Test exact pour vérifier la présence d’un mouvement saisonnier stable et applications

BRAJENDRA C. SUTRADHAR, ESTELA BEE DAGUM
et BINYAM SOLOMON

RÉSUMÉ
La méthode de désaisonnalisation X-11-ARMMI de même que la variante X-11 du programme Census Method II utilisent un test F d’analyse de variance ordinaire pour déterminer la présence d’un mouvement saisonnier stable. Ce test est appliqué à des séries formées de composantes saisonnières estimées et d’aléas (résidus) qui sont très susceptibles d’être autocorrélés, ce qui va à l’encontre de l’hypothèse fondamentale du test F. Les producteurs de données désaisonnalisées connaissent depuis longtemps cette lacune et se servent rarement de la valeur théorique de la statistique F comme critère pour la désaisonnalisation. Ils préfèrent utiliser des règles empiriques du genre “F égal ou supérieur à 7”. Dans cet article, nous présentons un test exact qui tient compte des résidus autocorrélés qui suivent un processus MMS (à moyennes mobiles saisonniers) du type $(0,q)(0,Q)$. Nous comparons ensuite les résultats de ce test, qui est une version modifiée du test F, avec ceux du test d’analyse de variance de la X-11-ARMMI pour un grand nombre de séries socio-économiques canadiennes.

MOTS CLÉS: Analyse de variance ordinaire; résidus autocorrélés; mouvement saisonnier.

1. INTRODUCTION
Dans l’analyse des séries économiques et sociales, on décompose normalement la série de données observées en quatre facteurs non observés: la tendance, le cycle, les variations saisonnières et les aléas.
Les séries socio-économiques sont souvent présentées sous forme désaisonnalisée de sorte qu’il soit plus facile d’analyser la tendance conjoncturelle et que l’on puisse évaluer les conditions socio-économiques courantes. Il existe plusieurs méthodes de désaisonnalisation qui permettent d’estimer la composante saisonnière d’une série mais la variante X-11 du programme Census Method II (Shiskin, Young et Musgrave 1967) et la méthode X-11-ARMMI (Dagum 1980) sont les plus utilisées. Pour déterminer la présence d’un mouvement saisonnier stable dans une série chronologique, la X-11-ARMMI et la variante X-11 utilisent toutes deux les résultats du test F appliqué habituellement dans une analyse de variance à un critère de classification pour les variations saisonnières mensuelles et les résidus. Or, les résidus étudiés dans cette analyse de variance sont souvent autocorrélés, de sorte que le seuil de signification théorique du test F peut ne pas être bon. Conscients de cette lacune, les producteurs de données désaisonnalisées ne se fondent pas sur ce seuil pour vérifier la présence d’un mouvement saisonnier stable mais appliquent plutôt une règle basée sur des connaissances empiriques (voir, par exemple, Shiskin et Plewes 1978). De fait, le test X-11-ARMMI de la présence d’un “mouvement saisonnier identifiable” suppose implicitement que le valeur F sera égale ou supérieure à 7 s’il n’existe pas de mouvement saisonnier évolutif.
Les tests de la présence d’un mouvement saisonnier stable (comme ceux visant à vérifier l’existence de variations saisonnières annuelles) peuvent être assimilés aux tests qui servent à

1 Brajendra C. Sutradhar, Département de mathématique et de statistique, Memorial University of Newfoundland, St.-Jean, Terre-Neuve, A1C 5S7; Estela Bee Dagum, Division des séries chronologiques – Recherche et analyse, Statistique Canada, Ottawa, Ontario, K1A 0T6; Binyam Solomon, Direction de l’analyse économique et sociale, Quartier général de la Défense nationale, Ottawa, Ontario, K1A 0K2.

Franzini et Harvey (1983) ont construit des tests exacts pour vérifier l’hypothèse nulle selon laquelle le mouvement saisonnier est variable, par rapport à l’hypothèse alternative selon laquelle ce mouvement est constant. Contrairement à l’approche de Franzini et Harvey, notre méthode suppose que le mouvement saisonnier est stable, probablement à différents niveaux (à cause des variations annuelles), et vérifie la présence d’un mouvement saisonnier stable significatif.

