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Variance Estimation in Dual Registration
Under Population Heterogeneity

JUHA M. ALHO!

ABSTRACT

The usual dual system estimator for population size can be severely biased, if there is population
heterogeneity in the capture probabilities. In this note we investigate the bias of the corresponding variance
estimator under heterogeneity. We show that the usual estimator is conservative, i.e., it gives too large
values, if the two registration systems are negatively correlated, uncorrelated, or when the correlation
is positive, but small. In the case of high positive correlation the usual estimator may yield too low values.
Two alternative estimators are proposed. One is conservative under arbitrary heterogeneity. The other
is conservative under Gaussian heterogeneity. The methods are applied to occupational disease data from
Finland.
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1. INTRODUCTION

Suppose there are N individuals in a closed population. The problem is to estimate the
unknown N using dual registration. We sample twice with #; individuals captured at the jth
time, j = 1, 2. Let m be the number captured twice. Define indicator variables u; and m;
fori = 1, ..., N such that u; = 1, if and only if individual i is captured at the jth time
only, j = 1, 2; and m; = 1, if and only if individual i is captured twice. Otherwise u;; and m;
are zero. Define n; = u; + m; as the indicator of capture at the jth time, j = 1, 2. Let
M; = uy; + uy; + m;indicate capture at least once. Define the individual capture probabil-
itiesas p;; = E[n;],j = 1, 2; and p;y; = E[m;]. Assume that the probabilities are strictly
between zero and one. The fact that the probabilities are allowed to vary by individual indicates
that we may have population heterogeneity in the capture probabilities. We complete the defini-
tion of the dual registration (or capture-recapture) model by assuming that the captures are
independent for each individual, or pi»; = p1:P2» and that the multinomial vectors

(uygy Uy My 1 — M) ~ Mult(1; p1iqai DP2iG1is PriP2is 1 — @,

whereq; = 1 — pjj = 1, 2,and ¢; = py; + P — PP are independent fori = 1, ..., N.

It is well-known that when capture probabilities do not vary by individual, or p;; = p;,
j = 1, 2, the maximum likelihood estimator of N is N = nyn,/m (or more precisely, the
largest integer short of this value; ¢f., Feller 1968, p. 46). This classical estimator can be severely
biased under population heterogeneity (Seber 1982, p. 565; Burnham and Overton 1979,
Table 4, pp. 931-932). As shown, e.g., in Example 1 below, under homogeneous capture
probabilities the asymptotic variance of Nis Var (N) = Ng1q2/ (p1p2), whereg; = 1 — pj,
Jj =1, 2. Then Var(N) can be estimated by V] = nlnzuluz/m3 (Sekar and Deming 1949,
pp. 114-115).
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The purpose of this note is to investigate the adequacy of the variance estimator W, and
compare the bias of Vj to the bias of N. One motive for investigating V] is that it has not been
previously known whether ¥ is adequate in the case in which there is population hetero-
geneity, but N is, nevertheless, consistent. This turns out to be the case. Similarly, it has not
been clear when V] gives overestimates and thus can lead to valid confidence intervals, despite
the bias of N. This turns out to be possible for one-sided intervals in special circumstances.

In Section 2 we calculate the asymptotic variance of N, as N — oo, and derive a conservative
estimator ¥, for this variance under arbitrary heterogeneity. In other words, ¥, overestimates
the true asymptotic variance. One might hope that an overestimate of variance could compen-
sate for the typically negative bias of N and still yield valid confidence intervals. Unfortunately,
this appears possible only when the bias of N is small, or when N is small. In Section 3 the
adequacy of V] is studied under Gaussian heterogeneity and an estimator V; is derived, which
is conservative under this restricted type of heterogeneity. Gaussianity per se is not required
for the arguments, only that the moments of the pairs (p;, p,;) agree with those of a bivariate
Gaussian distribution. This setup permits the ready examination of the effect of correlation
between p,;’s and p,;’s on variance estimation, because correlation is expressible in terms of
just one parameter, the ordinary moment correlation coefficient. In Section 4 we compare the
bias in variance estimates to the bias of N using empirical data relating to the registration of
occupational diseases in Finland.

2. BIAS AND VARIANCE UNDER HETEROGENEITY

Define p;y as the average probability of capture at the jth time, j = 1, 2; and let Di1an be
the average of the products py;py;, i = 1, ..., N. Then, Cy = Piony — DinDon is the
covariance of the pairs (py;, po;). Assume that the limits Pin = PjJ = 1, 2; pray — D12, and
Cy — Cexist. Then we have that N/N — p,p»/Py5, SON/N — 1 — — C/pjp, as N — co.
This is the asymptotic bias of the classical estimator under population heterogeneity. Interestingly,
it only depends on the first two moments of the distribution of the pairs (py;, py;). As is
well-known (Sekar and Deming 1949, pp. 105-106; Seber 1982, p. 86), when the covariance
iszero (C = 0), then the classical estimator is consistent; if C > 0, N gives an underestimate;
andif C < 0, it gives an overestimate. As noted above the adequacy of ¥;, when the Dj;’s vary
from one individual to the next but still C = 0, is of particular interest.

