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Avoiding Sequential Sampling with Random Digit Dialing
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ABSTRACT

The Mitofsky-Waksberg procedure is an efficient method for selecting a self-weighting, random digit
dialing (RDD) sample of households. The Mitofsky-Waksberg procedure is sequential, requiring a constant
number of households be selected from each cluster. In this article, a modified Mitofsky-Waksberg
procedure which is not self-weighting or sequential is described. The bias and variance for estimates derived
from the modified procedure are investigated. Suggestions on circumstances which might favor the
modified procedure over the standard Mitofsky-Waksberg procedure are provided.
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1. INTRODUCTION

The Mitofsky-Waksberg procedure for selecting random digit dialing samples of households
(Waksberg 1978) is frequently used for sample selection in telephone surveys. As described
in the Waksberg paper, it is an efficient method of producing a self-weighting sample, that
is, one in which all telephone households have the same probability of selection (except for
households with more than one telephone number). The efficiency is due to the sharp reduc-
tion in the proportion of nonhousehold telephone numbers that have to be dialed in order to
identify sample households.

The Mitofsky-Waksberg procedure is a two-stage sample design. In the first stage, a sample
of clusters is chosen where the clusters consist of blocks of 100 telephone numbers, or multiples
of such blocks. The clusters (or blocks of 100 telephone numbers) are first selected with equal
probability. One telephone number is chosen at random in each cluster and dialed. If the number
is that of a household, the cluster is retained. Otherwise, it is rejected. The second stage is the
selection of households within the retained sample clusters. For the self-weighting feature of
the sample to apply, a constant number of households per cluster is required. Some organiza-
tions (including Westat Inc.) generally go a little further and specify a constant number of
interviewed households per cluster (or screened households if the first part of data collection
is screening). The rationale is that substituting another randomly selected household within
the same cluster for each nonrespondent is a reasonable way of reducing nonresponse bias.

There is an awkward operational feature to this system. It sometimes takes a fairly large
number of callbacks to determine whether or not a telephone number is residential, particularly
for numbers that repeatedly ring with no answer. Even more are needed to learn which
households cooperate. Such determinations must be made for an initially selected sample to
ascertain which clusters require more telephone numbers to achieve the desired cluster size and
how many telephone numbers have to be added. In effect, a sequential scheme is necessary
for each cluster, where all previous cases need to be cleared up before it is known whether the
sample needs to be increased. This process is particularly inconvenient when there is a tight
time schedule for data collection.

Several attempts to modify the Mitofsky-Waksberg method have been proposed which reduce
or eliminate the sequential features of the plan. Potthoff (1987) developed a generalization
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of the Mitofsky-Waksberg technique in which ¢ telephone numbers are chosen per cluster in
determining whether to retain the cluster, whereas Mitofsky-Waksberg use only one. A self-
weighting sample is achieved by having clusters in which only one of the ¢ telephone numbers
dialed continue with a sampling plan that includes having a fixed number of households per
cluster, and the remaining clusters having a fixed number of telephone numbers. The latter
group of clusters does not require a sequential approach. Potthoff reports that in practice most
clusters will fall into the second class so that the sequential operations, although not eliminated,
are sharply reduced.

Lepkowski and Groves (1986) describe a sampling method in which blocks of telephone
numbers with more than a trivial number of telephone numbers listed in directories (and other
sources, if available) are selected with probability proportionate to the number of listed
numbers. Blocks of numbers which contain zero or very few telephone numbers are sampled
through the Mitofsky-Waksberg procedure. Sudman (1973) had previously proposed sampling
blocks of numbers with probability proportionate to the numbers listed in directories, but
without making any provision for empty blocks (which could have unlisted numbers). Drew
and Jaworski (1986) describe an RDD survey carried out in Canada in which purchased counts
of residential numbers (both published in directories and nonpublished) were used as measures
of size. Since the counts were considered as virtually complete, there was no need to sample
empty blocks. As far as we are aware, there is no way of getting virtually complete counts of
residential numbers in the U.S.

Neither the Potthoff nor the Lepkowski-Groves sample design completely eliminates the
need for a sequential process, although both appear to reduce the portion of the sample which
requires it. There are also some other disadvantages to the two procedures. The Potthoff
technique appears to be rather complex - as far as we know it has not been used much for RDD
surveys. For national surveys, the Lepkowski-Groves technique involves the purchase of adirec-
tory list covering the total U.S. and processing it to obtain measures of size. Such commercial
lists are available, but they are expensive. Furthermore, a number of recent reports indicate
the percentage of all residential numbers that are listed in directories is not very high, and is
rapidly decreasing. Tucker (1989) describes an analysis of listed numbers in a group of U.S.
counties and cities which shows listing rates varying from 48 to 62 percent. An article by Linda
Piekarski (1990) states that if the rate of increase of unlisted numbers continues at the current
level, ““as many as 62% of the nation’s households may be unlisted by the year 2000.”” The
measures of size thus are probably only moderately correlated with the actual number of
households in a working block.