Dans la plupart des cas empiriques, un modèle d’erreur à moyennes mobiles saisonnier (SMA - seasonal moving average) du type $(0,q)(0,Q)_s$ suffit. Dans cet article, nous allons simplifier le test exact qu’ont proposé Sutradhar, MacNeill et Dagum (1991) pour les modèles de ce genre. Ce test vise à vérifier la présence d’un mouvement saisonnier stable et de variations saisonnières annuelles dans un certain nombre de séries socio-économiques.

Voici comment est structuré notre article. La section 2 sert à présenter le test exact. Dans la section 3, nous analysons les résultats de l’application du test F modifié à un ensemble de séries socio-économiques et nous comparons ces résultats aux valeurs obtenues avec la méthode X-11-ARMMI. Enfin, la section 4 renferme les conclusions.

2. TEST F MODIFIÉ

2.1 Choix du modèle

Considérons une série chronologique saisonnière stationnaire \{Z_t\}, définie par l’équation

$$Z_t = S_t + U_t,$$ \hspace{1cm} (2.1)

où Z_t est la série observée au temps t, S_t la composante saisonnière et U_t les aléas. Si la série renferme une tendance, ce qui est plus que probable, on suppose que par une technique de décomposition appropriée, on obtiendra le modèle (2.1). On peut déduire la série décomposée de la série originale en appliquant à cette dernière les différences appropriées, comme cela se fait avec les modèles ARMMI (Box et Jenkins 1970) ou comme le font depuis longtemps les organismes de statistique en se servant de la méthode X-11-ARMMI ou de la variante X-11 du programme Census Method II.

Supposons maintenant qu’il y a k périodes dans une année et kn observations dans une série chronologique de n années. Posons $Z\{ (i - 1)n + j \}$ comme la j-ième ($j = 1, \ldots, n$) observation dans la i-ième période ($i = 1, \ldots, k$), qui correspond à Z_t dans l’équation (2.1). Nous allons définir de la même manière les composantes (i,j) de S_t et de U_t, pour tous $t = 1, \ldots, kn$. Le modèle supposé pour S_t est donc (voir Sutradhar et MacNeill 1989):

$$S((i - 1)n + j) = \mu + \alpha_i + \beta_j,$$ \hspace{1cm} (2.2)

où $\sum_{i=1}^{k}\alpha_i = 0$, $\sum_{j=1}^{n}\beta_j = 0$.

Les α et les β dans l'équation (2.2) représentent respectivement le mouvement saisonnier stable et les variations saisonnières annuelles dans une série chronologique saisonnière. Ainsi, lorsqu'il s'agit de vérifier la présence d'un mouvement saisonnier stable, nous testons l'hypothèse

$$H_0: \alpha_i = 0 \quad \text{vs} \quad H_1: \alpha_i \neq 0 \quad \text{pour au moins un } i; \quad (2.3)$$

et lorsqu'il s'agit de vérifier l'existence de variations saisonnières annuelles, nous testons l'hypothèse

$$H_0: \beta_j = 0 \quad \text{vs} \quad H_1: \beta_j \neq 0 \quad \text{pour au moins un } j. \quad (2.4)$$

Par conséquent, le rejet de l'hypothèse nulle dans (2.3) et dans (2.4) signifierait que la série en question renferme un mouvement saisonnier stable significatif de même que des variations saisonnières annuelles.

Compte tenu du modèle (2.2), le modèle (2.1) peut s'écrire:

$$Z^* = X\gamma + U^*, \quad (2.5)$$

où

$$Z^* = \begin{bmatrix} Z(1), \ldots, Z(n), Z(n + 1), \ldots, Z(kn) \end{bmatrix}',$$

$$U^* = \begin{bmatrix} U(1), \ldots, U(n), U(n+1), \ldots, U(kn) \end{bmatrix}',$$

$$\gamma = [\mu, \alpha_1, \ldots, \alpha_{k-1}, \alpha_k, \beta_1, \ldots, \beta_{n-1}, \beta_n]'$$

et X est la matrice de plan appropriée $kn \times (k + n + 1)$.