We shall now calculate the asymptotic variance of the classical estimator under our general
heterogeneity model. Note that the finite variance does not exist, because there is a positive
probability that m = 0. Therefore, ‘‘asymptotic variance’’ properly refers here to the variance
of the limiting distribution rather than to limit of the variances, as N — oo,

Lemma 1. The asymptotic variance of N is

Var(N) = N{ - - - 225 - 25,

where §; = S;/Nforj = 1, ..., 5, with
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N N N
S = E P%i, S, = E P%i, Sy = E p%ip%i’
i=1 i=1

i=1

N N
Sy = E p%iPZi’ Ss = E plip%i-
i=1 i=1

The proof is sketched in the Appendix. We note that unlike the bias of Nthat depends on the
first two moments of the pairs (py;, p,;) only, Var (N) depends on moments up to fourth
order. In special cases, such as the ones considered in Example 2 and Proposition 2, a simpler
representation is possible.

Example 1. Suppose there is no heterogeneity in the probabilities, or p; = p;,j = 1, 2. Then
pi=ppJj=12pp=pps S = P,z,j = 1,2; §; = p}p3, 54 = pips, and 85 = pp3.
Hence, the asymptotic variance is Var(N) = N(1 — p; — p2 + p1p2)/ (p1p2) = Ngwqy/
(p1p,). Consistent estimators for Np;p, and Np; are m and n;, j = 1, 2. In other words,
Npj/n; = 1, j =1,2,and Np,p,/m — 1, as N — co. This gives us ¥; as an estimator for
Var (N).

Example 2. Suppose that the pairs (py;, p2), i =1, ..., N, are independent in the sense that
the distribution of py;’s is the same for each distinct value of the p,’s. Then, 5y, = P1Da,
S, = 8,5, 84 = p»S;, Ss = P, S,. Substituting into the Lemma we get

. 1 5,5
Var(N) =N<T—_———‘ -
bip, D2 P11 P

419
=N _“_1_2 - CV(Pli)ZCV(pzi)z),
1P2

where cv(p;) = (Sj - ﬁ}) /D;, is the coefficient of variation of the p;;’s,j = 1, 2. Obviously,
Var(N) < Ng;3,/(P,D,)- A comparison with Example 1 shows that V; is a conservative
estimator of Var (N) (i.e., V; is asymptotically too large), when py;’s are independent of py;’s.
Another way of saying this is that, given the means p;, j = 1, 2, the largest value of the
variance is obtained at homogeneity. This is analogous to the variance of the number of suc-
cesses in Bernoulli trials with variable probabilities of success, cf. Feller 1968, pp. 230-231.
A comparison with Example 1 shows that V] is a conservative estimator of Var(N) (i.e.,
is asymptotically too large), when the pairs (py; py) are independent. Note that the independ-
ence condition implies that C = 0.

When the probabilities are not independent, the classical variance estimator is not guaranteed
to be conservative. A conservative estimator exists, however. It is obtained by majorizing
Var (N) by a quantity that can be estimated in terms of the observable variables. We prove
in the Appendix the following general proposition.

Proposition 1. A conservative estimator of Var(N) is

V, = (n3n3 + nmu, + nimuy)/m?,

whereu; = nj — m,j =1, 2.
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3. GAUSSIAN HETEROGENEITY

We shall now turn to a special case in which the sample moments of the pairs (py;, Py),
i =1, ..., N, agree with those of a bivariate normal, or Gaussian, distribution. This will
permit a much sharper specification of a conservative variance estimator than the one obtained
in the general case above. Assume that
X 131 viui PVIVa i 2
~N , ,
X5 B2 pviVauipy  vipd

where| p| < 1,and 0 < p; < 1,j = 1, 2. Note that v;’s can be interpreted as the coeffi-
cients of variation of the distributions of Dji’s. Write §; = S;/Nforj =1, ..., 5, as before.
Then substitute the moments of the bivariate normal distribution into Lemma 1 as follows,
b = E[X;] = p,J=1,2;
Sj=EXA = uj(1 + ),/ = 1,2

P2 = E[X1X,] = ppa(1 + pvyvy);

Sy = ELXIX3] = piud(1 + vE + v} + dovivy + (20 + 1)vhvd);

8 = E[X1X5] = uluy(1 + 20vv, + v3);

Ss = E[X1X3] = mu3(1 + 20vv, + v}).

