fit of
the estimated model. For example, a quantile-quantile plot, of the standardized residuals
(A + T(#%)) (Y — XB) against expected order statistics from a unit Gaussian distribu-
tion, was used to show no obvious lack of fit of the model used in Section 5. A more complete
discussion of model diagnostics is given in Section 6.

3. ESTIMATION OF VARIANCE-MATRIX PARAMETERS
In this section, the general linear model,
Y ~ Gau(XB, ¥ (v)), (3.1

will be assumed, whereyisa k X 1 vector of variance-matrix parameters. In particular, the
model given by (1.4), (1.5), and (1.6) yields,

L) =A+T(, (3.2)
2

where v consists of only one parameter, 7°.

For y known, estimation of § is straightforward:

T

(y)

X' T X)X Ty (3.3)

More realistically, Y is unknown and has to be estimated; substitution of that estimator into
(3.3) then yields an estimated generalized least squares estimator of 8. In the rest of this section,
three different methods of estimating y will be considered.

3.1 Maximum Likelihood Estimation

The negative log likelihood of § and vy is:

L(B,v) = (n/2)log(2m) + (Y2)log(| L ()| ) +
(B - XB)' T () (¥ — XB). (3.4)
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Minimization of this function yields maximum likelihood (m.l.) estimates 3., and 4,,,. The
difficult part of this minimization involves finding 4. The Gauss-Newton (scoring) afgorithm
is given inter alia by Harville (1977) and Mardia and Marshall (1984) and is repeated here for
notational completeness.

Define,
Lily) =0 ()/0yisi=1,...,k,

IT W= - TN TTNEQ Thi=1, .k,

(3.5)

Ty
the £ X 1 vector L, to have i-th element:
L= (@ L)) + (B — XB)' L () (¥ — XB), (3.6)

and the £k X k matrix J, to have (i,j)-th element:

(i = (BT @) 'S @) 7 Em)). 3.7
Then,
y D = 0 () SO, (3.8)
where J{© and L{” denotes J, and L., respectively, evaluated at ) and g = B('y 0y,

Wheny consists of only 72 in (1.6), the algorithm (3.8) is particularly straightforward. In
the simulations and example given in Section 5, the starting value
()@ = {1/(n = p)}¥ - X(X’'D~'X)"'x' DY)’ D!
Y - X(X'D™'X)"'X'D"'Y), 3.9)

was used. Then (3.8) is,

n
() D = (O — ((4) Y (G + (Y TILD e =0,1, ..., (3.10)
i=]

where

LY = (%) E 1/(Ci8% + (73) D)

i=1

— ()Y — XB((72) D)) diag{C/ (Ci8F + (1) D)2y — XB((+%) D) ). (3.11)

Iterating (3.8) to convergence yields the m.l. estimator 4 Yme» Which upon substitution into
(3.3) yields the m.l. estimator 6 (¥me) - Under appropriate regularlty conditions (e.g. Mardia
and Marshall 1984) (B Fme) > '?mg) is approximately multivariate Gaussian, with mean
(8',v’)’ and asymptotic variance matrix,
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X'ty ! 0
; (3.12)
0 Jo1

y
when y consists of only 72 in (1.6), the matrix (3.12) becomes,
(X L)X 0

n -1
0 {(1/2) Y 1(cof + 72)2}

i=1

(3.13)

In practice, estimated variances and covariances are obtained by evaluating (3.12) at the m.1.
estimate .

3.2 Method-of-Moments Estimation

There is no single method-of-moments estimator of y, but the general idea is to match low-
order moments of data with corresponding empirical moments. If only first- and second-order
moments are used, it is clear that the Gaussian assumption in (3.1) is not needed.

Let U be a positive-definite symmetric matrix. Consider the weighted regression estimator,
By = (X'U™'X)~'Xx’U~'Y, and the weighted residuals,

ey =U"-XX'UX)"'x'U Y. (3.14)

Then, straightforward matrix algebra shows that,
E(epey) = tr(X(y)1ly), (3.15)
whereIly = U™' = UT'X(X'U~'X) "' X’U™". Assuming that Z(y) = A + i + ... +

v, where I';’s are known, one obtains,

k
E vitr (T;Iy) = E(epey) — tr(Ally).
i=1

Choice of k different U; j = 1, ..., k (e.g. Uy, U3, ..., U¥f) yields k equations in k
unknowns:
k
Y vitr(Poly) = efey; — tr(Ally); i = 1, ... &, (3.16)
i=1
which can be solved for 4, ..., 4. It is important to check that the solution ¥ is in the

parameter space {y: ¥ k| ~,T;is positive-definite}.
When vy consists of only 72 in (1.6), only one matrix U in (3.16) is needed. Previous under-
count predictors have based their estimate of 72 on U = I (BEricksen and Kadane 1985;
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Freedman and Navidi 1986; Ericksen, Kadane and Tukey 1989), but a small sensitivity study
for the heteroskedastic model (1.6) suggested a better estimator.

