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A Theory of Quota Surveys
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ABSTRACT

Simple or marginal quota surveys are analyzed using two methods: (1) behaviour modelling (super-
population model) and prediction estimation, and (2) sample modelling (simple restricted random
sampling) and estimation derived from the sample distribution. In both cases the limitations of the theory
used to establish the variance formulas and estimates when measuring totals are described. An extension
of the quota method (non-proportional quotas) is also briefly described and analyzed. In some cases,
this may provide a very significant improvement in survey precision. The advantages of the quota method
are compared with those of random sampling. The latter remains indispensable in the case of large scale
surveys within the framework of Official Statistics.
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1. INTRODUCTION

Quota sampling is the method most frequently used in France by private polling institutions.
It is easy to implement, inexpensive, and has many practical advantages. However, its disad-
vantages are also well known: likelihood of bias, no possibility of processing non-responses,
and the need for external information in order to set the quotas. In the English literature
(Cochran 1977; or Madow ef al. 1983, for example) quotas have a very bad reputation due
to the lack of a reliable theory on which statistical inference can be based. The only ‘‘defenders”
of the method (Smith 1983, in particular) base their arguments on the principles of inference
conditional upon sampling, where the sampling plan may generally be ignored.

This paper proposes a theory of quota surveys based on two types of modelling: population
behaviour modelling (which is the approach of Smith or the ideas expressed in Gourieroux 1981),
and modelling the method of sample collection, which may correspond to a more realistic idea.

In both cases, variance estimates are obtained by resorting to variations of regression
estimators.

The first section of the paper describes the quota method and the results of the survey theory
that can be subsequently useful. Parts 2 and 3 develop models for the behaviour of individuals
in a population, or of those conducting the survey, which justify the method. The last section
examines the problems raised, and attempts to demonstrate how the quota method can be used
to add to the traditional probabilistic methods, rather than compete with them.

2. A BRIEF REVIEW OF THE QUOTA METHOD AND SURVEY THEORY

2.1 Cell Quotas; Quotas on the Margins of a Contingency Table -
Some Practical Aspects of the Method

At the simplest level, the quota method resembles stratified sampling. The distribution in
the population of a discrete characteristic 4 possessed by N individuals (2 = 1to H) is known.
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The sample includes n,, individuals in category A; however, the choice of these individuals is
left up to the those conducting the survey. The sampling rate f, = n,/N, may vary from
category to category.

In practice, we prefer to control several criteria expressed as i, j, ..., h (i = 1 to I,
J =1toJ, ..., h = 1to H). Ideally, knowing the N;; _, values of the multiple-entry con-
tingency table allows the use of the previous method to define the number n;; _ , of members
in the sample depending upon the f;; _ , rates. Except in very specific cases (few criteria having
few modalities each) this method is unrealistic, because it leads to a search for individuals who
are extremely difficult to find.

Thus, it is preferable to use marginal quotas, by calibrating the sample so that its distribution
in accordance with the first criterion leads to a given n;, _, number of members, and the same
is done for the other criteria. The only constraint on these marginal values is that they must
be added to the overall sample size n. However, in practice, a single sampling rate f is adopted
for each set of quotas: m;y . = fN;y 4,0y + =Ny yandn, = fN,, pwith
the obvious notations (+ in place of an index indicates the addition of all the modalities in
the category represented by the index).

Beyond the obvious collection advantages, this technique is the one most often imposed by
the external data on which the quotas are based. These are obtained, for example, from various
sources, thus preventing any cross-correlations. Another situation arises when the quotas are
established on the basis of a large survey (a labour survey, for example): each distribution is
done in accordance with a criterion (age, socio-professional category, efc.) that may be considered
to be reliable. On the other hand, the cross-correlations are affected by a large random error,
and cannot be used to set the quotas.

In practice, the quota method is most often used to complement more traditional methods
as the last sampling technique used in a multi-stage stratified survey on a geographic basis
(region, size of the agglomerations). Each primary unit is assigned to a survey officer for whom
quotas have been set. The survey officer also receives instructions to distribute his sample in
order to make data collection as close to random as possible.

2.2 Traditional Survey Theory

We want to measure the total Y of a variable whose value ¥, for individual k is fixed, with
no randomness. Only sample s is random, and the law of probability that governs s is known,
since it is controlled by the statistician. Thus, we also know the possibility =, that each indi-
vidual will appear in s. Without any other information, the natural (unbiased) estimator to
be used is the estimator based on inflated values:

Y=Y Yim =Y, d¥ with d = 1/m.
kes s
When the =, are all equal to n/N, the sampling rate, we have:

Y=N/nEYk=N}7,

S

where 7 is the mean of Y in the sample.
This estimator has a known variance, which is a quadratic form V(Yy) on the vector of
Y, in the population:
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Var(¥) = V(Yy) = E Ye(dp — 1) + E Y, Yiddi(myy — mem),  (2.2.1)
k ]

where 1, is the probability of simultaneously having k and / in s.
Similarly, the variance of ¥ can be estimated by a quadratic form on vector ¥; of the Y
in the sample:

I7(Ys) = E Ay YY),
kles

with Ay = (1 —m)/xt if k=1
= (7l'k1 - 7rk7r,)/(7rk17rk7r,) if k# l.