Waksberg has suggested an alternative modification of the Mitofsky-Waksberg procedure
(Waksberg 1984) which completely eliminates the need for sequential sampling. Westat has
used this method in a large number of studies using RDD. Cummings (1979) had previously
used the same procedures as a result of an error in implementing the Mitofsky-Waksberg
procedure. Cummings did not recognize its usefulness in avoiding sequential sampling and did
not explore its features for use in other surveys. We describe the method and its mathematical
and statistical properties.

2. ALTERNATIVE METHOD OF ESTABLISHING CLUSTER SIZES
WITH MITOFSKY-WAKSBERG TECHNIQUE

As indicated earlier, the Mitofsky-Waksberg technique requires a constant number of sample
residential numbers per cluster (or block of numbers) to produce a self-weighting sample. The
alternative that is proposed is to use a constant number of telephone numbers per cluster for
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the sample (K). The first stage of selection is unchanged. (The first-stage selects clusters with
probability proportionate to the number of households.) With a constant number of telephone
numbers per cluster, the sample numbers can be designated in advance eliminating the sequential
process. We note that followup effort is still necessary to determine which sample telephone
numbers are residential, both in the first and in the second stages of sampling. However, this
has to be done for a fixed set of telephone numbers. A sequential process is not involved.

The alternative procedure does not produce a self-weighting sample. Since the first stage
is selected with PPS, the probability of a cluster being selected is » N;/100 where r is the
sampling rate for selection of the clusters, that is, the first stage selection rate, and N; is the
number of residential numbers in the ith cluster. The weight should be proportional to N;~!,
but since N; is not known, it is taken to be proportional to n;~ 1. the number of sample
households in the cluster.

This modification of the Mitofsky-Waksberg method has good features for survey opera-
tions. It is simple. The sample can be virtually preselected and no costly control operations
are needed. Although weighting is required, the weights are directly available from the sample
data, and they can be mechanically produced without any extensive professional oversight.

There are, however, some serious problems. First, there is a bias when N;~! is estimated
by K/100n; where K is the number of telephone numbers selected per cluster (a constant
number in all clusters). The bias is fairly small, but it does exist. It cannot be eliminated or
reduced by minor modifications of the weights, such as using 1/(#n; + ) instead of n;!, with
“¢** denoting a fixed constant. Secondly, the introduction of variable weights increases the
variances of the estimates substantially. (The increase is not so much caused by the weights
as by the fact they reflect variable probabilities of selection.) Finally, the modification loses
one of the useful features of the Mitofsky-Waksberg method - the ability to fix the exact sample
size desired. The Mitofsky-Waksberg method’s use of a constant number of households per
cluster means that any desired sample size can be obtained by selecting a sample with the
appropriate number of clusters. With the modification, the sample size becomes a random
variable, which generally will not be exactly equal to the desired sample size. Although the devia-
tions are usually small, the ability to achieve exact target sizes is useful when contracts or budget
commitments require the survey organization to satisfy exact target requirements. We discuss
these issues in Sections 3 and 4.

Before going on to a discussion of the variances and biases, it is useful to examine the dis-
tribution of cluster sizes in the U.S. Tables 1 to 3 show estimates of such distributions prepared
from data reported in two large national U.S. surveys conducted via RDD by Westat Inc. Both
of these surveys used the modification of the Mitofsky-Waksberg procedure described above.
The sample for the survey summarized in Table 1 was selected in 1986 and consisted of 2,427
clusters (retained after first-stage sampling) with 15 telephone numbers per cluster, or 36,405
total numbers. There were 18,756 completed screeners, 2,396 refusals, 1,727 nonresponse for
other reasons, and 13,526 nonresidential or nonworking numbers, ring no answers, and cases
that could not be classified. The analysis is restricted to the 18,756 completed cases. The data
in Tables 2 and 3 are based on a 1989 sample of 1,000 clusters with 30 telephone numbers per
cluster or 30,000 telephone numbers, of which 19,586 were residential with screeners completed.
Table 2 shows the distribution of the 15,030 completed cases and Table 3 shows the distribu-
tion of the 19,586 residential numbers found in the 1,000 clusters. The cluster weights shown
are expressed as 71/n; where 7 is the average number of households per cluster. It seems useful
to express them in this form since they then show the deviations from a self-weighting sample.
The design effects only account for the increased variances arising from variable sampling
fractions. They do not include effects of other aspects of the sample design.
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Table 1