Straightforward, but slightly tedious calculations prove then the following proposition (details
omitted).

Proposition 2. With the above assumptions
Var(N) = A4, + RN,
where
A; = N/(1 + pvivy) 3
Ay = [1 = (1 + p2) (1 + pvivy + (1 + pviv2) 21/ [ pa (1 + pvyvy) 25
R = (2ovyv; + 3p™vi v — p2vivi — p2vivi — vh3)/ (1 + pvpiy) .

We can evaluate the classical variance estimator V| = n;n,u,u,/m? using this result. Note
first that {mny/m}/A; — 1, as N — oo, Similarly, {uyuy/m®} /A, — 1. This proves the
following corollary to Proposition 2: (¥; — Var(N))/N — —R, as N — . For example,
if p = 0, then —R = v}, so that V1 is seen to overestimate the asymptotic variance. This
is in accordance with Example 2.
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How reasonable is the assumption of Gaussian moments? Certainly the capture probabilities
cannot have strictly Gaussian distributions, because the Gaussian distribution always puts some
probability mass outside the unit interval. On the other hand, suppose we generate the p;;’s
by taking logit(p;;) = a; + b;Y};, where the pairs (Yy;,Yy;) are a sample from a bivariate
normal distribution with mean zero, unit variances, and correlation p. If we have the relations
a; = logit(u;),/j = 1, 2,and b; = v;(1 + ,u,j)z, then the assumption of Gaussian moments
is approximately true. In fact, even the distribution of the pairs (py;, py;) is in that case
approximately bivariate Gaussian.

Let us consider the adequacy of ¥; further, under the Gaussian moments. The fact that pro-
babilities are constrained to be between 0 and 1 means that u;’s are between zero and one.
Moreover, to be sure that most of the probability mass is in the unit square, let us assume that
O<v=Wh,j=12 If u;’s are close to one, a much smaller upper bound would be needed.
Assume now that p < 0. Then, one can show that

—R = (o3 + pWE) /(1 + pvn)* > 0,

so that ¥, overestimates Var (N) for p < 0 also. Note that by continuity ¥; must overestimate
Var (N) for some positive values of p, as well.

One can show that R = R(p) is an increasing function of p for at least p > 0. In the limit
we have

—R(p) — (— 2viv, — ZV%V% + v‘l‘v% + v%v%)/(l + v1v2)4,

asp — 1. WhenO < v, < %,j=12, the smallest value of the above limit occurs at
v; = v, = ¥. The minimum valueis —152/625 > — 1/4. Consequently, for o > 0, Vj can
either underestimate or overestimate Var (N).

The practical implications of the above results are as follows. First, if p < 0, then Nis either
consistent or it overrestimates N and V] gives an overestimate of the variance, so we can
calculate a conservative upper confidence limit for N. Whenp > 0, N gives an underestimate
of N. If, in addition, p is small, then ¥; gives an overestimate, and we can get a conservative
lower confidence limit for N. Obviously, these are rather special circumstances that one would
not expect to be of wide practical utility.

Under the present model the asymptotic bias of ¥ is > —N/4 for all values of p. We can
derive a conservative variance estimator by noting that in the Gaussian case the asymptotic
relative bias of N is —pv;vo/ (1 + pv;¥,) = —1/5. Hence, asymptotically 5N/4 = N. A
conservative estimator of Var(XN) is, for example, V3 = V| + 5N/16. This can be much
smaller than ¥, indicating that the Gaussian assumption is a very powerful one.

4. AN APPLICATION TO OCCUPATIONAL DISEASE
REGISTRATION DATA

To get an idea of how large the biases may be in practice, let us look at occupational disease
data from Finland as an example. The Finnish Register of Occupational Diseases has been in
operation since 1964. It is kept by the Institute of Occupational Health in Helsinki. Since 1975
the number of new cases reported to the Register has varied from about 4,000 to over 7,000
annually (0.2 - 0.4 % of the employed population). Noise-induced hearing loss, diseases caused
by repetitive of monotonous work (epicondylitis, bursitis, tendinivaginitis), and skin diseases
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are the major diagnostic groups (¢f. Vaaranen ef al. 1985). The Register can be viewed as a
dual registration system, because each case of disease should, under existing regulations, be
reported to the Register both from the appropriate insurance company and the examining
physician.