Depending upon the sampling plans, these expressions take the specific forms found in the
manuals (Desabie 1965; Cochran 1977; Wolter 1985).

Any external information can improve the quality of the estimate. This is usually presented
in the form of a vector X in which each of the p components is the total of a measurable variable
in each of the possible samples. The estimate of ¥ can thus be improved by using regression
estimation:

Yreg = Y + (X — X)'B,
where B is the vector of the coefficients of the regression of the Y on the X estimated by:

B = E (e X Xi) ™! E A Xy Y.
S

s

When the constant is part of the regressors, or if it is a linear combination of the regressors
and the sample has equal probabilities, the formula is simplified as follows:

?Reg = X’B

The variance of YReg is simply expressed by introducing the residuals of the regression
E, = Y, — X{B into the population. We know that we have:

Var(Yreg) = V(Ey)

thus, we introduce in formula (2.2.1) vector Ey, of residuals Ej. At the same time, we approx-
imate an estimate of this variance by V(e,), where e, is the vector of ¢, = Y — X, +B, the
estimated residuals of the regression.

Under some sampling plans, these expressions assume particular forms. As a general rule,
¥ and V are the positive quadratic forms, and the E;, or e, quantities smaller than the Y}; the
regression estimator leads to substantial improvements over the inflated values.

A particularly important case that we will use later is one where X is a vector of the total
accounting variables (values on the basis of which the quotas are constructed). Typically, the
additional information is the vector of dimension + (J — 1) + ... + (H — 1) formed
by the quantities: Niy . 4+, Nyjy.. 4s Ny gpfori=1tol,j=1toJ — 1, and h = 1
to H — 1 (keeping only those variables that are linearly independent). Thus, the regressors
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are the indicative variables of categories i(i = 1to I ), jG=1toJ ~1),and Ak = 1to
(H — 1). Sincethe constant is a linear combination of the regressors (it is the sum of the first
I of them), the regression estimator takes the form:

Ve = Y Nwwos i+ YNy B+ o+ YN, 46 222)
i j h

where A; (for example) indicates belonging to category i.
If we are only working with a single category, the regressors are orthogonal 2 by 2 and we have:

YReg = E sz
i
where Y, is the estimator of the mean of Y in category i. Thus, i. YReg is nothing but the
post-stratified estimator.

2.3 Sampling Theories Based on Models

In this approach, we consider that the Y, are random variables governed by a super-
population model. This consists of parameters that we estimate on the basis of the sample.
We can then calculate the probability, under the estimated model, of the non-observed values
of Y, that is, Y;. The prediction estimator is the sum of the observed and predicted values and
can be obtained as follows:

YPred=E Y, + Efk
s U-s

If, for example, in an equal probabilities survey, the model is a regression Y, =
Xk - B + €, ¢, when the & values are independent, centred, and of equal variance, and when
the constant appears on the regression (or when we have a linear combination of X, « that is
constant), we have: ¥ ¥, = ¥ X/ 8; and the prediction estimator and the regression
estimator are the same.

We say that ¥ is without bias under the model when, for alls, (¥ — Y) = 0 (conditionally
upon the sample, the probability and variance under the model are expressed as & and V). For
the prediction estimator, we must only have, for all k, the natural condition &Y, = &Y, in
order for this to be true. With the model, we can also evaluate the average quadratic deviation:
&(Yprea — Y)?, since we know that the two terms Yorea and Y are random, and that Yred
depends upon sample s. The above-mentioned probability is thus conditional upon sample s.
This follows a certain probability law already discussed in the previous paragraph. The preci-
sion of this estimator can be measured by calculating:

V(Yorea) = E&(Vpreg — Y)2.

If the law of s is such that the ¥; are independent (the so-called non-informative sampling),
then this quantity equals:

E(E(Yorea — Y)?),

where the internal probability is conditional upon ¥;. If Pp,eq is equal to Yree> and we have
a condition of independence, we will have:

V( YPred) = S(Var(?ch))-
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2.4 Comments on the Two Approaches Applied to the Quota Method

a) In both cases, the process of estimation will be effective if the variable of interest is well
explained by category indicators on which the quotas are roughly based, because the regres-
sion adjustment residuals will be small.

b) In a quota survey the ‘‘sampling plan’ is not known by the statistician. Thus, he cannot
make inferences without using a model. The latter may be a population behaviour model
(‘‘model’’ approach) that requires him to assume certain responsibilities regarding the nature
of what he observes. This approach will be developed in the second part of this paper. This
may also consist of modelling the sampling plan; which means taking responsibility for the
operation of the collection process. This approach will be developed in the third section of this
paper.