Choose U, = A + I'(«) in (3.15) to mimic the model (1.7). Then, when « = 72 (the true
value), Fay and Herriot (1979) show that

E(eyeu,) =n —p, (3.17)

where # is the number of areas, p is the number of regressors in the matrix X (e.g. p = 3 for
the selected model in Section 5), and ¢, is the standardized residual defined by (3.14). Thus,
the proposed method-of-moments estimator of 72 is the value of « for which

eleu, =N — P, (3.18)

which can be solved using a Newton-Raphson iterative method or a simple bisection method;
call the resulting estimator #2,,,.

Fay and Herriot (1979) note that the difference between #2,,, and #2,,is manifest in how an
area with small 6 is weighted in the estimation procedure; 72, gives relatively more weight to
the squared residuals for such an area than does #2,,,. Based on this weighting property, and
a small simulation study of bias, Cressie (1990) expressed a preference for #2,, over #2,.
However, asymptotically, 7, is fully efficient and has an accessible distribution theory. Lack
of any (asymptotic) distributional results for 7, causes its own set of problems, such as how
to make inference on 72, and how to carry out mean-squared- prediction-error corrections in
Section 4. A more satisfactory estimator, with better bias properties than the m.l. estimator,

is developed below.

3.3 Restricted Maximum Likelihood Estimation

The problem is to find a suitable estimator of the variance-matrix parameters+ in (3.1). The
method of restricted maximum likelihood (REML), developed originally by Patterson and
Thompson (1971, 1974), applies maximum likelihood to error contrasts rather than to the data
themselves. (Rao (1979) calls this method MML, marginal maximum likelihood, in the context
of estimation of variance components. Recently, some authors have also called it residual
maximum likelihood, although they have retained the abbreviation REML.) A linear combina-
tiong 'Y is called an error contrast if E£(g’Y) = 0, for all § and; thus,g’Y is an error contrast
if and only ifg’ X = 0’. .

Let W = A’Y represent a vector of (n — p) linearly independent error contrasts; i.e. the
(n — p) columns of A are linearly independent and A’ X = 0. Under the Gaussian assumption
3.1), W ~ Gau(0, A’ Y, (v)A), which does not depend on 3. Thus, the negative log likelihood
function is, )

Ly(y) = ((n — p)/2)log(2m) + (Y2)log(| A" T (y)A|) +
(B (AT (1)A) ~'W.

If another set of (n — p) linearly independent contrasts were used to define ¥, the new
negative log likelihood function would differ from Ly (y) only by an additive constant
(Harville 1974). Indeed, for the A that satisfies A4’ =T — X(X'X) "'X’ (andA’A = I),

Ly(y) = ((n = p)/2)log(27m) — (Ya)log(| X'X|) + (Va)log(| T () |) +
(B)log(| X' T () 7' X|) + (B YY) Y, (3.19)



82 Cressie: REML Estimation in Empirical Bayes Smoothing

where Il(y) = L () 7' = L () "'X(X' L (y) ~'X) ~'X"’ £ (y) 7'; see Harville (1974).
A REML estimate of o denoted 4 Yres is obtained by minimizing (3.19) w1th respect toy. The
distinction between REML and m.I. estimation becomes important when p is large relative to 7.
The REML method was originally proposed to estimate variance-component parameters:
Numerical algorithms (Harville 1977), robust adaptations (Fellner 1986), and distribution theory
(Cressie and Lahiri 1991) have been developed in this context. Kitanidis (1983) and Zimmerman
(1989) give computational details for producing an iterative minimization of (3.19).

Harville (1974) provides a Bayesian justification for REML by assuming a noninformative
prior for 8, which is statistically independent of v, and showing that the marginal posterior
density of v is proportional to (3.19) multiplied b~y the prior fory. When that prior is nonin-
formative,~REML estimates correspond to marginal MAP (maxifxmm a posteriori) estimates.
Thus, in the situation where noninformative prior distributions for3 and y are independent,
REML can be seen as a compromise between m.l. and Bayes estimation with squared error
loss. In the case of model (1.4), (1.5) and (1.6), the latter would yield a Bayes estimate,
& r%exp{ — Ly (7%)}dr?, which can be obtained equivalently by averaging 2, weighted by
the full likelihood, exp{ —L (8, 72) }. On the other hand, m.l. yields as an estimate of 72 the
value 74, obtained by maximizing the full likelihood. REML averages the full likelihood over
# but maximizes the resulting (restricted) likelihood over 72.

