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ABSTRACT

The present article discusses a model-based approach towards adjustment of the 1988 Census Dress
Rehearsal Data collected from test sites in Missouri. The primary objective is to develop procedures that
can be used to model data from the 1990 Census Post Enumeration Survey in April, 1991 and smooth
survey-based estimates of the adjustment factors. We have proposed in this paper hierarchical Bayes (HB)
and empirical Bayes (EB) procedures which meet this objective. The resulting estimators seem to improve
consistently on the estimators of the adjustment factors based on dual system estimation (DSE) as well
as the smoothed regression estimators.
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1. INTRODUCTION

The present article discusses a model-based approach towards adjustment of the 1988 Census
dress rehearsal data collected from test sites in Missouri. The main objective behind this exercise
is to develop procedures that can be used to model data from the 1990 Census Post Enumeration
Survey (PES) in April, 1991, and smooth survey-based estimates of the so-called ‘‘raw adjust-
ment factors’’. These raw adjustment factors which are ratios of estimates of the unknown
total population to the corresponding 1990 Census count, are computed at various levels of
aggregation (geographic areas such as cities, suburbs, etc.) crossed by various demographic
categories (such as age, sex, race, ec.). The cross-classified categories are called poststrata.

Before proceeding further, a brief historical anecdote is in order. Adjustment of 1980
decennial census counts in the United States has been a topic of heated debate for nearly a
decade. Despite the intensive efforts and the massive expenditure incurred by the U.S. Bureau
of the Census to achieve near-complete coverage in the 1980 Census, there have been many
lawsuits against the Bureau by individual states and cities demanding revision of the reported
counts. In one such instance of litigation, by now well-publicized to the Statistics community
in the articles of Ericksen and Kadane (1985) and Freedman and Navidi (1986), New York City
among others sued the Census Bureau, and many reputed statisticians appeared as expert
witnesses on either side. In particular Ericksen and Kadane appeared on the plaintiff’s side,
and proposed a model-based approach towards the adjustment of census counts. They
advocated shrinking the adjustment factors calculated on the basis of the PES data towards
some suitable regression model. This approach documented in Ericksen and Kadane (1985)
is similar to the one considered in Fay and Herriot (1979) or Morris (1983). Despite criticism
of the Ericksen-Kadane approach by some statisticians (most severely by Freedman and
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Navidi (1986)), most people recognize the importance of the model-based approach for adjust-
ment. Indeed, in this article, barring a few differences in the assumptions, to be pointed out
later in section 2, we use the Fay-Herriot or the Ericksen-Kadane model for the analysis of
the 1988 Missouri Dress Rehearsal data. A different model-based approach which does not
include co-variates is given in Cressie (1989).

A good description of the PES conducted as part of the 1988 Missouri Dress Rehearsal can
be found in Childers and Hogan (1990). Hogan and Wolter (1988) discuss the categories of
error that occur in a PES and a means of their evaluation. Basically, the PES design consists
of a single stage stratified sample of blocks and dual system estimation of the number of persons
by poststrata.

In the present article, we begin at the point where a set of estimated raw adjustment factors
and their covariances from the PES are available for modelling based on the 1988 Census Dress
Rehearsal Data from the Missouri test sites. It is also assumed that a set of possible explanatory
variables defined at the poststrata level and to be used in regression are also available. There are
two geographic areas under consideration: the city of St. Louis which is a large central city, and
Easi Central Missouri, which is a collection of areas of moderate population size. In defining
the poststrata in St. Louis, persons were classified into the following demographic categories:
(i) race: white non-hispanic and others, (ii) owners and non-owners (renters) of dwellings,
(iii) sex: male and female, (iv) age groups: 0-9, 10-19, 20-29, 30-44, 45-64 and 65 + . This led
toatotalof2 X 2 X 2 X 6 = 48 adjustment factors for St. Louis. In East Central Missouri,
the sex and the age-group categories remained the same as in St. Louis, but instead of (i) and
(ii), a new category (i)’ classifying persons as (a) White non-Hispanic in Tape Address Register
(TAR) areas, (b) White non-Hispanic in non-TAR areas, and (c) others in all areas were
introduced. For East Central Missouri, a total of 3 X 2 X 6 = 36 adjustment factors were
calculated. Thus, a total of 84 adjustment factors were used for modelling. Within each area,
estimated adjustment factors were correlated due to the use of a block cluster sampling scheme.
This led to a block-diagonal sample covariance matrix of the adjustment factors of dimensions
48 x 48 and 36 X 36 corresponding to St. Louis and East Central Missouri, respectively.