In all cases, the modelling speculation must be mobilized in order to validate a kind of
inference. The question is to know whether it is easier and more plausible to model the behaviour
of the individuals surveyed, or to model the sample collection process (including the contacts
between interviewer and interviewee).

¢) In this respect, the hypothesis made in section 2.3 regarding the independence between
randomness in the population and randomness in the collection process is erucial. If sampling
is controlled by the statisticians, this guarantee can be ensured, except for the effect of non-
responses. In the case of the quota method, there are no guarantees. Let us assume, for example,
that we want to measure incomes Y, the probability  of finding & in the sample may be very
low if ¥, is large. In other words, the fact of belonging to the sample (which is 1 if K is in s,
and 0 otherwise) and the residual of the super-population model €, are negatively correlated.
This example illustrates well the main danger of the quota method, which the following theory
does not take into account.

3. QUOTA THEORY WITH A SUPER-POPULATION MODEL

3.1 Cell Quotas
There is a single cell category i = 1to I for the known values N;. The model that can be
imagined is as follows:

Yk =m; + ¢, (311)

¢, centred independently of variance o? where i is the cell to which k belongs.
The Gauss-Markov estimators of m; are the means observed in the various y; cells. Thus,
the prediction estimator is:

Yorea = E (N; — n) y; + E ny; = E Niy;. (3.1.2)
i i i
This has the form of the post-stratified estimator. Moreover:
Var (Ypreq — Y)2 = E o?N;(N; — m;)/n;. (3.1.3)
i

This quantity does not depend upon sample s, as the latter always includes (with a probability
of 1 1) n; individuals in cell i.
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E&(Yprea — Y)? can be estimated by replacing o?by its usual estimator s? = (n; — 1)}
Yies; (Y — 7;) % with s; being part of s in cell i.

These results are from Gourieroux (1981) and represent, to a certain extent, a justification
of the simple quota method.

3.2 Marginal Quotas - ‘‘Representative’’ Case

In this and the following paragraphs, we will restrict ourselves to the case of quotas overlap-
ping 2 criteria i and j. The generalization with more than 2 criteria does not pose any particular
problems, but leads to very complex notations that we prefer to avoid (see Appendix).

Thus, the situation is as follows: the values N;, and N, ; of the two universe breakdowns
are known. The sampling only allows samples of fixed size n = fN including n;, = fN;,
individuals for each i, and n, j = JN.jindividuals for each j.

We postulate an analysis of variance model in the population, formulated as follows:

If k belongs to cell (4,j):

Yk = + Bj + €. (321)

The ¢, are centred, independent, and we have Var ¢, = o7 + 'yf.

For reasons of identification of the model, we postulate that By = 0.

This is equivalent to postulating that ¥, = (o; + uy) + (8 + vjx) where u;, and vy, are
independent, and their respective variances are o? and 1-j2.

We estimate o; and §; using the ordinary leasE squares (OLS) method, because we ignore
the values of the variance elements; the &; and B; are solutions of the system:

E n;¥y = nip&; + E nthj (i=1tol
! ! (3.2.2)
1toJ—-1),

E n;yi; = ny ;B + E n;&;  (J
i i

with 7;; the mean of the ¥, over the s;; part of the sample in cell (7,/). Thus, the prediction
estimator can be written as follows:

Yorea = Y, (N — mp) (& + B) + Y nvy.
i i

Result 1: Under model (3.2.1), the prediction estimator using the OLS is Ny. We check that
it is unbiased for the model; that is, that 8(Ny — Y) = 0.

Proof: Immediately from (3.2.2), and because of the fact that the quotas are proportional to
the numbers in the population.

Result 2: We have:

60 = 1) = Wrm (1 = (L mact + T )
i i

This quantity does not depend upon the sample (as it depends only upon the quotas). Thus,
to a certain extent, this is a justification for the marginal quotas method.
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Proof: With m, = 8Y,, using the unbiased character of the estimator we have:

2
&Ny — Y)? = 8<(N/n) Y, (Yo —my) — Y, v - mz))
K U
2
= 8<(N/n) E € — E e,)
s U
= (N/m)* Y ny(o? +77) —2(N/n) Y n(a?+17) + Y Ny(of + ).
i ij ij
But
E Nj(a? + 1) = E N o + E Ny}
ij i J
= (N/n)( E n,-+a,~2 + E n+j Tj2>
i j
from which:

&(Ny — Y)?

(N*/n) (1 —f)”_1< E n(of + sz))

i

(N2/n)(1 = f) ( Y pinof + Y Paj rf)
i J
with p;. = N;y/N and p.; = N,;/N.

The estimate of the precision of E (Ny — Y) 2is derived from this. In fact, with this model,
s,zj has a probability of o? + rjz. Thus, an unbiased estimator of the precision is obtained by

(N/m)? (1 = f) Y] nysi;
ij
if all the n;; are equal to or greater than 2.
This estimator is formally identical to the one that we would use in a complete post-

stratification on cells (7,7). We can also use (V, /m)2 (1 - f) Xs ez, where e, are the estimated
residuals of the model.