Maximum likelihood estimation of 72 tends to be biased towards zero because the
likelihood, as a function of 72, is skewed to the right. When normalized to integrate to one,
the mean of such a function is generally larger than its mode (e.g. Groeneveld and Meeden
1977). The m.1. estimate is based on the profile of the likelihood surface of 3 and 72, and this
favors smaller values of 72, (In contrast, REML is obtained by first integrating the likelihood
over 3 and then maximizing the result over 72. Notice that Bayesians might advocate further
integration over 72.)

Although the Bayesian interpretation of REML helps to explain its properties, 4,,also has
the obvious frequentist interpretation of being an estimator based on restricted information.

Minimization of (3.19) with respect to Y can proceed by any of the gradient algorithms.
Recall,

W=AY (3.20)
and suppose A satisfies:

AA" =1 - X(X'X)"'X’,and A’A = I.

For the moment, focus all attention on the (n — p) ““data’’ W; their joint distribution depends
only on v, and the associated negative log (restricted) likelihood is Ly(y) given by (3.19).

Define the £ X 1 vector M, to have i-th element:
(M.); = 0Lw(y)/dy; = (WUl L)) — (B YO LiIEY, (.21

and the k X k matrix G, to have (i, j)-th element:
(G, = E@Lw(y) /dvidy)) = (A)r{Ily) LI L)}, (3.22)

where H(y) is given below (3.19) and }; (y) is defined by (3.5). (The expressions (3.21) and
(3.22) were obtained by Harville 1977.) Then, the Gauss-Newton (scoring) algorithm to find

’!rg lS.
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D =@ — (G "M, (3.23)

where G{” and M denote G, and M.

M., respectively, evaluated aty =y ")

When:y consists of only 72 in (1.6), the algorithm (3.23) is particularly straightforward. In
the simulations and example given in Section 3, the starting value (3.9) was used. Then (3.23) is,

(7)Y = (#H® — (GO MO, (3.24)
where
M, = (%)u(Il(})D) — (%) Y'TI(+*)DI(r%)Y, (3.25)
G, = (W)tr{Il(+*) DI (%) D}, (3.26)
M(7%) = Z(r*) 7! = (w3 "X (X'E(+) ~1X) " 1X'E(+%) 7, (3.27)

are evaluated at 7> = (72) (©). Also, recall that Z(7?) = A + 72D and D = diag{1/C,, ...,
1/C,}.

Iterating (3.23) to convergence yields the REML estimator 4,,. It has been proved by
Cressie and Lahiri (1991) that 4,, is approximately multivariate Gaussian, with mean v and
asymptotic variance matrix, ) -

G, (3.28)

When y consists of only 72 in (1.6), the matrix (3.28) becomes a scalar,
[(¥a)tr{II(+3) DI (#2)D}] ~ L (3.29)

In practice, estimated variances and covariances are obtained by evaluating (3. 28) aty = Y-
Furthermore, the normalized (estimated) generalized least squares estlmator 3 (7,5) should
be approximately Gaussian with asymptotic variance matrix, (X’ Ly)X)~

4. IMPROVED ESTIMATION OF MEAN SQUARED
PREDICTION ERRORS

In what is to follow, I shall be concerned with the effect, on prediction, of estimation of
Y inZ (y) given by (3.1). Generalizing (1.5) to,

F ~ Gau(Xg, I'(y)), “4.1)
it is clear that
L(y) = A+ T(@). (4.2)

In principle, A could also depend on unknown parameters (in, e.g. a model for sampling
variances) and the results of this section are equally applicable. The optimal linear unbiased
predictor is,
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YY) =TA+T) 'Y+ I =T +T@) ™"
X(X'(A+TH) 7' X} 7' X' (A +T@) 'Y =AY 43

Then, the mean-squared-prediction-error matrix of p(Y; v denoted M, (v), is given by,

Mi(y) = AQAAR) + (Aly) = DT (A - D" (4.4)

In reality, v is unknown and has to be estimated by ¥, say. The empirical Bayes predictor
of Fis then p( Yi9), given by (4.3) withy =4.1In this case, M) (y) is an inappropriate measure
of the predlctor § precision; one should use instead,

My(y) = EQ(F — p: ) (F = P )’ ). 4.5)

Itis the risk matrix (4.5), or an estimate of it, that should be given, along with the predictor
Py, However, M; (¥) is typically reported; hence, one should ask what inaccuracies result
from using M, (¥) and whether a more appropriate estimator of M, () is available.