In Section 2 of this article, we describe a general model-based method for obtaining smoothed
adjustment factors, and the associated standard errors. Both the hierarchical and empirical
Bayes methods are used. The EB method can also be regarded as a variance components method
(see for example Harville (1985)). The formulas for posterior standard errors associated with
the HB estimators are also provided. We may point out here that an EB method when employed
naively can lead to serious underestimates of the associated standard errors. This is due to the
fact that a naive EB method does not take into account the uncertainty due to estimation of
the unknown variance components. However, Kackar and Harville (1984), and Prasad and
Rao (1990) have suggested interesting approximations to the estimated mean squared errors
(MSE?’s) of the EB estimators. Following their principle, we have derived formulas for the
estimated MSE’s in the present context. We have also pointed out in this section how some
(though not all) of the criticisms levelled against the Ericksen-Kadane (1985) procedure by
Freedman and Navidi (1986) can be avoided in the present context.

In Section 3, we have analyzed the actual data. The sample estimates, the HB estimates,
the EB estimates and the regression estimates of the adjustment factors are all provided. Also,
the associated standard errors are given. Both the HB method and the EB methods which take
into account the uncertainty due to unknown prior parameters stand on par in their perfor-
mance, and enjoy a clear-cut superiority over the raw estimates as well as the regression estimates
in reducing the estimated standard errors.

Finally, some of the technical details of this paper are given in the Appendix.
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2. HB AND EB ESTIMATION

This section describes the general HB and EB estimation procedures for certain hierarchical
models. The specific application to estimation of adjustment factors is considered in Section 3.

The following hierarchical model is considered:
1. Y| ®e,.s, 0% ~ N(O, V), where Vis a known m X m positive definite matrix;
II. O]8, 6> ~ NXB, ¢’I);

III. B and ¢ are marginally independent with 8 uniform (R”) and ¢ uniform (0,).
The HB analysis is based on I-III. In the absence of precise prior information on 8 and o2,
we prefer the use of diffuse priors in III. We also analyzed the data with the prior pdf of o2

proportional to ¢ ~2 on (0, o). The results were quite similar and are not reported. The
following theorem is proved.

Theorem 1. Consider the model given in (I) - (II). WriteX = ¥ + ¢>I. Supposem = p + 3.
Then (i) the conditional pdf of © given ¢ and ¥ = y is N(GV ~ly,G), where

G=V-Vly+ VE‘IX[XTE‘IX]‘IXTE'IV; .1
(i) the conditional pdf of ¢2 given ¥ = y is

f(@® | y) o« | BTV | XTETIX |72 exp(—1/2 y7Fy), 2.2)

where

F=xr1_ E—IX[XTE—IX]—IXTZ—I. (2.3)

The proof of the theorem is deferred to the appendix. Using formulas for conditional expec-
tations and variances, one then gets

E®©|y) =E[E®]|dp)|y] = (E(GV )y, 2.4)
V(©|y) = V[E(®|d* y)|y] + E[V(O]| 0% »)|¥] = V(GV ' y|y) + E(Gly). (2.5

Using (2.2) and (2.3), one obtains E(0 | y) and V(0O | y) from (2.4) and (2.5) via numerical
integration.

The calculations involved in (2.1) - (2.3) can be somewhat simplified when one uses the
spectral decomposition theorem for V. Thus, ¥ = PDPT, where D = Diag(d,, ..., dy,), d;
being the eigenvalues of V, and P = (&, ..., &,), & being the corresponding orthonormal
eigenvectors. Using the orthogonality of P, one now gets
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m
|5l =12 +D| =[] (* + d);

-1
L' = P(e’I + D)"'PT;
X'£7X = (P'X)7(e’1 + D)~} (PTX);
F = P(¢’l + D)~'P" — P(¢’1 + D) ' (PX) x
[(PTX)T(*I + D) '(P'X)| "' (P'X) (ol + D) 7',

The actual numerical integration over ¢ which needs evaluation of the integrand at different
values of ¢2, is somewhat simplified since P and X are known and ¢ I + D is a diagonal
matrix.