Number of Completed Screeners per Cluster in 1986 Survey
(Based on sample of 2,427 clusters with 15 telephone numbers per cluster)

Number of  Average Household Distribution Cluster Distribution

Completes  Cluster . .
. C lat C lative
per Cluster Weight! Frequency Percent umuative Frequency Percent umniatly

Percent Percent

0 XX 0 0 0.0 62 2.6 2.6

1 7.932 54 0 0.3 54 2.2 4.8

2 3.972 106 0.6 0.9 53 2.2 7.0

3 2.64 258 1.4 2.2 86 3.5 10.5

4 1.98 440 2.3 4.6 110 4.5 15.0

5 1.59 810 4.3 8.9 162 6.7 21.7

6 1.32 1,290 6.9 15.8 215 8.9 30.6

7 1.13 1,960 10.5 26.2 280 11.5 42.1

8 0.99 2,656 14.2 40.4 332 13.7 55.8

9 0.88 2,862 15.3 55.6 318 13.1 68.9

10 0.79 2,990 15.9 71.6 299 12.3 81.2

11 0.72 2,717 14.5 86.1 247 10.2 91.4

12 0.66 1,548 8.3 94.3 129 5.3 96.7

13 0.61 780 4.2 98.5 60 2.5 99.2

14 0.57 210 1 99.6 15 0.6 99.8

15 0.53 75 0 100.0 5 0.2 100.0
Total 18,756 100.0 XX 2,427 100.0 XX

Mean cluster size’ 7.93
Design effect? 1.31

1 The cluster weight is the mean cluster size (i.e., 7.93) divided by the number of completes in the i-th cluster.
Trimming the weights would bring these weights down to 3.
The mean cluster size is the average over the 2,365 clusters with one or more completed screeners.
The design effect is reduced to 1.12 if the maximum weight is 3.

It should be noted that Table 1 is based on a sample of 15 telephone numbers per cluster
and Tables 2 and 3 used 30 telephone numbers per cluster. Estimates of the percent residential
in a cluster based on 15 telephone numbers will, of course, be subject to a higher sampling
error than an estimate based on 30 telephone numbers. However, the number of clusters used
in Table 1 was more than twice those in Tables 2 and 3 which should largely offset the effect
of the different cluster sizes.

There are two differences between Tables 2 and 3. One is that Table 2 shows the distribu-
tion of completed screeners (as does Table 1) while Table 3 is based on all sample households.
The use of only completed cases in Table 2 reduces the estimate of the average number of
households per cluster and shifts the entire distribution. In addition, it introduces more
variability to the estimates of the distribution shown because the distributions reflect sampling
errors of both the distribution of households per cluster and the distribution of nonresponse
rates per cluster. The second difference is that Table 2 (and Table 1) is expressed in terms of
the number of cases per cluster and Table 3 shows the distributions by the percentage of residen-
tial numbers per cluster. It was convenient to express Table 3 in that form for analyses described
later in this report.
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One other feature of the percentages shown in Tables 1 to 3 should be noted. They reflect
the size distributions of clusters which fell into the sample, not the distribution of clusters in
the U.S. The use of probability proportionate to size sampling results in an oversampling of
clusters with a high proportion of residential numbers and an underrepresentation of clusters
with a small number. It is possible to convert the distribution from one that represents the
sample to one that represents the population by multiplying each percentage by the cluster
weights and computing the percentage distribution of the resulting figures. Since the weights
are exactly proportional to the reciprocal of the number of completes per cluster, it turns out
that converting the household distribution so that it represents the distribution in the popula-
tion produces the percentages shown in the cluster distribution. The cluster distribution in the
sample is thus the same as the household distribution in the population.

We show distributions of both all-sample households and completed cases because both
are of interest to researchers. The Table 3 data have been used for the analyses in Sections
3 and 4.

Table 2

Number of Completed Screeners per Cluster in 1989 Survey
(Based on sample of 1,000 clusters with 30 telephone numbers per cluster)