Now, under the assumptions (4.1) and (4.2) (Gaussianity is important here) and provided
¥ is an even and translation invariant function of the data, the results of Harville (1985) can
be used to establish that M, (y)y = Mi(y) is non-negative-definite. (An estimator is even if
y(Y) = (- Y)andis translatlon invariant 1f7(Y + XN = 7( Y) foranyp X 1vectorj.)
When'y consists of only 72 in (1.6), the estimators 2.0, #2m and # #2, are all even and transla-
tion invariant. Intuitively, estimation of the unknown parameters +y leads to larger mean squared
prediction errors; the result above quantifies this intuition. }

But, there is another potential source of bias due to the fact that M; (¥), not M, (y), is
used to estimate the risk matrix. Suppose that 4 is chosen to yield an unbiased estimator of
the variance matrix of (Y’, F’)’, which most would agree is a desirable property. Then the
results of Eaton (1985) and Zimmerman and Cressie (1991) can be used to establish that
M (y) - EM () is non-negative-definite. (The proof relies on a multivariate version of
Jensen’s 1nequa11ty and on the fact that (¥; y) , which can be written as A(y) Y, minimizes
the risk matrix over all linear unbiased predlctors )

Upon writing,
My(y) — Mi@) = (My(y) = M)} + (Mi(y) — E(Mi()) +
(E(M (7)) — My}, (4.6)

the results above establish that underestimation of M (y) comes from two sources. Even if
an expression for M;(y) were known, it is likely that MZ @) would be biased for M, (y),
further illustrating the ‘inherent difficulty in estimating mean squared prediction errors.

A remedy has been suggested by Prasad and Rao (1990), based on asymptotic expansions
of M, (y). Consider prediction of undercount in the i-th area, and let [M,(y)];;and [M;(¥) ];;
denote the (i,i)-th elements of the risk matrices M, (y) and M, (¥), respecjcively. Then formal
application of Prasad and Rao’s proposal yields the estimator of [Ms(y) )i

My 15 = IMi(P s + 2ufAd; (B} i= 1, ...,n 4.7)
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In (4.7), A;(y) is a k X k matrix given by,
Aily) = var{dp;(Y;y)/9y) (4.8)
and B(y) is a matrix that equals or approximates the k X k matrix,
ElG -G -7} 4.9)
For m.l. estimation,
B(y) = J; ', (4.10)
where J, is given by (3.7), and for REML estimation,
B(y) = G/, @.11D)

where G, is given by (3.22).

Kass and Steffey (1989) give approximations (to the conditional variance) that are similar
in spirit to (4.7), for probability distributions that are not necessarily Gaussian. However, their
approach requires independent replications, which is not a feature of the distributions specified
by (3.1).

Should small areas be aggregated, it is important to have an approximately unbiased
estimator of all elements of M, (y). It is not difficult to generalize (4.7) to,

M) 1} = M) + 20 Ay B@ i =1, ..., n,

where A;;(y) = cov{dp;(Y; v)/dy, ap;(¥; y)/dy}. Prasad and Rao (1990) show that, to the
same order of magnitude, A, | (7) can be replaced by cov{dp} (Y) /0y, opf (¥)/dy}, where
p*(Y) is given by (2.1); these latter derivatives can be simpler to calculate.
When y consists of only 721in (1.6), calculation of B(y) is straightforward; see (3.13) and
(3.26). Now, consider

var (0p (Y;72)/97%) = (8A(7%)/87%) (%) (3A(7?)/87%) ", (4.12)
where A (72) is given by (2.3). In terms of II(72) defined by (3.27), and A defined by (1.4),
A(7?) = I — All(7). 4.13)

Thus, (4.12) can be calculated from (4.13) using the relationships (3.4) and (3.5). Then,
A;(72) given by (4.8) is the (i,i)-th element of,

ABII(72) /372 L (72) (BIL(72) /87%) "A ", (4.14)
where
aM(r?)/0r* = — T(r)DE(rH) (I — X(X'E(+4) 7' X) TIX'C(+%) 7'} -
L(r%) T X(X'Z(r) T1X) “HX'E(7?) T'DE(Y) T X))
(X'Z(3) "X X' L) T + 2 TIX(X () T
X'E(r*) 7'DE() (4.15)

recall that £(72) = A + 72D, and D = diag{1/C,, ..., 1/C,}.
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The estimator of mean squared prediction error, [M,(7%)1%, is conjectured to be approx-
imately unbiased (Prasad and Rao’s 1990, results were obtained for a more specific model than
is considered here). It is obtained by bringing together the relations (4.7), (4.14) and (4.10) for
m.l. estimation, or (4.7), (4.14) and (4.11) for REML estimation. This estimator will be com-
pared to the often-reported estimator [M, (#%)1,, in Section 5, using 1980 U. S. Census and
Post Enumeration Survey data.