Next we consider EB estimation. Then, one does not use III. First a Bayes estimator, i.e.
the posterior mean of O is obtained from I and II assuming 8 and ¢2 to be known. This
estimator is given by

Py

GB

E(0] Y, 8, %)

= (V—l + 0‘21)‘1(V‘1Y+ a‘ZXB>

2_1(02Y + VXB). (2.6)
The corresponding posterior variance is given by
ve| Y,ﬂ,az) = (V—l + 0—21)-1 =V - yVrly.

However, in practice, 8 and o¢? are unknown, and are estimated via the maximum
likelihood method from the marginal distribution of ¥ which is N(Xg, ). These MLE’s are
denoted by B and 42, where 8 = (XTE-1Xx)~"x7E-1y, £ = ¥V + §°I. Substituting such
estimators of £, ¢% and 8 in (2.6), an EB estimator of © is found as

6FB = 2—1(&21/ + VXB) = XB + &Zf:“l(Y — XB). 2.7

The estimator given in (2.7) is also obtainable as an estimated best linear unbiased predictor
(EBLUP). First assume that o2 is known, and find the BLUP 6B'VF = X8 + ¢’L~1(Y — XB)
of @ where 8 = (X7L ~1X) ~1X7Z ~1¥. Next estimate ¢ by 42, its MLE and correspondingly
X by L. Substitution of 4%, and £ in place of ¢ and I in OBYF results in the EBLUP OFB,

A naive EB estimator of the variance matrix of %8 is ¥ — VE~1V. This is a gross
underestimation of the variance matrix since uncertainty due to estimation of 8 and ¢*
is not taken into account. If ¢? is assumed known, and 8 is assigned a uniform prior on
RP(m = p + 3), then the HB estimator of © is the same as ©BLYF, and the posterior variance
matrix isthen M = ¥V — VE~1V + VETIX(XTE 71X) X7 ~'V. This implies imme-
diately that E[ (6B"UP — @) (6BLYP — 0)7] = M, where expectation is taken over the
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joint distribution of ¥ and © given in I and II. Thus, in the Bayesian language, VE !
X(XTZ1X) ~'XTL ~1¥ can be interpreted as the excess in the posterior variability due to
the uncertainty involved in 8, while using the classical terminology, the same phenomenon can
be interpreted as the excess in the MSE due to the same uncertainty.

We have the additional problem of tackling unknown ¢2. The Bayesian method enables us
to find the posterior distribution of ¢ given ¥ = y, while even without introducing a prior
for O, it is still possible to find an approximation to the MSE of O FB by adapting an argument
of Kackar and Harville (1984) or Prasad and Rao (1990).

The necessary theorem whose proof is deferred to the Appendix is given below.

Theorem 2. An approximate estimate of MSE of OB is given by

M%‘E(GEB) = V — VRV + (VR*V) [2eE7%) 7Y, (2.8)

where

-

E=3:1- E-IX(XTE—IX)—IXTﬁ—l. (2.9)

The third term in the right hand side of (2.8) can be interpreted as the excess in the mean squared
error due to uncertainty in estimating o2. A general decomposition of the prediction error is
given in Harville (1985).

Although the posterior variances V(0 | y) associated with the HB estimator OB of @ and
the estimated MSE of the EB estimator O of © are motivated from two distinct inferential
philosophies, one common thread tying the two is that they both attempt to incorporate the
uncertainty due to estimation of the model variance. For a better understanding of this, note
that writing K = 2~ ! — T X(XTr " x) X7z -1,

E[V(O] az,y)] =G=V— VKV (2.10)

and E (G| y) isapproximated by V — VKV which is one of the two terms given in (2.8). Also,
E(O| 6%,y) = GV 'y, and it can be shown after some simplification that GV~ = I — VK.
Thus, V(GV~ly|y) = VV(K|y)V, and V(K| y) is apparently approximated by
K3[2(trE~2) ~']. However, as evidenced later in the numerical calculations of Section 3,
MSE approximation of @FB need not match V(0 | ¥) perfectly.