Number of  Average Household Distribution Cluster Distribution
Igje:(;rrgl)Lllesttisr V(\:’Iel:;tlftrl Frequency Percent Clll)rzlruCl:IEItve Frequency Percent Cl}l::rl::l:éltve
0 XX 0 0 0.0 8 0.8 0.8
lor2 7.572 6 0 0.0 3 0.3 1.1
3or4 4,332 37 0.2 0.3 10 1.0 2.1
Sorb6 2.75 126 0.8 1.1 22 2.2 4.3
7or8 2.02 403 2.7 3.8 53 5.3 9.6
9or 10 1.59 688 4.6 8.4 72 7.2 16.8
11 or 12 1.32 1,325 8.8 17.2 115 11.5 28.3
13 or 14 1.12 1,987 13.2 304 147 14.7 43.0
15 or 16 0.98 2,636 17.5 50.0 170 17.0 60.0
17 or 18 0.85 2,692 17.9 65.9 154 15.4 75.4
19 or 20 0.78 2,387 15.9 81.8 123 12.3 87.7
21 or 22 0.70 1,673 11.1 92.9 78 7.8 95.5
23 or 24 0.64 816 5.4 98.3 35 3.5 99.0
25 or 26 0.55 254 1.7 100.0 10 1.0 100.0
27 or 28 XX 0 0 100.0 0 0 100.0
29 or 30 XX 0 0 100.0 0 0 1060.0
Total XX 15,030 XX XX 1,000 XX XX
Mean cluster size3 15.11
Design effect* 1.33

! The cluster weight is the mean cluster size (i.e., 15.15) divided by the number of completes in the i-th cluster.
Trimming the weights would bring these weights down to 3.
The mean cluster size is the average over the 992 clusters with one or more completed screeners.
The design effect is reduced to 1.12 if the maximum weight is 3.
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Table 3

Proportion of Residential Numbers per Cluster in 1989 Survey
(Based on sample of 1,000 clusters with 30 telephone numbers per cluster)

Proportion of ~ Average Household Distribution Cluster Distribution

Residential Cluster
nos. per Cluster Weight! Frequency Percent

Cumulative Cumulative
Frequency Percent

Percent Percent

0 XX 0 0.0 0.0 5 0.5 0.5

.001 to .049 21.76 5 0.0 0.0 3 0.3 0.8
.05 to .099 8.70% 18 0.1 0.1 6 0.6 1.4
.10 to .149 5.222 41 0.2 0.3 9 0.9 2.3
.15to0 .199 3.732 48 0.2 0.6 8 0.8 3.1
.20 to .249 2.90 53 0.3 0.8 7 0.7 3.8
.25t0 .299 2.37 144 0.7 1.6 16 1.6 5.4
.30 to .349 2.01 178 0.9 2.5 17 1.7 7.1
.35 t0 .399 1.74 408 2.1 4.6 34 34 10.5
.40 to .449 1.54 459 2.3 6.9 34 34 13.9
.45 to .499 1.37 840 4.3 11.2 56 5.6 19.5
.50 to .549 1.24 1,040 5.3 16.5 63 6.3 25.8
.55to .599 1.14 1,926 9.8 26.3 107 10.7 36.5
.60 to .649 1.04 2,126 10.9 37.2 109 10.9 47.4
.65 to .699 0.97 3,255 16.6 53.8 155 15.5 62.9
.70 to .749 0.90 2,610 13.3 67.1 116 11.6 74.5
.75 t0 .799 0.84 3,022 15.4 82.6 126 12.6 87.1
.80 to .849 0.79 1,556 7.9 90.5 61 6.1 93.2
.85 to .899 0.75 1,458 7.4 98.0 54 5.4 98.6
.90 to .949 0.71 399 2.0 100.0 14 1.4 100.0
.95 to .999 XX 0 0.0 100.0 0 0.0 100.0
Total XX 19,586 100.0 XX 1000 100.0 XX

Mean cluster size? 19.68
Design effect? 1.28

1 The cluster weight is the mean proportion in a cluster (i.e., 0.653) divided by the proportion of residential numbers
in the i-th cluster.
Trimming the weights would bring these weights down to 3.
The mean cluster size is the average over the 995 clusters with one or more residential numbers.
The design effect is reduced to 1.12 if the maximum weight is 3.

3. VARIANCE IMPLICATIONS OF THE MODIFIED
MITOFSKY-WAKSBERG METHOD

In the standard Mitofsky-Waksberg method the variance of a sample estimate is dependent
upon the number of households selected per cluster and the homogeneity of the households
within and between clusters. The variance for a cluster sample can be written as the variance
for a simple random sample multiplied by [1 + p(# — 1)], where p is intraclass correlation
and 7 is the average number of households per cluster. Since telephone clusters are often related
to geographic areas and tend to be somewhat homogeneous, selecting a large number of
households per cluster can be inefficient.