5. A COMPARISON OF ESTIMATORS BY EXAMPLE
AND BY SIMULATION

5.1 Example

The PEP 3-8 data from the 1980 Post Enumeration Survey, for the n = 51 states of the USA
(including Washington, DC) are used to illustrate the empirical Bayes approach These data
are presented in Cressie (1989, Table 1, ‘“Total’”” columns) and the variances 82, .. , 6% in
(1.3) are obtained from Cressie’s ““Total’’ column labeled MSE ”t (whose squared entrles will
be denoted MSE,, ..., MSEs;). Using the relation F; = {1 — U;/100} ~! and the 6-method,

= (Y)*(MSE;)/ 10*. Eight explanatory variables, given by Ericksen, Kadane and Tukey
(1989), were collapsed to the 51 states (from 66 small areas that included cities, rest of states
and states). The explanatory variables are:

. Minority percentage.

. Crime rate.

. Poverty percentage.

. Percentage with language difficulty.

. Education.

. Housing.

. Proportion of population in any of 16 prespecified central cities.
. Percentage conventionally counted in the census.

0O ~1ON W A WN—~

To find a subset of these variables that provides a good model for undercount, I used the
selection method of Ericksen, Kadane and Tukey (1989), but weighted the data proportionally
to the square roots of the small areas’ census counts. The variables selected were 1 (minority)
and 5 (education), as well as the constant term. Henceforth, in this paper, these three variables
will be the only ones considered in the linear model; i.e. only regression coefficients 3o, 8 and
Bs will be fit.

Under the model (1.4), (1.5) and (1.6), the unknown parameters are § and 72. From the
scoring algorithm (3.8), the m.l. estimate of 72 is:

7o = 47.32,
while from the scoring algorithm (3.23), the REML estimate of 72 is:

#2, = 58.53.
This illustrates aphenomenon observed from the realizations of a simulation presented below,
namely, that 72, < 2203 an intuitive explanation is given in Section 3.3. (Parenthetically,

Cressie (1990), obtained 7 #2., = 94.96, but no general inequality between it, m.1., and REML
is apparent.)
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From the formulas in Section 3, the following estimates (with estimated standard errors in
parentheses) were obtained:

m.l. REML
By = 1.03227 (0.00708) Bo = 1.03246 (0.00724)
3, = 0.0006878 (0.0001402) B, = 0.0006941 (0.0001436)
Bs = —0.001070 (0.000231) Bs = —0.001078 (0.000236)
#2 = 47.32 (32.87) #2 = 58.53 (38.1).

Notice that there is very little difference between the two sets of estimates, except for that of
2. Upon using the m.1. and REML estimates in p;(Y; #2) given by (2.5), [M, (#%)]; given by
(2.6), and [M,(7%)]1} given by (4.7); i =1, ..., n, small-area predictors and estimated root
mean squared prediction errors are obtained. Table 1 shows the results for the n = 51 states;
also shown in the table are the raw undercount data Y;, the fitted linear model (X3);, and
the weight,

w; = #2/(Ci6F + 2), G.1)
such that
YD) =wY, + (1 —w)(XB)si=1,...,5L (5.2)

Notice that w; for REML is consistently larger than w; for m.1., which is intuitively sensible
since 74, has a notoriously large, negative bias. Thus, REML estimation of 72 results in less
weight on the model term (X3);, but in a way so that the effect of estimation of 72 can be
incorporated.

It is interesting to notice that one pays a price for using REML,; its root mean squared predic-
tion errors are consistently larger. This is not surprising, since we know that (asymptotically)
m.l. is 100% efficient. Further, notice that the improved root mean squared prediction error,
JIM,(7%)1}, is between 1% and 9% larger than [[M, (%)];.

With regard to prediction, one can assess the importance of m.1. versus REML estimation
of 72 by computing the weighted sum of squares,

51
Y (5:Ti#%) — Bi(Yi#3)17C; = 15,
i=1

When compared to,
51
E (Y; — 1)2C; = 70,421
i=1

and

51
Y Y = Bi(¥i7.) }? = 26,033,
i=1

Table 1: Columns, from left to right, show the 51 states according to a three-letter identifier,
their raw undercounts { Y;}, their model fits { (XB),}, their weights {w;} given by
(5.1), their predictors (5.2) (headed F12), their root mean squared prediction errors
{J[Ml (#2)1;} (headed RMPEL1), and their improved root mean squared prediction
errors {{[M,(7%)1}} (headed RMPE2). Table is given over the page.
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Table 1
REML
STATE Y