In Ericksen and Kadane (1985) one assumption involved was that of known ¢2. Freedman
and Navidi (1986) insisted on estimation of ¢2, and we have in Theorems 1 and 2 accounted
for this source of uncertainty both in a Bayesian and frequentist way. It should be noted that
unlike previous work that addressed the estimation of net undercount of total population at
the city and balance of state level, our interests lay in the estimation of adjustment factors at
finer levels of detail. Operationally, adjustment at the finer levels allows for considerable savings
in terms of time and computer costs as census files need to be used only once. Adjustment
models using higher levels of geography would require several passes through the census data
because they would require a method of distributing the undercount to lower levels of
geography. Finally, correlation in the error structure allows the possibility of a non-diagonal
V, another important generalization of the Fay-Herriot (1979) or Ericksen-Kadane (1985)
model. Thus, the Freedman-Navidi criticism of lack of correlation across estimated adjustment
factors does not hold against the present set up. The remaining main criticism of assuming
the components of ¥ to be known, whereas in reality these are sample based estimates, is yet
to be resolved. Efforts are now being made to model the components of V as a function of
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variables such as the number of sample persons, the initial regression predictor, etc. It is hoped
that such models will stabilize the estimated variances by reducing their variance.

Along with the HB and EB estimators of ©, there are also the regression estimators given
by OREC = x(XTE-1x) ~'XTE -1y, The associated variance-covariance matrix is given by
M, — *(M,E™' + £7MT — I), where M, = X(XTE~1X) ~1xT.

3. DATA ANALYSIS

Let Y; = DSE,/Census; = adjustment factori,i = 1, ...,84,and Y = (Y, ..., Yz)".
The set of explanatory variables X is quite large when all possible interactions are considered.
To simplify the analysis, experts at the Census Bureau were consulted and a reduced set of
22 potential explanatory variables were considered for modelling purposes. (See Huang ez al.
1991). The number of potential explanatory variables was also limited by the capability of the
computer. The present model was selected using a best subset regression procedure with
minimum Mallows’ C,, as the criterion over a set of 22 possible explanatory variables. Because
the computer software required the input data to be in the ordinary least squares situation,
we transformed the dependent and explanatory variables in the usual manner. Also, because
o2 is unknown, an interative procedure was used.

As an aside, in selecting explanatory variables in the modelling process of adjustment factors
for the 1990 Census, a slightly different procedure was used. In 1990, several explanatory
variables were forced into the model and a best subset procedure was used to select additional
explanatory variables. The change in procedure was made to counteract the potential for
understating o?. (See Isaki et al. 1991).

The X matrix obtained via best subsets regression is of the form X = (1g4, X3, X3, X4, X,
Xe,» X7, X3, X9, X10). All of the explanatory variables in X are obtained from the 1988 Dress
Rehearsal Census and defined at the poststrata level, the unit of analysis. 1g4 is a unit vector;
X, is the indicator variable for St. Louis; Xj is the indicator variable for renters or is the
proportion of renters for the East Central Missouri poststrata; X, through X7 are indicator
variables for age groups 0-9, 10-19, 20-29 and 30-44, respectively; X3 is an indicator or
proportion variable for males aged 20-64 that rent; X, is an indicator variable for other males
aged 20-64; and X, is an indicator variable for other persons in St. Louis.

Using the above design matrix, we obtained B = (9812, —.0271, .0485, .0699, .0695, .0533,
.0386, .0628, .0475, .0778) T and 6% = .000574. The EB’s or the EBLUP’s and the associated
approximate standard errors can now be computed using formulas derived in Section 2. For
consistency, the HB analysis was also performed with the same X matrix (we do not require
B or 2 for that analysis).

In Figures 1 and 2 we plot the estimated adjustment factors and standard errors by poststrata.
The first 12 poststrata refer to white non-Hispanic non-owners in St. Louis; poststrata 13-24
refer to all other non-owners in St. Louis; poststrata 25-36 refer to white non-Hispanic owners
in St. Louis and poststrata 37-48 refer to all other owners in St. Louis. Poststrata 49-60 refer
to white non-Hispanic persons in Tape Address Register (TAR) areas in East Central Missouri;
poststrata 61-72 refer to white non-Hispanic persons in non-TAR areas in East Central Missouri;
poststrata 73-84 refer to all other persons in East Central Missouri.

Within each group of 12 poststrata, the first six refer to males by age 0-9, 10-19, 20-29, 30-44,
45-64 and 65 + . We note in Figure 1 that the raw adjustment factors for the other group tend
to be higher than those for the white non-Hispanic except for TAR area in East Central
Missouri. The same observation nearly holds in Figure 2 concerning the raw standard errors.
In Figure 3 a plot of the estimated standard errors versus the adjustment factors is provided.
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Figures 1 to 3 lead to several interesting conclusions.

(1) For every stratum, the estimated standard errors of the HB and the EB estimators of the
adjustment factors are much smaller than the standard errors of the raw adjustment factors
when compared to the unadjusted DSE’s.