When the modified Mitofsky-Waksberg method is used, another source of variance is
introduced because the number of households selected per cluster is allowed to vary from cluster
to cluster. As pointed out in Section 2, the denominator of the second stage probability of selec-
tion does not cancel with the number of households in the cluster (which is proportional to
the probabilities in the first stage) and the overall probabilities of selecting households vary
from cluster to cluster.
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The variability among clusters in the overall household sampling rates causes the variances
of the estimates to be larger than those in the standard Mitofsky-Waksberg method where
each household has the same probability of selection. Methods for estimating the increase in
the variance of an estimate arising from unequal probabilities of selection are discussed by
Kish (1965) and by Waksberg (1973). A simple approximation to the variance of an estimate
under an unequal weighting scheme (where the weights do not reflect variable sampling rates
in strata deliberately chosen to reduce sampling variances) is the sampling variance which would
occur with a self-weighting sample multiplied by a variance inflation factor (VIF), given by
VIF = {1 + Relvar(weights)}. We will use this approximation below to investigate the
variance implications associated with the modified Mitofsky-Waksberg method.

The relative variance of the weights was computed by partitioning the process into two
components. First, the mean and variance of the weights were computed conditioned upon
sampling from a truncated (since zero households cannot be obtained if the cluster is sampled
in the first stage) hypergeometric distribution, defined by the household density in the cluster
and the cluster sample size. The unconditional mean and variance of the weights were then
computed by integrating over the distribution of households in the sampled clusters shown
in Table 3. The distribution of households in the sample is critical in the evaluation of the VIF.

The natural weight assigned to a household in the modified Mitofsky-Waksberg is propor-
tional to n;~!, where n; is the number of households observed in sample cluster i. This weight
can vary by factors which range from as little as 1/K to 1, where K is the number of telephone
numbers selected in a cluster. The average weight is roughly 1.5/K, since about 65 percent of
numbers in the sampled clusters are residential.

If the number of telephone numbers sampled per cluster is between 5 and 30, then the increase
in variance due to the weighting is about 30 percent. The VIF decreases slightly as the number
sampled per cluster increases beyond 30, reaching approximately 17 percent when all the
numbers in the cluster are sampled.

The VIF or the relative variance of the weights is a function of the distribution of the number
of households across clusters and random sampling variability within the clusters. This decom-
position is made explicit by expressing the variance of the weights as the sum of the mean of
the conditional variance of the weights and the variance of the conditional mean of the weights,
where the conditioning is with respect to the household density of the cluster.

When the cluster sample size is small, the mean of the conditional variance is the dominant
component of the overall variance. As the cluster sample size increases, the variance of the
conditional mean becomes more dominant. This is why the relative variance of the weights,
shown in the first row of Table 4, is not a monotonic function of the cluster sample size.

Table 4

Approximate Variance Inflation Factors (VIF) for Modified
Mitofsky-Waksberg Random Digit Dialing Samples

Cluster Sample Size (K)

Weight

5 10 30 60 100
1/nm; 1.31 1.34 1.29 1.23 1.17
1/(n; + .5) 1.18 1.21 1.20 1.18 1.16
1/(n; + 1) 1.12 1.15 1.16 1.15 1.14

1/(n; + 2) 1.07 1.0 1.11 1.12 1.13
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Variances Using Different Weights

Weights other than ones proportional to the inverse of the number of households were also
examined to determine their impact on the bias and variance of the estimates. Many of the
alternative weights studied were derived from variance stabilizing transformations suggested
for binomial variables.

Of all the alternatives examined, the estimators with the best bias and variance properties
involved simple adjustments of the natural weight. In particular, adding a small constant
to the observed number of households (estimators of the form (n; + ) ~! where ¢is .5, 1,
or 2) resulted in reducing the increases in variance due to differential weighting. The addition
of the constant reduces the range of the weights by cutting the values of the largest weights
while only slightly modifying the weights for clusters where more households are found in the
sample.

Table 4 shows the VIF for the estimators of the form (n; + ¢) ~1 for different numbers
of telephone numbers sampled per cluster. The table also is based on the household and cluster
distributions shown in Table 3. It is clear from the table that a substantial reduction in the
variance due to unequal weighting can be achieved by using (n; + 1) ~! rather than the
natural estimator. This is especially true for RDD designs which sample 30 or fewer telephone
numbers per cluster. The increase in variance due to differential weighting for (n; + 1) ~lis
only 16 percent when 30 numbers are selected per cluster as opposed to a 29 percent increase
when the natural estimator is used.

Variances with Trimmed Weights

A practice that is often used to mitigate the variance inflation associated with varying weights
is the truncation of very large weights. This truncation, or trimming of weights, is usually fixed
at a weight above which relatively few observations are found. In many Westat RDD samples,
weights that exceed two or three times the mean weight have been truncated. For this research,
we have examined weights truncated at about 3 times the mean weight. For samples of 10 per
cluster, the weights were truncated at 2 times the mean weight because so few observations
are affected otherwise.