2.2 Variable à tester

On peut décrire U^* dans l'équation (2.5) par un processus stationnaire autorégressif à moyennes mobiles saisonnier (SARMA – seasonal autoregressive moving average) $(p,q)(P,Q)_s$. Nous avons toutefois constaté que dans la plupart des cas empiriques, un modèle $(0,q)(0,Q)$ suffit. Désignons par Σ^* la matrice $kn \times kn$ des covariances de U^*. Naturellement, Σ^* contiendra $\theta = (\theta_1, \ldots, \theta_p)$ et $\Theta = (\Theta_1, \ldots, \Theta_Q)$, où θ et Θ sont les paramètres rattachés au processus SARMA $(0,q)(0,Q)_s$.

Dans le cas du modèle d'analyse de variance habituel, c'est-à-dire lorsque les éléments de U^* sont indépendants et identiquement distribués selon $N(0,\sigma^2)$, on teste les hypothèses nulles $\beta_j = 0$ et $\alpha_i = 0$ au moyen des statistiques F classiques F_{A1} et F_{A2} respectivement; celles-ci sont définies

$$F_{A1} = (k - 1)Q_1/Q_3, \quad \text{et} \quad F_{A2} = (n - 1)Q_2/Q_3,$$

où

$$Q_1 = k \sum_{j=1}^{n} (Z_{j} - \bar{Z}_{.})^2, \quad Q_2 = n \sum_{i=1}^{k} (Z_{i} - \bar{Z}_{.})^2,$$

et

$$Q_3 = \sum_{i=1}^{k} \sum_{j=1}^{n} (Z_{ij} - \bar{Z}_{i} - \bar{Z}_{j} + \bar{Z}_{.})^2$$
avec

\[Z_{ij} = \frac{Z_{ij}}{n}, \quad \bar{Z}_{i} = \frac{1}{k} \sum_{j=1}^{k} Z_{ij}, \quad \text{et} \quad \bar{Z} = \frac{1}{kn} \sum_{i=1}^{n} \sum_{j=1}^{k} Z_{ij}, \]

\(Z_{ij} \) étant la \(j \)-ième observation dans la \(i \)-ième période. Or, dans le cas qui nous occupe, ces statistiques ne conviennent pas pour tester les hypothèses mentionnées ci-dessus parce que l'espérance des sommes des carrés est influencée par l'interdépendance des observations. De plus, les sommes des carrés ne sont pas indépendantes les unes des autres. Lorsque \(U^* \) dans l'équation (2.5) suit un processus SARMA \((0,q)(0,Q)_x\), il est possible de montrer que

\[E(Q_1) = k \sum_{j=1}^{n} \beta_j^2 + \sigma^2(n - 1)C_1(\theta, \Theta), \]

\[E(Q_2) = n k \sum_{j=1}^{k} \alpha_j^2 + \sigma^2(k - 1)C_2(\theta, \Theta), \]

et

\[E(Q_3) = \sigma^2(k - 1)(n - 1)C_3(\theta, \Theta), \]

où, par exemple dans le cas d'un processus SARMA \((0,1)(0,1)_{12}\),

\[C_1(\theta, \Theta) = (1 + \theta_1^2)(1 + \Theta_1^2) - (\theta_1/6)(1 + \Theta_1^2)(11 - 1/n) + (2\Theta_1/n)(1 + \theta_1^2) + (\theta_1\Theta_1/6)[1 - 22/n - (n - 2)/n(n - 1)], \]

\[C_2(\theta, \Theta) = (1 + \theta_1^2)(1 + \Theta_1^2) - 2(1 - 1/n)\Theta_1(1 + \theta_1^2) + 1/6[1 + (11 - 1/n)/11]\theta_1(1 + \Theta_1^2) - (4/11)(1 - 1/n)\theta_1\Theta_1, \]

\[C_3(\theta, \Theta) = (1 + \theta_1^2)(1 + \Theta_1^2) + (2\Theta_1/n)(1 + \theta_1^2) + (\theta_1/6)(1 + \Theta_1^2)(1 - 1/11n) - (\theta_1\Theta_1/6n)[n/11 - 2(n - 2)/11(n - 1) - 2]. \]