(2) The EB estimators improve on the regression estimators for all the 84 strata by providing
reduced estimated standard errors. Although the HB estimators do not improve on the
regression estimators for all the strata, the improvement is substantial for most of the
strata.

(3) The data plots demonstrate that the difference between the point estimates é,EBS and
6By is quite small. Indeed, the percentage difference is always less than (and most often
far less than) 1%.

(4) The posterior standard errors associated with the HB estimates (s/'B) are always bigger
than the approximate MSE’s of the EB estimates (sFP). As discussed earlier, the two
need not be the same. It is our feeling that the approximate standard errors of the EB
estimates are often slight underestimates. However, a comparison of sE8 and sFB reveals
that a naive EB procedure (with associated estimated standard errors sF2) can grossly
underestimate the estimated standard errors by failing to incorporate uncertainty due to
estimation of ¢2. This deficiency is largely rectified by sF® which is based on second
order approximations.

At the time of revision of this article, adjustment of the 1990 Decennial Census was
completed. The EB estimation procedure was used. Basically, most of the same steps followed
in modelling the adjustment factors in the 1988 Dress Rehearsal Census were used. However,
there were several differences. In 1990 adjustment, the estimated adjustment factors were
modelled by each of four census regions and a special set for Indian reservations. The number
of adjustment factors ranged from 12 for the Indian set to 456 in one of the regions. In addition,
estimated variances of the raw adjustment factors were smoothed via regression models.
Smoothing of the estimated variances tended to reduce large estimated variances and increase
small estimated variances. The net effect was an increase in the contribution of the associated
adjustment factors with large estimated variances to the EB estimates and vice versa. Other
differences were that outlier detection procedures were used in both the variance and adjustment
factor smoothing. Finally, the EB estimates at the poststratum level were ratio adjusted to
regional total population estimates derived from the raw adjustment factors. The ratio adjusted
smoothed factors were then applied to related census population counts at the census block
level. The results were then integer rounded by collection of blocks in such a manner that each
cell within a block is rounded up or down to an integer and that control totals are off by at
most one person.

The procedures used to adjust the 1990 Census counts were pre-specified and the entire oper-
ation was conducted under a very tight time schedule. The Bureau of the Census recommended
that the 1990 Census adjusted counts be used. A special panel selected by the Secretary of
Commerce was evenly divided in this issue. Upon weighing the evidence, the Secretary decided
against using the adjusted counts. The issue is now subject to litigation. A current issue is the
possible use of adjusted counts for use in postcensal estimation. Research in obtaining better
adjusted counts for use in postcensal estimation is currently underway.
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APPENDIX - PROOFS OF THE THEOREMS

Proof of Theorem 1. We provide only an outline of the proof. The details appear in Datta
et al. (1991). The joint (improper) pdf of ¥, ©, 8 and ¢? is given by:

f(9,0,8,06%) o exp[—1/2(y — ©) TV~ (y — @)]o ™" exp[ -1/ (26))||® — XB|*], (A.D)

where |||| denotes the Euclidean norm. Writing Py = X(X'X) X7, ||@ — XB|? =
[8 - (XTX) ‘1XT9]T(XTX) 8 - (XTX)-IXTe] + 67 - p)e.

Now, integrating with respect to §8 in (A.1), it follows that the joint improper pdf of Y, ©
and o? is

[(0,0,6%) o« 6™ " Plexp[—~1/2(y —0) TV (y - 0) —1/(262)0T(1 - P,)B]. (A.2)
Next writing E = V-1 + ¢~2(I — PB,), it follows after some simplifications that
y-0)Iv"(y —0) + ¢7*07(1 — P,)0 =
© —E W YWTE® —E- WYy + yT(Vv-! — v lE- 1y, (A.3)
Hence, the posterior distribution of © given 6?and Y = y is N(E "1V~ 1y, E~1). Using the
familiar matrix inversion formula (4 + BDBT) ' = A1 — A" 'B(D"' + BTA"'B) !
B”A 71 (see for example Exercise 2.9, p. 33 of Rao (1973)), one gets E~! = G. This completes
the proof of the first part of the Theorem. Next, using (A.3) and integrating with respect to
0 in (A.2), one gets the joint (improper) pdf of Y and ¢? is
f(y,0%) o« g~ m=P| E|~12 exp| — (172)yyT(v-1 — V—lElV—l)y]. (A.4)
Using Exercise 2.4, p. 32 of Rao (1973), it follows that
|E|=|V '+ T -P)| =|A] +]|e*XTX|
which on simplification reduces to
| VU T+ eV | XTT+ 67V) "X | + | XIX| | T+ 672V | XTZ71X|. (A.5)
Also, after some calculations, it follows that
vl - y-lg-ly-1 = F. (A.6)

The proof of part (ii) of Theorem 1 follows now from (A.4) - (A.6) and noting that
f(a? | ¥) = f( 0%, ). Note, however that the posterior pdf of ¢ given Y = y is proper.