3.3 What Happens if the Model is False?

3.3.1 Aninitial way of looking at the question is to put model (3.2.1) into the general model
where the mean of Y, depends upon the pair (i,j). This can be written as follows:

Yo =a; + 8; + vy + € (3.3.1.1)

with the usual hypotheses for ¢, and the terms of interaction v;; that verify the constraints of
identifiability:

E Njv; =0 and E Njv; = 0. (3.3.1.2)
J i
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Thus we have:

8(Ny — Y) = Y (Nny/n — Ny)vy, (3.3.1.3)

y

such that the estimator is biased for the model except when n;; = fN; , which has no reason
to exist.

This means that the terms of sum (3.3.1.3) may well compensate for each other, since their
signs are a priori undetermined.

On the other hand, if ‘‘good’’ sampling precautions are taken, Nnj/n — Nj;should usually
be close to 0.

It is clear, in any case, that the more suitable the additive model is (small 7ij ), and the more
the sampling plan approaches randomness, the more likely it is that bias will be reduced.

3.3.2 Another way to view the misrepresentation of the model, which has already been
described, is to no longer admit that there is independence between the randomness of the
sample and the randomness of the additive model. This means that distinct models should be
developed for the (Y, k€s) and (Y, /¢s) vectors. This approach has often been used in the
econometric literature, to which the reader is referred. It is clear that risk-taking in regards
to the data becomes enormous, and is often incompatible with objective work on the part of
the statistician.

3.4 Marginal Quotas with Unequal Rates

In the case of cell quotas, we can arbitrarily set quotas for each cell. Until now, in the case
of marginal quotas, we have only examined the case where the quotas were proportional to
the size of the population.

In many cases however, we may be tempted to over-represent certain categories. If, for
example, we want to study household assets, we may want to set the largest quotas for older
households (quotas by age group), on the one hand; and for those where the head is self-
employed (quotas by social categories), on the other.

Thus, we formally force the sample to fall within a given size n;, and n, ; (however, the
sum of n;, is always equal to the sum of n, ;).

In this case, always using the OLS as an estimation technique, we can easily find that the
total prediction estimator is:

YPred = E M+é‘i + E N+j Bjs (3.4.1)
i Jj

&; and B ; always verify estimating equations (3.2.2). It is easy to see that this estimator may
be expressed as follows:

Yprea = E (W + w@) nyy,; = E Ny
ij i
Thus, the quantities (w " + w*) n;; seem to be estimates of the size of cells (i,j), an
idea that will be largely exploited in the following sections.
On the other hand, the variance of this estimator under the model depends upon all the nyj,
and this can be demonstrated by a rather cumbersome calculation. The justification of the quota
method described above no longer works.
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4. MODELS FOR THE SAMPLING PLAN

4.1 A Model Sampling Plan

The idea is one of a simple random sampling constrained by the quotas imposed. The selec-
tion algorithm, while totally unrealistic, consists of drawing a series of simple random samples
until we find one that verifies the quotas. Thus, each sample that verifies the quotas has the
same positive probability of being drawn, the samples that do not verify the quotas have a zero
probability of being drawn.

The purpose is to model the fact that the person conducting the survey will correctly follow
the dispersion constraints on the survey units assigned to him.

4.2 Cell Quotas

This sampling model is based on an a priori stratification. Its practical advantage is that
it does not require a sampling frame where the stratification variables are present. It is
implemented rigorously in certain cases, for example, in a telephone survey based on a non-
informative random list of telephone numbers, and when surveys are carried out only until
the quotas are met.

The formulas that provide the estimators, the variances, and the precision estimates are those
given in all the manuals. They have a certain similarity with those described in section 3.1
(see Gouriboux 1981).

4.3 The Case of Marginal Quotas: General Estimators

The sampling model is that of simple random sampling constrained by marginal quotas.
SRS provides samples with n;; members in the various cells that can be taken as a random
vector (in whole values) in R”. The quota constraint means that we are limited to a random
vector as follows:

Enij=ni+(i=1t01) and Enij=n+j(j=1toJ—l),
J i

that is, one that varies within a sub-space of size IJ — I — J + 1. We place ourselves in the
case where the overall sampling rate is negligible, and the law of the n;; can be compared to
a multinomial law (n, p;; = N;/N).

Conditional upon n;;, the y;; estimate the Y;; without bias. The idea is now to construct an
estimator of the total of ¥ by weighting the ;; by the estimators of Nj;, that is, the p;;. If we
choose to maximize the probability, this is proportional to:

H Pl @.3.1)
ij
Thus, we maximize

Y] nyLogp; 4.3.2)
i

under the following constraints

Y pj=p.ti=1ltoD) and Y pj=py;(=1t0J-1) @433
Jj i
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which leads to solving the system for a;, b; (p;y = N;4/Np,; = N;/N are known):

Eﬁij’ (; +b)'=p, (=1t
’ 4.3.49)

Y pi@+b) " =py; (G=1t0J~1;b,=0),

with p;; = n;;/n frequency in the sample.