Table 5 shows the VIF for the estimators for different cluster sample sizes when the weights
are trimmed at three times the mean weight for n;~!. The VIF’s for samples of 5 per cluster
are not given because the truncation point in samples of this size is nearly at unity, the largest
possible weight.

Table 5

Approximate Variance Inflation Factors (VIF) for Modified Mitofsky-Waksberg
Random Digit Dial Samples with Trimmed* Weights

Cluster Sample Size (X)

Weight

10 30 60 100
1/n; 1.12 1.11 1.09 1.09
1/(n; + .5) 1.11 1.10 1.09 1.09
1/(n; + 1) 1.09 1.10 1.09 1.09
1/(n; + 2) 1.07 1.09 1.09 1.08

* All weights trimmed at 3 times the mean weight, except samples of 10 trimmed at 2 times the mean.
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The tabled values show trimming substantially reduces adverse impact of the differential
weights on the variance of the estimates. The most dramatic reduction is for the natural
estimator; its VIF is reduced by over 50 percent by the use of trimming. The VIFs for the other
estimators are improved somewhat, but the reductions are less striking since they already had
smaller VIF’s than the natural estimator. Trimming has the potential of introducing biases
which may counteract the advantage in variance reduction. Biases are discussed in Section 4.

Variances with Augmented Sampling

A third approach to reducing the variability of the weights is the use of augmented sampling.
Large weights occur when the number of households identified in the cluster is small relative
to the expected number of households per cluster. To reduce the chance for this happening,
an augmented sampling procedure can be used. If the number of households in a cluster is
smaller than a fixed number (say less than one third of the mean number per cluster), then
the sample size in the cluster can be doubled or increased by some other amount.

This procedure could be iterated to insure that the number of households per cluster reaches
a specified limit or until all numbers in the cluster are used. The obvious disadvantage of this
iterative plan is that it requires monitoring sample yield by cluster and the very fact that it is
sequential. Another disadvantage of the method is that it results in sampling more telephone
numbers from clusters that have a lower household density (the ones most likely to need
augmentation), hence reducing productivity.

Despite the operational shortcomings of the augmented sampling approach, we did a limited
examination of the method. Since the results for the augmented sample approach was not better
than trimming the weights, this method is not discussed further.

4. BIAS IMPLICATIONS OF THE MODIFIED
MITOFSKY-WAKSBERG METHOD

The increase in variance is just one of the consequences of using the modified Mitofsky-
Waksberg method of sampling. Another important feature of the method is the bias in the
resulting estimates. If a fixed sample size is selected in a cluster and no weight adjustment is made,
the variance of the estimates are not increased but the bias has the potential of being very large.

The unbiased weight (W,) for the modified method is

100 100
- $ —

%__
rN,- K

’

where the terms are as defined above. The problem is that N; is unknown and does not cancel
with the second stage term, as it does in the standard Mitofsky-Waksberg method. Weights
are therefore introduced in an effort to reduce the bias.

We refer to the estimator which uses a weight of n;~! as the natural estimator because n;/K
is an unbiased estimator of N;/100 in sampling from a binomial or hypergeometric distribu-
tion. (We use the weight of n;~! although the weight is actually K/100n;. Since K/100 is a con-
stant, the relationship among the weights are not affected by using n;~!.) This weight appears
to be the natural estimator despite the fact that n;~! is not unbiased for N;! unless all 100
numbers are selected in a cluster. The bias of n,-“1 is discussed in literature; for example, see
the discussion on stratification after sampling in Hansen, Hurwitz and Madow (1953). No
simple unbiased estimator, certainly none of the form (n; + ¢) -1 is likely to exist for all
possible cluster sample sizes.
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Figure 1. Mean Weights of Estimators Conditional on the Proportion Residential with Shaded Histogram
of Proportion of Households in Cluster
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One of the ways to examine the potential bias is by comparing the expected value of the
estimators (the mean weight using estimators of the form (n; + t) ~') with the unbiased
weight, W,. Since both the unbiased weight and the expected value of the estimators are
functions of N;, we will begin by investigating these quantities conditioned on N;.

Figure 1 shows the graph of the unbiased weight and the mean weights, using the estimators
n7'and (n; + 1) 7!, when there are K = 10 telephone numbers selected per cluster. The
constant cluster sampling rate, r, has been omitted from all of the weights. A logarithmic scale
has been used for the mean weights because of the range in W,.

The graph clearly shows that the biggest differences between W, and the mean weights for
the two estimators are found when N;/100 is small. Once the residential density exceeds 20
percent when (n; + 1) ~!is used, and 10 percent for n;”!, the differences are relatively minor.
The graph shows that the weight (n; + 1) ~! is always smaller than W, but this will not be
true if poststratification is used. Poststratified weights are not used in the graph because
poststratification really operates on the unconditional weights rather than the conditional
weights shown here. The unconditional bias is addressed below.