Proof of Theorem 2. Once again, only a sketch of the proof is given. The details are available
in Datta et al. (1991).

Recall
B = (X" x) " 'XTr-1y.
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Define,
0 =X8+ 2L 1(Y - XB).

Now, observe that (i) © is the best unbiased predictor of © (due to normality) for every fixed
02, and (ii) E(OE® — ©) = 0 since 4° is the MLE of o? (¢f Kackar and Harville (1984)). Now
using Lemma 3.3.1 of Datta (1990), OF8 — & is uncorrelated with 6. Hence,

E[(6%° — 8)(8"® - 6)7] =
E[(éEB - 6)(6f — é)T] + E[(é - 0)(6 - e)T]. (A.7)

Next, write 8 = X8 + ¢*Z~! (Y — XB). Then standard arguments give

E[(é -0)(6-6)T]= E[(é - 6%)(6 - 6%7] + E[(6® - 0)(6° - 0)7]. (A.8)

Our previous calculations yield
E[(6® - 0)(6® ~0)T] =V — VE-lY. (A.9)
Further,

E[(é - 6% (6 - éB)T] = V- xxXTr-'x)xTz-ly. (A.10)

Finally, write 0 = g(¢%) and OFB = g(4?). Using first order Taylor approximation, one gets

(A.11)

AEB _ Av(AEB _ T - 22 , dg(d?) dg(d®)7
E[(e 0)(0 0) ]_E (o g’) .

do* de?

Since g(¢?) = ¥ — VE~'[Y — X(XTE7'X) ' XTE~'Y], using matrix differentiation,
techniques, one gets

% = VL - ETX(XTETX) XTE R (Y - XB). (A.12)
[/
T
E[% ‘%] = VKZE[(¥ - XB)(Y — XB)T|T 'KV (A.13)
[12 g

But, simple algebra gives

E[(Y - XB)(Y - XB)T] =¥ - X(XTzr x)"'xT = XK. (A.14)

Hence, from (A.13),

dg dgT 3
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Using, one more approximation, it follows from (A.11) and (A.15) that
E[(6™ — 6)(8"® — 8)"] = E(&* - ¢")VKV.
To estimate E(62 — 02)? = MSE(4?), we proceed as follows.
Since Y ~ N(XB, ¥), write the likelihood function as

L(o%) o | E| 2 exp[—1/2(Y — XB)TZ (Y — XB)].

Hence,
dlogL d d
—— = —12—=log|Z| -12—[(Y - XB)Tz (Y — XB)];
e 707 g| I 207 [( 8) ( 8]
d*logL d a
= = —12——log|Z| - 12— [(Y - XB)Tx (Y — XB)].
d(02)2 d(02)2 gl | d(0’2)2 [( B) ( 6)]

As before, denote by dy, ..., d,, the eigenvalues of V.

Then, log| £| = £, log(¢® + d;). Hence
2

d _ _
mlog|2| =Ll (®+d) = —uE?).

Using (A.20) and matrix differentiation, it follows from (A.19) that

d*logL - -
dion)? = 172tr(£7%) — (Y — XB)TE (Y - XB).
Thus,
d*logL - _ _
E[— m] = - 120(E7%) + u(E7%) = 1/2(E7?).

Approximating E[(6* — ¢)?] by

d*logL -1
E - =
( [ d(ﬂz)z]) ’

justifiable by the asymptotic theory of maximum likelihood, one gets, from (A.16),

E[(()EB — 0)(6FB — é)T] = 2(tr(z-2)) “lyg3y.

Combining (A.7) - (A.10) and (A.22), one gets
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(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

MSE(6F8) = v — v~V + V- IxX(XTr'x) " IXTe -y + VK3V[2(trz-2)—l](A.23)
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Substitution of ¥ for I yields the approximation given in (2.8). This completes the proof of
Theorem 2.
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