Par conséquent, on peut tester les hypothèses nulles \(\beta_j = 0 \) et \(\alpha_j = 0 \) en se servant des statistiques \(F \) modifiées \(F_{M1} \) et \(F_{M2} \) respectivement, celles-ci étant définies

\[F_{M1} = d_1(\hat{\theta}, \hat{\Theta})F_{A1}, \quad (2.6) \]

\[F_{M2} = d_2(\hat{\theta}, \hat{\Theta})F_{A2}, \quad (2.7) \]

(voir aussi Sutradhar, MacNeill et Sahrmann 1987; Sutradhar, MacNeill et Dagum 1991), où \(d_1(\theta, \Theta) = C_3(\theta, \Theta)/C_1(\theta, \Theta), \quad d_2(\theta, \Theta) = C_3(\theta, \Theta)/C_2(\theta, \Theta) \). Ces statistiques tiennent compte de l'autocorrélation des résidus.

Notons que dans l'hypothèse où il y a indépendance, c'est-à-dire lorsque \(\theta = 0, \Theta = 0, \)
\(C_1(\cdot) = C_2 = (\cdot) = C_3(\cdot) = 1, \) ce qui va de soi. Dans ces conditions, on peut tester les hypothèses au moyen du critère \(F \) de l'analyse de variance ordinaire.
2.3 Calcul de la valeur p

Une étude de simulation (voir Sutradhar et Bartlett 1989, tableau IV, p. 1587) montre que lorsqu'il y a k groupes indépendants, la distribution F habituelle peut, dans le cas d'un processus SARMA SMA/ (0,q) (0,Q)z, servir d'approximation pour la distribution de la statistique F modifiée. En règle générale, toutefois, une telle approximation est incorrecte, surtout lorsque les k groupes sont corrélés et que n est petit.

Dans cet article, nous nous servons de l'approximation bien connue de Satterthwaite (1946) (voir Sutradhar, MacNeill et Dagum 1991) pour calculer les valeurs p, notamment \(P_r(F_{M1} \geq f_{M1}) \), où \(f_{M1} \) est la valeur empirique de \(F_{M1} \). À cette fin, nous calculons tout d'abord les valeurs propres \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_r > 0 = \lambda_{r+1} = \ldots = \lambda_s > \lambda_{s+1} \geq \ldots \geq \lambda_n \) de

\[
\sum *^{1/2} \left[d_1(\theta, \Theta) D_1 - f_{M1}(I_{kn} - D_2) \right] \sum *^{1/2}, \tag{2.8}
\]

où \(d_1(\cdot) \) est défini dans l'équation (2.6), \(D_1 = R(RR')^{-1}R' \), où \(R = C(X'X)^{-1}X' \), et \(D_2 = X(X'X)^{-1}X' \), C. Dans l'expression ci-dessus, C est une matrice appropriée que l'on obtient en exprimant l'hypothèse nulle \(H_0 : \beta_j = 0 \) sous la forme \(C \gamma = 0 \), où \(\gamma \) est défini en (2.5). Dans l'équation (2.8), \(I_{kn} \) est la matrice unité \(kn \times kn \). L'approximation de Satterthwaite donne donc le résultat suivant:

\[
P_r(F_{M1} \geq f_{M1}) = P_r(F_{a,b} \geq bd/ac), \tag{2.9}
\]

où \(F_{a,b} \) désigne le ratio F habituel avec les degrés de liberté a et b, où

\[
a = \left(\sum_{j=1}^{r} \lambda_j \right)^2 \Big/ \sum_{j=1}^{r} \lambda_j^2, \quad b = \left(\sum_{j=s+1}^{n} \lambda_j \right)^2 \Big/ \sum_{j=s+1}^{n} \lambda_j^2.
\]

Dans l'équation (2.9),

\[
c = \sum_{j=1}^{r} \lambda_j^2 \Big/ \sum_{j=1}^{r} \lambda_j, \quad d = \sum_{j=s+1}^{n} \lambda_j^2 \Big/ \sum_{j=s+1}^{n} |\lambda_j|.
\]

De même, on peut calculer \(P_r(F_{M2} \geq f_{M2}) \) en substituant \(d_2(\cdot) \) et \(f_{M2} \) à \(d_1(\cdot) \) et à \(f_{M1} \) respectivement dans l'équation (2.9). La construction de \(D_1 \) dépendra alors d'une matrice C différente, que l'on obtiendra en exprimant l'hypothèse nulle \(H_0 : \alpha_i = 0 \) sous la forme \(C \gamma = 0 \).