The shaded histogram in the figure shows the distribution of households from Table 3. It
has been overlaid to illustrate the fact that the large differences in weights occur in clusters
which account for a very small fraction of the sampled households.

Bias in Sample Size and Bias in Estimates

In nearly all RDD surveys, including those using the Mitofsky-Waksberg sample design,
poststratification of the sample to known totals of persons or households is used. One of
the prime reasons for using poststratification is to adjust the estimates to the levels associated
with all persons, not just those in households with telephones. Massey and Botman discuss
this and other benefits of poststratification in RDD surveys in Chapter 9 of Groves ef al.
(1988).

Regardiess of the reasons for using it, poststratification results in estimates that are equal
to known totals irrespective of the weights applied to the individual households. Since this
bias, which can be considered as bias in sample size, is always zero, it is difficult to find a
single statistic that measures unconditional bias directly. To attack this problem, we will
examine the relative contribution to the bias in sample size over the range of household density
values.

The following steps were taken to compute a measure of this contribution to bias in sample
size. First, the different weighting functions or estimators were computed using the empirical
household density shown in Table 3. Then, the estimates were poststratified to equal unity and
the contribution to the total was computed for different values of N;/100. Finally, the relative
bias in sample size was defined as the difference between the contribution to the total from
the particular estimator and the contribution from the total using W, as the weight.

This measure thus takes into account both the difference in the weights for fixed values of
N; and the distribution of households across all the values of N;. Thus, sampled households
from clusters with values of N, that are rare will not contribute heavily to the relative bias in
sample size even if they are associated with large differences in weights.

To illustrate these computations, Figure 2 shows the relative bias in sample size for some
estimators for samples of 30 numbers per cluster. One of the estimators uses the unadjusted
weight, i.e., the weight is a constant for all households regardless of the number of households
identified in a cluster. The relative bias in sample size for the estimator with unadjusted weights
is much larger than when other weights are used. The unadjusted weight has relative biases
in sample size that range from about —2 percent to + 3 percent.
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Relative Bias in Sample Size
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Figure 2. Relative Bias from Sample Size for Samples of 30 Cluster

The size of the bias in the estimate of a characteristic is bounded by the size of the bias in
sample size. In other words, the relative bias in the estimate can be no larger than the relative
bias in the sample size. For almost all characteristics, this upper bound will not be attained.
The upper bound is only attained when the characteristic and the residential density are perfectly
correlated. Very high correlations are not likely in national samples, but might be more feasible
in samples in restricted geographic areas.

It can be seen that there are patterns in the biases; for example, the unadjusted estimator
is uniformly too low in low proportion residential clusters and too high in clusters with a high
proportion of households. When there are differences in the characteristics between low and
high density clusters, the biases can be quite serious. The bias in estimates resulting from using
unadjusted weights can be seen for some characteristics in Table 1 in Cummings (1979). The
biases are not very large, but appropriate weighting will effectively eliminate them.
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In general, the relationship between the estimate and the number of households in a cluster
will be unknown and inconsistent across all the characteristics to be estimated. Therefore, a
reasonable practice is to choose an estimator that has a relative bias in sample size that is small
across the range of values of N;. If the relative bias in sample size for a set of the estimators
is small, then the choice of estimators can be dictated by variance considerations.

Biases Using Different Weights

The relative bias in sample size were computed using different estimators for samples of
5, 10, 30, and 60 telephone numbers per cluster. The relative bias in sample size is negligible
for the cluster sample sizes of 30 and 60 numbers, except when the unadjusted weights are used.
Any of the adjusted estimators could be used for cluster samples sizes of this size without incur-
ring biases in the estimates. When 10 numbers are selected per cluster, all of the weights except
the unadjusted one again perform reasonably well. The bias performance of (n; + .5) ~!is
especially encouraging.

For the smallest cluster size studied, 5 numbers per cluster, the potential for bias is some-
what greater. The natural weight, n;,~!, has a somewhat lower bias in sample size than the
weight (n; + .5) !, but the difference is not very large. The relative bias in sample size for
both of these weights is always less than one percent. For residential densities between about
45 percent and 80 percent the bias is positive and elsewhere it is negative. This pattern might
be problematic only for the few characteristics that are very highly correlated with residential
density.

Biases with Trimmed Weights

The introduction of trimming can produce significant biases, depending on the relationship
between the characteristics being estimated and the weights which are being trimmed. In some
applications, the bias associated with trimming may limit the amount of trimming that can
be applied and, hence, its usefulness for variance reduction.