The estimators of p;; are thus §;; (a; + b)) ~! and the estimator we are looking for can be
written as follows:

YQ = (N/n) E n,-j(a,- + bj)—ly_ij = (N/n) E kak’ (435)

ij s

where wy = (a; + b)) ~1is the weight added to Y, in the case when k appears in cell (i, 7).
This estimator is asymptotically without bias under the SRS model in U, as are the maximum
probability estimators. The quotas do not play an explicit role in (3.3.4), but they affect the
values of ; and b;.

In the normal case when the marginal quotas are ‘‘proportional’’, with a fixed sampling
fraction f, the solution of equations (4.3.4) is evident: ¢; = 1 for any #, and b; = 0 for any /.
The estimator of the total is Ny, as could be expected, and has the same expression as the equal-
probability probabilistic sampling.

Comment: The use of maximum probability to estimate the proportions is rather arbitrary.
A chi-square criterion (minimize ¥ ; (p; — A)%/B;;) would make the (4.3.4) system
linear.

4.4 Variance of the Estimator and its Estimate

4.4.1 To establish a variance formula we will use the parametrization of variable Y used by
J.C. Deville and C.E. Sarndal (1990), which we will express in the form of a:

Lemma: For any variable Y = (Y;k€U), we can choose an uniquely defined parametrization

Y. =Y; + R if kisincell (i,j) (keUy) with E R, =0,
kGUij

1tor

-1
2
o

|
<
]

1toJ -1

~
Z
e

I

o

~

I

In fact, 4; and B; are numbers that minimize the quantity Y, (Yy — 4; — B)) 2 where, in
an equivalent manner ¥; N; (¥; — A; — B))>.
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Thus, we can write:
YQ = (N/n) E n; (ai + bj)—l (A, + Bj + Eij + sz) where RU = E Rk/n,'j.
ij sij

Taking into account equation 4.3.4 and the lemma:

Yo — Y =), N;(E; + Ry) with N; = (N/n) nj (a; + b) 7', (4.4.1)
i
which is the basic expression for the calculation of the variance.

Conditional upon n;;, the 1\7,~j are constant, and sub-samples s;; are independent simple
random samplings. Thus we have:

Cond bias(Yp) = E N,E; =N E DiyE;

i ij
Cond Var(¥y) = E N%Vy/n; where V; = (1/Ny) E R3.
ij Uij

Thus (demonstration in the Appendix) we have:

Result 1:

Var( E ﬁ,-jE,j) = 1/n E i E}.
- T

ij

Furthermore, the probability of f;;(a; + b;) ~1is (in terms close to 1/n) p;(a; + b;) -1
where a7 and b/ are the solutions to equations (4.3.4), in which pj; are replaced by the exact p;;.

This leads to:
Result 2: The variance of the quota estimator Y’Q is given by:

Var(fp) = (N*/n) Y, py(E} + (a7 + b)) 7'Vy).
ij
If the quotas are proportional to the size of the population, we will have:
Var(¥p) = (N*/n) Y py(Ef + V).
i
4.4.2 Estimating the Variance
The conditional variance of YQ can be estimated by:

Y NEshing = (N*/n) ) Byla; + b)~'s3,
ij ij
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where s,j is the usual unbiased estimator of V. The probablhty of the square of the conditional
biasis (N?/n) ¥;; p;; E% and is estimated by (Nz/n) YDy Ewhere E; = 3; — A, — B;and
A; and B are the solutions of:

E ﬁtj (Al + Ej) = E ﬁij}—’,‘j (i 1 to N,
’ ’ (4.4.2)

Y Bi(Ai+B)=Y pyy; (=1toJ—1 with B, =0.
- .

In other words, the estimate of Ej; is obtained by fitting to the data an additive ANOVA
model without interaction, the fltness criterion being that of least squares weighted by
(a; + b))~

Thus the variance estimator is:

Var(¥,) = (N?/n) Y By (B} + (a; + by) 7' sh). (4.4.3)
ij

When the quotas are proportional to the population numbers, this expression can be
simplified as follows:

(N*/n) Y ny (B} + s3)/n. (4.4.4)

i

If the n;; are all sufficiently large that n,J/ (n; — 1) = 1, the sum of the formula is the sum
of the squares of the residuals estimated in the OLS adjustment of the Y, =4, + B +
residual model. Thus, the estimation procedure is simple:

® use the OLS to fit the additive model to the individual data
® create the variable ¢, of the estimated residuals
* Var(Yp) = (N*/n) - (1/n) L6}

This formula is precisely that proposed in paragraph 2, and based on the super-population
model. A rather neat situation!

4.4.3 Discussion of the Results

The variance breaks down into two parts: one that can be seen as the probability of the square
of the conditional bias; and one as the probability of the conditional variance.