3. APPLICATIONS

3.1 Séries mensuelles

Nous avons calculé la valeur des statistiques F modifiées \(F_{M1} \) et \(F_{M2} \) (équations 2.6 et 2.7) pour 26 séries mensuelles touchant divers secteurs économiques, notamment les importations, les exportations, les prix à la consommation et la main-d'œuvre. Toutes les séries portent sur la période de janvier 1979 à décembre 1988 inclusivement.
Tableau 1
Détermination de la présence d’un mouvement saisonnier stable dans des séries mensuelles

<table>
<thead>
<tr>
<th>Séries</th>
<th>Valeurs estimées des paramètres</th>
<th>Test F^a</th>
<th>Test F modifié F_{M2} (valeur p en %)</th>
<th>Décision finale c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Importations</td>
<td>θ_1</td>
<td>Θ_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Fourrages et provendes</td>
<td>-0.09*</td>
<td>-0.01</td>
<td>3.68</td>
<td>3.43(0.06)</td>
</tr>
<tr>
<td>2. Houille et produits connexes</td>
<td>0.02</td>
<td>-0.01</td>
<td>64.40</td>
<td>58.76(0.00)</td>
</tr>
<tr>
<td>3. Produits végétaux bruts</td>
<td>0.02</td>
<td>-0.07*</td>
<td>3.48</td>
<td>2.94(0.27)</td>
</tr>
<tr>
<td>4. Laine et fibres artificielles</td>
<td>0.02</td>
<td>0.29*</td>
<td>10.98</td>
<td>20.63(0.00)</td>
</tr>
<tr>
<td>5. Métaux précieux</td>
<td>0.27*</td>
<td>0.01</td>
<td>1.25</td>
<td>1.20(31.10)</td>
</tr>
<tr>
<td>6. Huiles et matières grasses</td>
<td>0.41*</td>
<td>0.01</td>
<td>8.59</td>
<td>8.22(0.00)</td>
</tr>
<tr>
<td>7. Minéraux non métalliques</td>
<td>0.04</td>
<td>0.02</td>
<td>16.50</td>
<td>16.68(0.00)</td>
</tr>
<tr>
<td>8. Moteurs d’avions</td>
<td>0.32*</td>
<td>0.00</td>
<td>2.53b</td>
<td>2.36(1.79)</td>
</tr>
<tr>
<td>9. Autres matériel de transport</td>
<td>0.19*</td>
<td>-0.18*</td>
<td>3.48b</td>
<td>2.43(1.31)</td>
</tr>
<tr>
<td>Exportations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Blé</td>
<td>0.04</td>
<td>-0.03</td>
<td>1.89</td>
<td>1.71(8.71)</td>
</tr>
<tr>
<td>11. Amiante</td>
<td>0.13*</td>
<td>-0.03</td>
<td>6.83</td>
<td>6.15(0.00)</td>
</tr>
<tr>
<td>12. Pâtes de bois</td>
<td>-0.27</td>
<td>0.20*</td>
<td>6.45</td>
<td>9.61(0.00)</td>
</tr>
<tr>
<td>13. Demi-produits en matières textiles</td>
<td>0.52*</td>
<td>0.13*</td>
<td>12.05</td>
<td>15.06(0.00)</td>
</tr>
<tr>
<td>14. Autres matières travaillées, non comestibles</td>
<td>0.04</td>
<td>0.11*</td>
<td>5.03</td>
<td>6.19(0.00)</td>
</tr>
<tr>
<td>15. Téléviseurs, équipement de télémédication</td>
<td>0.12*</td>
<td>0.01</td>
<td>9.26</td>
<td>8.99(0.00)</td>
</tr>
<tr>
<td>16. Voitures particulières</td>
<td>-0.30*</td>
<td>-0.14*</td>
<td>24.50</td>
<td>18.52(0.00)</td>
</tr>
<tr>
<td>IPC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Oeufs</td>
<td>-0.04</td>
<td>-0.01</td>
<td>6.90</td>
<td>6.50(0.00)</td>
</tr>
<tr>
<td>18. Pâtes</td>
<td>-0.05*</td>
<td>-0.04</td>
<td>3.69</td>
<td>3.24(0.10)</td>
</tr>
<tr>
<td>19. Oignons</td>
<td>-0.42*</td>
<td>-0.03</td>
<td>26.90</td>
<td>23.49(0.00)</td>
</tr>
<tr>
<td>20. Logement</td>
<td>0.11*</td>
<td>-0.34*</td>
<td>19.02</td>
<td>9.28(0.00)</td>
</tr>
<tr>
<td>21. Habillement</td>
<td>0.03</td>
<td>-0.42*</td>
<td>47.42</td>
<td>24.30(0.00)</td>
</tr>
<tr>
<td>22. Transport</td>
<td>-0.09*</td>
<td>-0.02</td>
<td>4.21</td>
<td>3.74(0.02)</td>
</tr>
<tr>
<td>MAIN-D’OEUVRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. Personnes occupées (25-34), Saskatchewan</td>
<td>-0.19*</td>
<td>-0.11*</td>
<td>67.40</td>
<td>52.35(0.00)</td>
</tr>
<tr>
<td>24. Personnes inactives, Saskatchewan</td>
<td>0.12*</td>
<td>-0.36*</td>
<td>22.98</td>
<td>12.69(0.00)</td>
</tr>
<tr>
<td>25. Personnes en chômage (25-44), Ontario</td>
<td>0.21*</td>
<td>0.07*</td>
<td>31.4</td>
<td>34.23(0.00)</td>
</tr>
<tr>
<td>26. Personnes en chômage (20-24), Ontario</td>
<td>-0.02</td>
<td>0.19*</td>
<td>24.27</td>
<td>34.78(0.00)</td>
</tr>
</tbody>
</table>