The relative bias in sample size was also computed for cluster samples of 10, 30 and 60
numbers and the weights trimmed at about 3 times the mean weight. The trimming for samples
of 10 numbers per cluster was done at a factor of 2 rather than 3 as described previously.

The difference between the relative bias in sample size for the trimmed and untrimmed
weights is largely inconsequential for all cluster sample sizes and most values of N;/100. The
only noticeable difference occurred when the residential density is under about 10to 15 percent.
There is a slightly greater potential for bias in these regions. However, the relative bias in sample
size for the trimmed weights is still much less than one percent at all residential density values.

5. CONCLUSION

The standard Mitofsky-Waksberg method is an effective method of producing a self-
weighting, RDD sample of fixed size. However, the sequential monitoring of the number of
cases per cluster is an awkward operational feature of this method. One of the consequences of
the sequential monitoring of caseloads by cluster is that it is difficult to complete data collection
in a tight time frame. The data collection period has to be flexible enough to allow for obtaining
the appropriate number of cases in each cluster. The more extensive data collection period and
the monitoring of caseloads also result in increasing costs. Another problem with the sequential
operations is that the requirement for frequent monitoring of the caseloads can lead to frustra-
tion arising from complications of combining sample selection and data collection operations.
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The modified Mitofsky-Waksberg approach eliminates the sequential nature of the design
and, with it, the need to monitor the work by cluster. A fixed number of telephone numbers
are assigned to each sampled cluster in the modified method. Therefore, the costs associated
with monitoring caseloads and a longer data collection period are not incurred. However, the
modified Mitofsky-Waksberg method does introduce new components of bias and variance
into the estimates. These statistical concerns should be addressed before the modified approach
is used.

Specific recommendations on when the standard or modified Mitofsky-Waksberg method
should be used are difficult to formulate since they depend upon circumstances which vary
from survey to survey. Guidelines for choosing between the methods are suggested below.

A simple rule is that for surveys which require either very tight controls on sample size or
a nearly self-weighting sample, then the standard Mitofsky-Waksberg approach is advisable.
Even though the sample size in the modified method can be estimated relatively precisely, some
variation, especially because of uncertainty of the nonresponse rates, can be expected. A self-
weighting sample, which is not achieved when the modified Mitofsky-Waksberg method is used,
also has some advantages in simplifying standard statistical analysis.

Since the costs for standard and modified methods are different, it would be very useful
to have cost-variance models to help evaluate the two methods. Unfortunately, the differences
in costs of the standard and modified methods are not easy to quantify. In fact, the lack of
reasonable cost models is a major and pervasive problem that limits the ability to establish
optimal survey design.

Because of lack of reasonable cost-variance models, we suggest some conditions in which
one approach might be favored over another. One of the conditions that favors the modified
approach is a relatively brief interview length. As the interview becomes longer, the cost savings
associated with the modified method is likely to become smaller relative to the increases in
variances of the estimates.

The length of the interview is particularly important for surveys which screen households
to find those with particular characteristics. For example, some RDD surveys screen households
and only interview if a member is in a particular target group. In these situations, the screening
interview is often very brief. The modified Mitofsky-Waksberg approach may be very beneficial.
Surveys in which households are screened also tend to have large cluster sample sizes, and this
improves the performance of the modified procedure. When 10 or more numbers are selected
per cluster (equivalent to about 6 households per cluster), the biases in the estimates under the
modified Mitofsky-Waksberg approach are virtually inconsequential and the increases in
variance with trimming are only about 10 percent. Samples of 10 or more numbers per cluster
are frequently acceptable for screening purpose although such large cluster sizes are typically
inefficient for the interview sample, even when the intraclass correlation is small.

Based on these factors, a general guideline is that the modified Mitofsky-Waksberg method
can be recommended when households within the clusters must be screened. More specifically,
the modified method with trimmed weights should be considered if the following conditions
exist: (1) Ten or more numbers are sampled per cluster; and (2) the total cost for the modified
method is at least 10 percent less than the standard method, or the data collection period is
relatively short. If both of these conditions are not met, then the choice between methods must
be made on evaluations of other survey requirements.

When the cluster sample size is less than 10, the bias and variance arising from the use of
the modified Mitofsky-Waksberg method are more serious concerns. Any characteristics
correlated with the proportion of residential numbers in a cluster could be affected with a cluster
sample size this small. Also, the variance of the estimates with the modified method will be
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20to 30 percent larger than with the standard method since trimming is not very effective with
small sample size. Therefore, in most surveys with sample sizes of less than 10 numbers per
cluster, the problems of implementing the standard method should be quite serious before a
decision is made to abandon it and use the modified method.
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