MDLFT WGHT Fi2 RMPEI1 RMPE2

ala 0.9965 1.0037 0.1431 1.0026 0.00439 0.00453
aka 1.0288 1.0175 0.4767 1.0229 0.00896 0.00976
arz 1.0204 1.0158 0.0742 1.0162 0.00487 0.00500
ark 0.9895 0.9962 0.1398 0.9953 0.00541 0.00562
cal 1.0307 1.0225 0.0682 1.0231 0.00322 0.00327
col 1.0033 1.0199 0.1926 1.0167 0.00473 0.00495
con 0.9886 1.0079 0.1029 1.0059 0.00435 0.00451
del 0.9938 1.0107 0.4571 1.0030 0.00739 0.00811
fla 1.0144 1.0120 0.0785 1.0122 0.00289 0.00295
gga 0.9955 1.0046 0.1639 1.0031 0.00391 0.00403
hai 1.0111 1.0105 0.2785 1.0107 0.00678 0.00730
idh 1.0125 1.0070 0.5627 1.0101 0.00531 0.00579
ill 1.0211 1.0103 0.1170 1.0116 0.00257 0.00265
ind 0.9936 1.0026 0.1413 1.0013 0.00334 0.00349
iow 0.9932 1.0033 0.1478 1.0018 0.00452 0.00475
kan 1.0056 1.0092 0.2215 1.0084 0.00466 0.00496
kty 0.9845 0.9872 0.1519 0.9868 0.00507 0.00524
lou 1.0234 1.0086 0.0263 1.0090 0.00476 0.00480
mne 1.0201 0.9992 0.3703 1.0069 0.00593 0.00645
mld 1.0242 1.0140 0.0712 1.0147 0.00406 0.00415
mas 0.9882 1.0068 0.1945 1.0032 0.00323 0.00341
mch 1.0079 1.0081 0.1601 1.0081 0.00259 0.00271
min 1.0111 1.0049 0.2793 1.0066 0.00359 0.00383
mis 1.0097 1.0086 0.1279 1.0087 0.00557 0.00575
mou 1.0080 1.0010 0.1681 1.0022 0.00350 0.00367
mon 1.0144 1.0059 0.3785 1.0091 0.00699 0.00761
neb 1.0008 1.0071 0.5117 1.0039 0.00441 0.00480
nev 1.0265 1.0151 0.2852 1.0183 0.00744 0.00802
nwh 0.9842 1.0033 0.3080 0.9974 0.00684 0.00740
nwj 1.0130 1.0105 0.0895 1.0107 0.00305 0.00314
nwm 1.0236 1.0256 0.3276 1.0249 0.00611 0.00648
nwy 1.0166 1.0119 0.0807 1.0123 0.00243 0.00247
noc 1.0118 0.9998 0.0748 1.0007 0.00421 0.00430
nod 1.0005 0.9969 0.8931 1.0001 0.00313 0.00324
oho 1.0108 1.0044 0.1273 1.0052 0.00253 0.00263
okl 0.9977 1.0018 0.1625 1.0011 0.00429 0.00451
ore 1.0027 1.0089 0.2833 1.0071 0.00434 0.00464
pen 0.9972 1.0013 0.1475 1.0007 0.00253 0.00263
rhi 1.0089 0.9939 0.4167 1.0001 0.00625 0.00678
soC 1.0632 1.0040 0.0216 1.0053 0.00555 0.00559
sod 1.0008 0.9985 0.7538 1.0002 0.00464 0.00496
ten 0.9717 0.9966 0.0755 0.9947 0.00439 0.00449
tex 1.0037 1.0149 0.0482 1.0144 0.00341 0.00345
uth 1.0040 1.0142 0.4010 1.0101 0.00524 0.00563
vmt 0.9889 1.0018 0.8232 0.9912 0.00454 0.00479
vir 1.0009 1.0058 0.1753 1.0049 0.00338 0.00354
was 1.0142 1.0121 0.1305 1.0123 0.00418 0.00434
wev 0.9942 0.9877 0.1452 0.9887 0.00603 0.00628
wis 1.0173 1.0032 0.2877 1.0073 0.00325 0.00348
wYyOo 1.0361 1.0127 0.3992 1.0221 0.00882 0.00963
dcl 1.0375 1.0474 0.2191 1.0452 0.01081 0.01125
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Table 1 (concluded)