a La valeur critique est $F(11,99; 0.01) = 2.47$.
b Résultat contradictoire à celui du test F modifié.
c O (Oui) – mouvement saisonnier stable significatif
N (Non) – absence de mouvement saisonnier stable.
* Valeur significative à un seuil de 5%.
Comme le test F modifié est inefficace lorsqu'il existe un mouvement saisonnier évolutif (à l'exception des variations saisonnières annuelles), nous nous sommes assurés à l'aide de tests préliminaires tirés de la X-11-ARMMI que les séries étudiées ne renfermaient aucun mouvement saisonnier évolutif. (Nous avons aussi examiné la représentation graphique des rapports "composante saisonnière-composante irrégulière").

La méthode X-11-ARMMI a servi à la décomposition des séries Z_t : $t = 1, \ldots, 120$. Des tests de diagnostic montrent que la composante d'erreur U_t (voir équation 2.1) suit un processus SARMA $(0,1)(0,1)_{12}$ pour chacune des séries. Les estimations $\hat{\theta}_1$ et $\hat{\Theta}_1$ entrent dans le calcul des statistiques F modifiées F_{M1} et F_{M2}.

En ce qui a trait au test visant à vérifier la présence de variations saisonnières annuelles (test F modifié), nous avons constaté que l'approximation de Satterthwaite et le test F d'analyse de variance ordinaire donnaient, en règle générale, des valeurs p différentes. Dans les deux cas toutefois, ces valeurs étaient très élevées pour chacune des séries, indiquant par le fait même l'absence d'un mouvement saisonnier évolutif sous forme de variations annuelles.

Pour ce qui a trait au test de la présence d'un mouvement saisonnier stable, nous avons calculé, pour les 26 séries mensuelles, les valeurs p de la statistique F modifiée F_{M2} (équ. 2.7) au moyen de l'approximation de Satterthwaite et avons comparé ces valeurs à celles obtenues à l'aide du test F de la X-11-ARMMI (qui est l'équivalent du test F de l'analyse de variance ordinaire). Les résultats pertinents figurent dans le tableau 1.