The first term does not depend upon the quotas imposed on the sample, but only upon the
quality of the fit of an additive model to the variable of interest. This part of the variance is
diminished by choosing quota criteria that can best explain what we want to measure

The second term, on the other hand, depends upon the remaining variability (N iVii/nyj)
and the number of observations collected in each cell. Since the size of the sample 1s fixed,
we must attempt to make the #n;; as close as possible to Neyman’s distribution: n; < N; Vi %,
This may be achieved approximately by overloading quotas n;,andn,;, wh1ch correspond
to large values of V;. Thus, in some cases, it is possible to improve the precision of a quota
survey consrderably
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4.5 Combination of the Quota Method and Stratified or Multi-Stage Samplings
4.5.1 The Case of Stratified Sampling with a Quota in Each Stratum

If the size of the criteria used to set the quotas are known in each stratum, the method
described above makes it possible to construct an unbiased estimator, under the hypothesis
that sampling functions like an SRS constraint in each stratum. If the allocation of quotas is
proportional to the size of each stratum, the estimator is the natural estimator of the stratified
sampling. If ‘“national’’ quotas are used with each stratum, a correction should be made by
reweighting.

On the other hand, if the size of the quota variables is unknown at the stratum level, it is
not possible to correct the estimators to eliminate “‘structure effects” related to the stratification.
Since, furthermore, the purpose of stratification is to construct dissimilar sub-populations,
the corrections required will generally be quite large. Thus, the quota method is not recom-
mended (except when the validity of the additive model is quite clear, ¢f part 3).

4.5.2 The Case of Two-Stage Sampling

Let us assume a two-stage sampling (inside a stratum where the sizes of the quota variables
are known). If the sizes of the quota variables are known at the level of each primary unit,
there are no problems. The theory in section 4.4 makes it possible to obtain an estimator of
the total Y in each primary unit, as well as to calculate its variance, and an estimator of the
latter. These quantities can then be used to obtain an estimator of Y, as well as an estimator
of precision (¢f Rao 1975). If the sizes of the quota criteria are not known at the level of the
primary units, but only at the stratum level, we again have a problem that is impossible to
correct. However, there is generally little harm if the PU are relatively similar: the structure
of each PU is close to that of the stratum as a whole, and the corrections to be made for each
PU are close to those that must be made at the stratum level.

4.5.3 In Conclusion

In conclusion, in the case complex multi-stage stratified sampling, the quota method may
be used as the final sampling method if the stratification was carried out effectively by
regrouping the similar primary units together, and if quotas derived from the data relative to
each stratum are used with each PU.

To the extent that the hypothesis of simple random sampling constrained in each PU may
appear to be quite satisfactory, the quota method is justified independently of any super-
population model.

5. CONCLUSIONS AND PROBLEMS

5.1 How Should Non-response Be Taken into Account?

As we have already shown, this is the most important limitation in our theory. As far as
sampling using the quota method is concerned, we do not have, in principle, any information
on members of the population who refuse to respond to the survey, and we find ourselves
lacking individual information on the subject of non-respondents. However, the situation is
not as desperate as one might think. Let us illustrate this using a very simplified example.

We have carried out a simple quota survey using a sample of ni individuals in category i
with a population N;. An acceptable model of non-response postulates a response probability
of r, if an individual belongs to category ¢ with a population N,. The (unknown) population
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of the intersection between quota category i and class ¢ of the non-response model is expressed
as N7 . The population likely to respond in category i is thus N,; = ¥ . Nfr.. By setting a quota
n; in this category, within the framework of model (4.1), we obtain a probability of inclusion
in the sample of w;”! = n;/N,;. In the sample, we collect n{ individuals belonging to the
intersection (i,c) between the two categories. This quantity is random, and its probability is
N¢r, w1, If we attempt to estimate N {, we will solve the estimating equations derived from
the following relations:

c c -1
Ni=niwr;,

YN =N,
c
EN,-‘=N‘.
i

Thus, ranking ratio technique makes it possible to obtain estimates of 7. and W;, and to
Com am

derive estimators Nf = nfw,;7,”! from the sizes of the intersection (i,c). We can also obtain
an estimator of the total of Y:

¥ _ CsC -1 Cc 5C
Ynr = Z:Ni)’i = E"c w; n; yi,
ic

ic

where ¥ is the mean of the Y values in the sample in category (i,c). Thus, estimation tech-
niques based on fitting should allow for the honourable processing of non-responses in quota
surveys.