89

ML
STATE Y

MDLFT WGHT F12 RMPEI] RMPE2
ala 0.9965 1.0037 0.1190 1.0028 0.00415 0.00427
aka 1.0288 1.0175 0.4241 1.0223 0.00850 0.00933
arz 1.0204 1.0157 0.0608 1.0160 0.00448 0.00459
ark 0.9895 0.9963 0.1161 0.9955 0.00506 0.00525
cal 1.0307 1.0224 0.0559 1.0228 0.00314 0.00319
col 1.0033 1.0198 0.1617 1.0171 0.00446 0.00466
con 0.9886 1.007% 0.0849 1.0063 0.00398 0.00412
del 0.9938 1.0107 0.4050 1.0039 0.00697 0.00771
fla 1.0144 1.0120 0.0644 1.0121 0.00271 0.00276
gga 0.9955 1.0046 0.1368 1.0034 0.00375 0.00385
hai 1.0111 1.0105 0.2378 1.0106 0.00629 0.00679
idh 1.0125 1.0070 0.5099 1.0098 0.00507 0.00559
il 1.0211 1.0103 0.0967 1.0113 0.00242 0.00248
ind 0.9936 1.0026 0.1174 1.0015 0.00309 0.00323
iow 0.9932 1.0034 0.1230 1.0021 0.00418 0.00438
kan 1.0056 1.0091 0.1870 1.0085 0.00432 0.00460
kty 0.9845 0.9874 0.1264 0.9870 0.00486 0.00502
lou 1.0234 1.0086 0.0214 1.0089 0.00446 0.00449%
mne 1.0201 0.9993 0.3222 1.0060 0.00557 0.00608
mid 1.0242 1.0139 0.0583 1.0145 0.00376 0.00384
mas 0.9882 1.0068 0.1634 1.0037 0.00302 0.00319
mch 1.0079 1.0081 0.1335 1.0081 0.00242 0.00252
min 1.0111 1.0049 0.2386 1.0064 0.00339 0.00362
mis 1.0097 1.0085 0.1060 1.0087 0.00526 0.00541
mou 1.0080 1.0011 0.1404 1.0021 0.00326 0.00341
mon 1.0144 1.0059 0.3299 1.0087 0.00656 0.00717
neb 1.0008 1.0071 0.4587 1.0042 0.00420 0.00461
nev 1.0265 1.0150 0.2439 1.0178 0.00692 0.00746
nwh 0.9842 1.0033 0.2646 0.9983 0.00637 0.00691
nwj 1.0130 1.0105 0.0736 1.0106 0.00283 0.00290
nwm 1.0236 1.0254 0.2826 1.0249 0.00582 0.00617
nwy 1.0166 1.0119 0.0663 1.0122 0.00231 0.00235
noc 1.0118 0.9998 0.0614 1.0005 0.00401 0.00408
nod 1.0005 0.9970 0.8710 1.0000 0.00310 0.00324
oho 1.0108 1.0045 0.1055 1.0051 0.00236 0.00245
okl 0.9977 1.0018 0.1356 1.0013 0.00396 0.00416
ore 1.0027 1.0088 0.2421 1.0074 0.00408 0.00436
pen 0.9972 1.0014 0.1227 1.0008 0.00239 0.00248
rhi 1.0089 0.9940 0.3660 0.9995 0.00591 0.00645
soc 1.0632 1.0041 0.0176 1.0051 0.00519 0.00523
sod 1.0008 0.9985 0.7122 1.0002 0.00452 0.00490
ten 0.9717 0.9967 0.0619 0.9951 0.00413 0.00422
tex 1.0037 1.0148 0.0393 1.0144 0.00329 0.00332
uth 1.0040 1.0141 0.3512 1.0105 0.00498 0.00536
vmt 0.9889 1.0019 0.7901 0.9916 0.00445 0.00477
vir 1.0009 1.0058 0.1467 1.0051 0.00317 0.00330
was 1.0142 1.0120 0.1082 1.0123 0.00391 0.00406
wev 0.9942 0.9879 0.1207 0.9886 0.00567 0.00590
wis 1.0173 1.0033 0.2461 1.0067 0.00306 0.00328
wyo 1.0361 1.0127 0.3494 1.0209 0.00829 0.00909
dcl 1.0375 1.0470 0.1849 1.0452 0.01036 0.01078
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it is clear that, from a national perspective, prediction is not very sensitive to estimation methods
for 72. (Cressie (1990) reaches the same conclusion based on a similar comparison of #2,, and
#2,,.) However, from Table 1, it is equally clear that estimated root mean squared prediction
errors are considerably more sensitive.

Cressie (1990) gives expressions for the risks of adjusting using p(¥;7%) and of not
adjusting. When 72, and 3(#2,) are substituted into those expressions, the risk of adjusting
is 3,253, while the risk, of not adjusting is 34,134. That is, not adjusting leads to a 949% increase
in risk (provided the model defined by (1.4), (1.5) and (1.6) holds).

5.2 Simulation

To check the asymptotic distribution theory of the REML (and m.l.) estimator of 72, a
simulation was carried out on the linear model described in Section 5.1, with parameter values:

Bo = 1.0330, B, = 0.000712, Bs = —0.000110, 72 = 95.00. (5.3)
The simulation,
Y ~ Gau(X8, A + D), (5.4)

where A is given by (1.4) the same values of 6%, ..., 62, as used in Section 5.1 and Cressie
in 1990, are used here and D is given by (1.6), was performed 500 times, and each time the
estimates, %fng, #2., and ?fg were computed. (Whenever a negative value was obtained, the
estimate was set equal to zero.) The stem-and-leaf plots of the three sets of estimates are
presented in Figures 1a, 1b and 1c, respectively. Notice the relatively larger number of zeros
for the m.l. estimates (Figure 1a).