D'après les valeurs p de la statistique F modifiée, trois des neuf séries sur les importations ne renferment pas de mouvement saisonnier stable significatif à un seuil de 1% (valeur critique de $F(11,99; 0,01) = 2,47$). Parmi les sept séries sur les exportations, une seule – Blé – semble ne pas présenter de mouvement saisonnier. Quant aux séries sur l'IPC, les six affichent un mouvement saisonnier stable; il en va de même pour les quatre séries sur la main-d'œuvre.

Le test F de la X-11-ARMMI donne des résultats semblables à ceux du test F modifié (rejet ou acceptation de l'hypothèse nulle) pour un grand nombre de séries. Il semble que pour la plupart des séries mensuelles, suivant une structure d'erreur SARMA $(0,1)(0,1)_{12}$, le test F de la X-11-ARMMI (ou, si l'on veut, le test F de l'analyse de variance ordinaire) est plus sensible aux valeurs négatives élevées de Θ_1, c.-à-d. qu'il donne des résultats sensiblement différents de ceux du test F modifié lorsqu'il existe une autocorrélation saisonnière entre les résidus. Nous pouvons généraliser cette observation en examinant les valeurs de $C_1(\theta, \Theta)/C_2(\theta, \Theta)$. En vérifiant dans quelles circonstances ce rapport prend une valeur supérieure à θ_1 ou une valeur inférieure à 1, on remarque que le sens de l'inégalité dépend du signe de θ_1 et que la grandeur du rapport dépend de la valeur de Θ_1. Dans deux cas seulement, soit la série sur les importations de moteurs d'avions et celle sur les importations de matériel de transport, le test F ordinaire et le test F modifié aboutissent à des résultats contradictoires. En revanche, si nous appliquons la règle empirique du $F \geq 7$ pour justifier la désaisonnalisation, le test F modifié donnerait des résultats contradictoires dans huit cas sur douze. Nous avons donc désaisonnalisé les huit séries en question à l'aide de la méthode X-11-ARMMI et avons constaté que la qualité de la correction était bonne dans six cas sur huit. Toutes les séries ont été soumises au modèle d'extrapolation ARMMI qui avait été choisi automatiquement pour le programme, six des huit séries traitées ont satisfait aux critères d'acceptation de la X-11-ARMMI, et les quatre séries pour lesquelles la valeur de F_{M2} était relativement petite, c'est-à-dire de 3,24 à 3,74, étaient nettement influencées par les variations des jours ouvrables. Dans deux cas seulement, soit la série sur les importations de fourrages et de provendes et celle sur les importations de produits végétaux bruts, nous avons constaté que les valeurs désaisonnalisées ne pouvaient être jugées fiables.

3.2 Séries trimestrielles

Nous avons appliqué la méthode X-11-ARMMI à quatre séries trimestrielles du Système de comptabilité nationale afin d'obtenir les valeurs de la série décomposée $(x_t, t = 1, \ldots, 40)$. Nous avons pu ainsi constater que la composante d'erreur U_t suit un modèle $(0,1)(0,1)_4$ pour...
Tableau 2

<table>
<thead>
<tr>
<th>Séries</th>
<th>Valeur estimées des paramètres</th>
<th>Test F^a X-11-ARMMI</th>
<th>Test F modifié F_{M2} (valeur p en %)</th>
<th>Décision finalec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Dépôts dans les autres institutions</td>
<td>0.53^*</td>
<td>0.11^*</td>
<td>9.03</td>
<td>$9.67(0.04)$</td>
</tr>
<tr>
<td>2. Investissement financier net</td>
<td>0.77^*</td>
<td>-0.37^*</td>
<td>4.86^b</td>
<td>$2.56(8.16)$</td>
</tr>
<tr>
<td>3. Petites hypothèques</td>
<td>0.17^*</td>
<td>-0.01</td>
<td>6.65</td>
<td>$4.88(1.02)$</td>
</tr>
<tr>
<td>4. Créances d'entreprises privées</td>
<td>0.77^*</td>
<td>-0.31^*</td>
<td>7.88^b</td>
<td>$3.58(3.20)$</td>
</tr>
</tbody>
</table>

a La valeur critique est $F(3,27; 0.01) = 4.51$.

b Résultat contradictoire à celui du test F modifié.

c O (Oui) – mouvement saisonnier stable significatif.