5.2 Some Points of Comparison with Probabilistic Surveys

Regardless of how we try to understand it, the quota method demands the formulation of
a hypothetical model to fit the data. On the other hand, a probabilistic survey does not, in
principle, depend upon any model. In practice, sampling for a probabilistic survey is a model
to which the reality of data collection attempts to conform. In fact, we are well aware that,
in any probabilistic survey, some compromises of detail must be made with the model (necessary
exclusion of certain units, replacement of others after selection but before data collection, erc).
However, we can say that statistical biases are always much lower in probabilistic selection
than when using the quota method. On the other hand, quotas make it possible to use, in the
sampling stage, additional information that cannot be mobilized in a probabilistic selection
process. As a result, the variance of a quota sampling is similar to that of a regression estimation,
and is thus generally smaller than that resulting from a probabilistic survey associated with
its estimate of standard inflated values. The choice is between bias due to the model associated
with low variance, against lack of bias. Two types of conclusions can be drawn from this
approach:

5.2.1 Precision depends mostly upon the size of the sample. On the average, in the case of
small samples, probabilistic sampling will produce the worst results; and the bias of a quota
survey will be more tolerable than the lack of precision of a probabilistic survey. For large
samples, on the other hand, the quota method will have a clear bias that is obviously incom-
patible with the confidence interval without bias of a probabilistic survey.
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Where should the boundary between the two methods be set? It is hard for the theory to
be specific. On the other hand, experience in the French institutes may lead to a solution to
this question: most national quota surveys are carried out on samples of 1,000 to 2,000
individuals. On the other hand, no national probabilistic survey mobilizes less than 5,000 units.
It would seem fair to say that a size of 2,500 to 3,000 surveys is a practical boundary between
the two types of surveys.

5.2.2 Official Statistics or Marketing

In a survey, the use of any speculative model represents methodological risk-taking. This
may be perfectly reasonable if the users are aware of it, and if they have ratified the speculations
leading to the specification of the model. This is typically what happens, at least implicitly,
in marketing surveys: an organization, company, administration, or association requests a
sampling survey from a polling company. A contract marks the agreement between the two
parties respecting the implementation of the survey, its price, the result delivery schedule, and
the methodology used. In this methodology, models are used to formalize the sampling or
behaviour of the population. Thus, from this point of view, the use of the quota method may
be quite proper.

Official statisticians, on the other hand, are responsible for generating data that can be used
by the entire society; and that can be used, in particular, in the arbitration of disputes between
various groups, parties, and social classes. The use of statistical models, particularly
econometric models that describe the behaviour of economic agents, may turn out to be very
dangerous, partial, or affected by a questionable or disputed economic theory. Official statistics
should not tolerate any uncontrollable bias in its products. It should carry out sample surveys
using probabilistic methods.

There is no real opposition between quota survey techniques and those using controlled
randomness, quite the opposite - they are complementary. As a proof of this, the statistics
that are used to construct the quotas are themselves very often derived from large surveys carried
out by the National Statistics Services. However, quota survey technicians find it hard to admit
that these data are obtained using methods other than traditional, confirmed, and well-f ounded
probabilistic techniques.
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APPENDIX
Demonstration of the Results of Section 4.4

1. Notation and Results

In order to deal with the question in a general way, we will require certain convenient
notations. We have Q qualitative variables whose modalities are indicated by using indices from
1to 1, wheng = 1to Q. A ““cell” is denoted as c; that is, a series of Q indices where the g
could have a value of 1 to I; and g, is the value of the g™ index (g'! projection of ¢); in a finite
population U, of size N, U, is the population of individuals in cell ¢, when the size of the cell
is N,. The quantity N7 = ¥, q. = [N.is the total of the Q-dimensional contingency table
where the cells are represented by ¢ for the i modality of the g™ variable. If we postulate that

_ 1
Yc = N E Yk'
¢ keU,

We will obtain the following results:
Result 1: Variable Y, (k€ U)may be parametrized by the following numbers: A gc, E_and R, by:

Y =Y.+ R if keU.. Wehave E R, =0 forany c.
UC

I
(g[S

Al + E, with A}’q:O for g =21t0o Q and

Q
i

N.E. =0 for g =itoQ and i=1to I,

I
~

£

[

These numbers are obtained from the minimization of:

Q 2 _ Y 2
2 <Yk - E Agc(k,) = E NC(YC - E Agc) .
g=1 c g=1

U

Let us assume that we have a sample s. We will use # to denote all quantities in the sample
that are similar to whatever we have already indicated in the population.

We assume that s was obtained on the basis of simple random sampling (with or without
replacement) in accordance with an equal probability scheme constrained by the totals n;t¢
(g=1toQ,i=1to 1), the quotas.

The purpose of this appendix is to demonstrate the following result:

Result 2: The variance of ¥ . N, E.is approximately equal to 1/n ¥ . N, E2 when n, and N/n
become arbitrarily large.

The following section will provide a more precise formulation for this result.

2. Sampling Plan and Asymptotic Reduction

Let us consider the following two sampling models SR and AR:

SR: Bernouilli Sampling. Each of the units of N belong to s with a probability £, and the N
drawings are independent.
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AR: Each unit is drawn a number v, of times; v; follows Poisson’s law with f parameters. The
v, are independent variables.
A simple random survey without replacement (SRSWOR) of fixed size nis an SR sampling
if the total size of the sample is .
A simple random survey with replacement (SRSWR) of fixed size n is an AR sampling when
we have n observations; that is, when Y, v = n.
In the case of SR sampling, the law of the vector . is obtained as follows:

Pr((n)) = [ (1:) fre (1 — plere,

c

In the case of AR sampling, we have:

N, f)"e
Prcin) = TT L2 exp (= o).