It is likely that the probability of reporting a case depends on diagnosis, for example. Indeed,
based on data from the year 1981 we get the following statistics. Reports from the insurance
companies, n; = 3,769; reports from the physicians, n, = 3,053; and cases reported from
both sources, m = 1,591. Thus the usual dual registration estimate is N = 7,232 with

Vi*= 97, V;*= 222, and V3*= 108.0. The closeness of ¥; to ¥, is striking. Stratifying the data
mto four categories by diagnosis (the three diagnostic groups mentioned above, and the
remaining ‘‘other’’ category) yields the following estimates. Noise-induced hearing loss:
N = 2,230, V{*= 33.4, V{*= 47.2, and V{*= 42.6; diseases caused by repetitive or monot-
onous work: N = 3,572, V{*= 201.4, V5*= 303.8, and Vi*= 204.2; skin diseases: N = 1,441,
V= 30.9, V"= 86.2, and Vy*= 37.5; other diseases N = 1,015, V'/’ 32.7, V3= 79.1, and

V’— 37.2. Adding the results yields the following estimates for the total number of diseases:

= 8,258, V{*= 209.0, Vy*= 340.3, and V{*= 215.2. We see that diseases caused by
repetitive or monotonous work are underreported to a particularly great extent.

The analysis was extended further by stratifying the data by diagnosis (4 categories),
insurance company (11 categories), and main groups of industry (7 categories). A priori, these
factors could be thought to have an influence on reporting probabilities. However, the stratifica-
tion did not alter the point estimate materially. It did increase the estimated standard devia-
tions by over a third, apparently because some of the strata became very small. We conclude
that the bias in the point estimator caused by diagnosis is the dominant source of error in the
classical estimator in this application.

The same data were further analyzed using a logistic regression technique that allows us
to take into account observable population heterogeneity due to both discrete and continuous
explanatory variables. In this application age was shown to have an effect on reporting pro-
babilities within the diagnostic groups for one source of information, but not for the other.
Therefore, the point estimates remained unchanged and the conclusion regarding the role of
diagnosis could not be refuted (Alho 1990).

5. DISCUSSION

Our theoretical results indicate that the usual variance estimator ¥ is conservative when
the two registration systems are negatively correlated or independent. By continuity the
estimator may be conservative also when the correlation is positive but small. Under high
positive correlation V] gives too low values. We introduced an alternative estimator V5, which
is conservative under arbitrary population heterogeneity. However, it appears to be unduly
conservative in view of the numerical comparisons with ¥;, which is guaranteed to be conser-
vative under Gaussian heterogeneity. The closeness of ¥; to V; suggests that, in practice, 14
may be fairly robust against population heterogeneity.

Unfortunately, even the use of the conservative estimator ¥ would not have been sufficient
to cover the bias in the classical point estimator in our empirical example. Perhaps this was
to be expected, since the bias of N and the degree of overestimation provided by V; are both
of order N. Hence, the use of ¥, inflates the width of a confidence interval by a factor of order
N’ only. Therefore, V3 can compensate for the bias of N, if the bias is small, or if N itself
is small. Hence, it seems that the successfull application of the dual registration method requires
that either we have roughly uncorrelated registration systems, or that the heterogeneity is
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observable. In the latter case we may use stratification as suggested already by Sekar and Deming
(1949), or logistic regression modeling as suggested by Huggins (1989) and Alho (1990), to adjust
for the bias of the classical estimator of population size.
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APPENDIX

Proof of Lemma 1. Apply a linear Taylor-series development to N = nyny/m at E[ny]
E[ny]/E[m] = Np\P2/Pr2, OF

~ Np\p b _ b _ 01D _
NPl P Npy o+ B (ny - Npy) — P22 (m - Npp).
D12 P12 P12 pn2

Hence, we have

5 5.\ 2 5.\ 2 5\ 2 5 5.\ 2
E[(N _ .@_1_1)_2) ]= (ﬂz) Var(n;) + (ﬂ) Var(m,) + <p—_1-2‘32) Var (m)
P2 D12 D2 P2

= =2 =2
- p___ipz Cov(ny,m) — 2p———f§72
P P2

Cov (ny,m).

Under our independence assumptions Var(n;) = Np; — S;j = 1, 2; Var(m) = Npp — Ss,
Cov(ny, m) = — S, + NPy, and Cov(ny, m) = — Ss + Nppa. Substituting these into the
mean squared error gives the result.

Proof of Proposition 1. We ignore the negative term containing S; in Lemma 1. Since
0 < p;; < 1, wehave S < Npp,, and S, < S;. Therefore,

25 =2 5 =2 =2 A _ A 52
1P2 4V N p2 S, + (P1 _ Plz) D32 Np
4%

Similarly,

2525 =2 =2 = & =2
PP g < P1P2 Ny s Pl + <Pz P12> i s
Y 5¥) Pi2 P12

Substituting these bounds to the expression of Lemma 1 we get

2.2 I ) .
bz o (P Plz)PzN + (P> _21712)P1N.

Var(N) < —
2 P12 D12

Estimating Np; by n;, j = 1, 2; and Npy, by m we get the result.
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