N (Non) – absence de mouvement saisonnier stable.

* Valeur significative à un seuil de 5%.

les quatre séries. Le test F modifié s'exécute à peu près de la même manière que pour les séries mensuelles, mais comme la matrice des covariances Σ^* est différente, il a fallu modifier en conséquence les formules de $C_1(\cdot)$, $C_2(\cdot)$, et $C_3(\cdot)$ dans les équations (2.6) et (2.7).

Comme dans le cas des séries mensuelles, nous avons constaté que les valeurs p qui servent à tester la présence de variations annuelles (test F_{M1} modifié) étaient très élevées, ce qui nous a amenés à exclure la possibilité d'un mouvement saisonnier évolutif sous forme de variations annuelles.

Quant au test de la présence d'un mouvement saisonnier stable dans chacune des quatre séries, nous donnons les résultats du test F_{M2} modifié et du test F de la X-11-ARMMI dans le tableau 2. La valeur p pour deux de ces séries, notamment “Dépôts dans les autres institutions” et “Petites hypothèques”, n’est pas significative et se compare à celles obtenues par la X-11-ARMMI. Nous devons en conclure que ces deux séries renferment un mouvement saisonnier stable significatif. Pour ce qui est des deux autres séries trimestrielles, le test F modifié et le test F de la X-11-ARMMI donnent des résultats contradictoires. Le premier, contrairement au second, produit des valeurs p significatives pour les deux séries. En conclusion, les séries “Investissement financier net” et “Créances d’entreprises privées” ne devraient pas être désaisonnalisées.

4. CONCLUSIONS

Dans cet article, nous avons proposé un test exact pour vérifier la présence d'un mouvement saisonnier stable et de variations saisonnières annuelles dans une série. Inspiré du test F modifié de Sutradhar, MacNeill et Sahrmann (1987), le nouveau test tient compte de l'autocorrélation des résidus dans les rapports “composante saisonnière-composante irrégulière” de la méthode X-11-ARMMI. On suppose que les résidus suivent un processus à moyennes mobiles saisonnier (MMS) simple $(0, q)(0, Q)_S$. Nous avons appliqué ce test à des séries trimestrielles tirées du Système de comptabilité nationale ainsi qu’à un ensemble de séries mensuelles portant sur les importations, les exportations, les prix à la consommation et la main-d’œuvre. Nous avons observé que les résidus de la méthode X-11-ARMMI suivent un modèle à moyennes
mobiles saisonnier (MMS) dans lequel ou $\hat{\theta}$ ou $\hat{\Theta}$ les deux sont significatifs. Le test F exact donne des résultats très différents de ceux du test F de la X-11-ARMMI (ou de la variante X-11) lorsque l'autocorrélation des résidus est saisonnière, c.-à-d. lorsque s'écarte de zéro de façon significative.

En ce qui a trait aux séries mensuelles analysées, le test F ordinaire et le test F modifié aboutissent à des résultats contradictoires dans deux cas seulement sur vingt-six. En revanche, si nous appliquions la règle empirique du $F \geq 7$ pour justifier la désaisonnalisation, le test F modifié produirait des résultats contradictoires dans huit cas sur douze.

En examinant les valeurs désaisonnalisées des huit séries en question, nous avons constaté que six d'entre elles pouvaient être désaisonnalisées convenablement à l'aide de la méthode X-11-ARMMI.

Pour ce qui est des séries trimestrielles, le test F modifié indique que deux des quatre séries analysées ne renferment pas de mouvement saisonnier stable. Par ailleurs, dans un cas, le test F de la X-11-ARMMI produit une valeur supérieure à 7 alors que le test F modifié entraîne l'acceptation de l'hypothèse nulle.

Nous avons supposé dans cet article que le seul type de mouvement saisonnier évolutif qui pouvait être présent dans les séries était des variations annuelles. Le test que nous venons de décrire n'est pas conçu pour déceler d'autres types de mouvement saisonnier évolutif. Il y a donc lieu de poursuivre la recherche sur ce plan.

REMERCIEMENTS

Les auteurs tiennent à remercier l'arbitre anonyme qui a exprimé de précieux commentaires sur une version antérieure du document.

BIBLIOGRAPHIE