¢ c

In both cases the variables n, are independent.
In the case of SR sampling constrained by ¥ n. = n, the law of the n, is hypergeometric:

-1
Pr(tned) = ] <:’) (’:) .

In the case of the restricted AR sampling, the law is multinomial:
Pr({n}) = [] pée/nc!.
c

The sampling plan model retained by the quota method described in paragraph 3 corresponds
to constraints on these two schemes; which is equivalent to constraints on the SR and AR plans.

If we assume that N tends toward infinity, that f tends towards 0, and that n* = SN tends
toward infinity, then in the two plans, the law of the . = n*~"% (n, — fN;) = n*" (p* — po),
with p¥ = n./n*, tends toward a multidimensional normal law with independent u,, with zero
probability and variances equal to p,.

3. Proportional Sampling

In this case, we have N, = N/n n,, so that the quantity for which we want to determine
the variance is:

N
n*” E UcEe,
c

where the vector of the u, follows a centered normal law with a diagonal covariance matrix
A = diag(p,), constrained by the relationships expressed by the quotas:

E u, = 0 forg = 1to Q, i=1forl,if g =1, i=1forIq—1ifq=2forQ.

4c=i
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If we let U represent the vector of the u,, the relationships can be written as follows:
AU =0,

with 4 matrix with / = Y I, — (Q — 1) rows and k = I1, 1, columns, where 1 and 0
represent the constraints. This also expresses the fact that U varies in the kernel L of the operator
defined by matrix 4. The (asymptotic) law of U is thus that of a centered gaussian vector W
with a matrix whose covariances equal A, when AW = 0. Thus, it is a question of evaluating
the variance of a scalar product U’E, where E is the vector of the E,.

It is important to emphasize the following two points:

* The constraints upon the E, given in result 1 can be expressed on the basis of matrix analysis
by AAE = 0. In other words, AE is a vector of L = KerA, or a vector of Ker (4A).

® Let P be the projection of ®* on L orthogonal in the A~! metrics. P verifies the following
relations:

oVx€L,Px = x;ImP =L
oPy =0 vxeL,x’A"'y = 0; KerP = A(L'),

where I* is the supplementary line orthogonal to L in the natural metrics.

The gaussian vectors PW and (1 — P)W vary in L and A(L*) respectively; and their
sum is equal to W. Moreover, they are independent; in fact, their covariance matrix is
E(PW)((1 — P)W)’ = PA(1 — P’). Thus, P’ is the kernel projector I* and can be repre-
sented as A(L")*. The image of the projector (1 — P’) is thus L*. That of A(1 — P’) is
A(L*); that is, the kernel of P, g.e.d.

At this point, we have to evaluate the variance of Y. u. E, = U 'E. Thus, in accordance
with the previous statements, we can write W = U + V, when Uand V are independent. The
law of W conditional upon We€L is none other than the law of W conditional upon V = 0.

Moreover, we have:
V'E = (A™! V)’ (AE).

Since AE is in L, and V varies in A (L"), the scalar product above is zero. From this, we
can deduce that:

Var(U'E) = Var(W'E) = E'AE = Y, p. E:.

(4

The asymptotic variance of is thus equal to N/n*¥ . n. E,
N? N
L nB = YNEL
[+ c

4. Sampling using ‘“Non-Proportional”’ Quotas

Let us complete the preceding asymptotic reduction. Now, the vector p° of n./n* is
constrained by

AP° = Ap + n* " AV,
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where Ap is the vector (1-dimensional) of the ‘‘proportional quotas’’, and ¥; is the only vector
(k-dimensional) of A (L"), sothat A(p + n*~ % V,); that is, the vector of the quotas imposed.
Thus, as in the previous paragraph, U. = n* % (po — p) may be analyzed as a gaussian vector
W = U + Vconditionalupon ¥V = V,. Thus, EU, = V;, and the covariances matrix of {j,
is the same as that of U.

Moreover, we go from p° to p by estimating the maximum resemblance. Under asymptotic
gaussian conditions, this consists of minimizing the quadratic form (5° — p) 'ATH (P — P)
under constraints Ap = Ap. Since p° varies in the related subspace L + ¥, that is parallel
to L, and minimization is a question of projecting #° upon L orthogonally for A~!; that is,
along A (L"), it follows that we have p = p° — n*~ ”* ¥, under asymptotic conditions. The
random vector p is thus obtained from p°, is unbiased, and has the same covariance matrix
as p°, so that n*~ " U.

Finally, we have:

2 1
E( ) pE) =E@'D’ = )] pE:
[

c

as in the previous case.
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