Figure 1. Stem-and-leaf plots of estimated variance parameter 72, based on 500 simulations
of (5.4): (a) maximum likelihood (Section 3.1), (b) method-of-moments (Section 3.2)
and (c) restricted maximum likelihood (Section 3.3).

000000000000001155556667

0001223566667889

000112356677899

001112234455555779999
00111111122223334444555556666777788888899999
0000122233333334455566666778888899999999
00000111111112222222223333344445566677777788889999
0001111111122222334444445555666677777888888999
0011122222233333333334445556677777788889999
00001111222222333334555677777788

10 00001111111233334444456677777888899

11 0001112222234444456667899

12 000111122223333336677788899

13 1223345556677999

14 0001222334445666799

15 000012223344558999

CONOOODhWN—=O

16 157899

17 0011222335689
18 2568

19 145

20 7

21 2

22 88

Figure 1a



Survey Methodology, June 1992 91

000000377778

011113344446679999

11144455557778888
00002222222233333355555666666888899999
122222224466667777777999999
0002222333333455577777778888
0000000111333334444444446666677779999999999
111122222224444455555555777778888888
00000222333333355555556666666688999
111222222244444466666777779999

10 000000222233333355577777888888

11 00000000111113333444444666677789999

12 1111122222224444444445777778

13 00002233666888888999

14  11122244667777999

15 002233558888

16 000001133444777799

17  122222245555788

18 00003335566899

CONOOOPAL,WN-=2O

19 26799
20 02258
21 37

22 11558
23 5

24 79

25

26

27 5

28 5

29 2

30 78

31 3

32

33 2
Figure 1b

The means (X) and standard deviations (S) of the distributions shown in Figure 1 are:

2 A2 a2

Tme Tmm Tre
X = 83.56 X = 96.85 X = 94.27.
S = 45.65 S = 57.46 S = 49.17.

The means should be compared to the true value of 72 = 95.00. The bias in 72, is apparent;

#2, has very little bias and has a small advantage over 72,,,. With regard to standard deviations,
the advantage of 72, over #2,, is considerable, but it is at some disadvantage over #2,. For
reasons explained in Section 3.3, that are not all statistical, bias is more of a concern than
variance, and so REML estimation of 72 should be considered a serious alternative to m.l.

Asymptotic distribution theory for m.l. and REML can be checked from the simulations.
(The method of moments is at a disadvantage in that no asymptotic distribution theory is readily
available.) Substituting 72 = 95.00 into (3.13) yields,
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{var(32,)) " = 48.73,
which should be compared to S = 45.65. Finally, substituting 72 = 95.00 into (3.29) yields,
{var(#%))"” = 50.14,

which should be compared to § = 49.17.

The opportunity also exists to use the simulation to look at ‘‘actual’’ errors of prediction
and to assess the performance of M, (#%) and Mz(TZ)*. If the parameter values (5.3) were
estimated from the original data, then this amounts to a parametric boostrap.

6. CONCLUSIONS AND DISCUSSION

Model-based prediction of undercount relies on careful checking of model fit. Diagnostic
plots based on standardized residuals have already been suggested at the end of Section 2. The
standardized BLUP residuals {Y; — p; (Y; VI IMGH1 % i =1, ..., n,also have a
role to play. They could either be used in a quantile-quantile plot (e.g. Cressie 1991, p. 225)
or, as suggested by Calvin and Sedransk (1991), plotted against p;(Y; #2yi=1,...,n

One could also extend the model (1.4) to include an unknown variance-component parameter

0'22

Y ~ Gau(F, o%A), (6.1)
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where A = diag{é?, ..., 62}. Upon fitting the more general model (6.1), (1.5) and (1.6), one
could then test whether the REML estimate o2, is significantly different from ¢ = 1, which
would provide a check on model misspecification. (In this case, REML estimation is recom-
mended over m.l. estimation, since any bias will seriously affect inference on ¢2.)

Restricted maximum likelihood (REML) estimation of variance-matrix parameters is less
likely to lead to empirical Bayes predictors that put too much weight on the regression model
(1.5). The price paid is slightly larger mean squared prediction errors. Using asymptotic dis-
tribution theory for REML (which is checked by simulation), improved estimators of the mean
squared prediction errors can also be obtained. Based on the model (1.4), (1.5) and (1.6), it
can be concluded that there are accurate and precise ways to make inference on adjustment
factors {F;:i = 1, ..., n}; the predictors {5;(Y;#%):i = 1,..., n} yield true-count and
undercount predictors,

TP = p; (3775 C; and UP? = 100(1 — (B;(3#7)) ') i=1, ...,

respectively. Their biases and mean-squared prediction errors can be obtained using the
é-method (cf. Cressie 1991, Section 3.2.2).
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