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Marginal and Approximate Conditional Likelihoods
for Sampling on Successive Occasions

D.R. BELLHOUSE!

ABSTRACT

Marginal and approximate conditional likelihoods are given for the correlation parameters in a normal
linear regression model with correlated errors. This general likelihood approach is applied to obtain
marginal and approximate conditional likelihoods for the correlation parameters in sampling on successive
occasions under both simple random sampling on each occasion and more complex surveys.
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1. INTRODUCTION

Consider a finite population of N units which may be sampled on & occasions. Let Yei
denote the measurement on the jth population unit taken on the #th occasion; j = 1, ..., N
andf = 1, ..., k. It is assumed that any two units, say j and j’, are independent, but that
measurements of the same unit across time are correlated. In particular, assume that for any j,

(ylj’ Yajs '--’ykj)T~N(ﬂ’UZQ)a (1)
where @ is a kK X k correlation matrix and where p is the 1 X k vector of fixed means
(#1, H2s - -+ wg) 7. In view of the explicit model assumption in (1), a model-based approach

to survey estimation is used in this paper. Based on samples taken over the k occasions, it is
of interest to estimate (uy, pta, . .., )’ The form of the model-based estimates (i fos - - -
i) T, if obtained by maximum likelihood or generalized least squares, for example, will
depend on ¢ and the parameters in Q. It is therefore necessary to obtain good estimates of
o? and the parameters in Q.

The notation of Bellhouse (1989) is used to describe the sampling scheme considered here,
namely one-level rotation sampling. On any occasion, ¢ rotation groups are sampled. Rotation
groupr(r = 1,2, ...,k + ¢ — 1), denoted by G,, consists of m, sample units. On occasion
t(t =1, ..., k), the sample consists of the unitsin G, G,,, ..., G;.._, 5o that the total
sample size on occasion f, n, = m; + m;yy + ... + m,._;. On occasion ¢ + 1, G, is
dropped from the sample and G, . is added. Each rotation group is chosen without replace-
ment from previously unchosen units in the population. The total sample size over all
occasions is m = n; + n, + ... + n;. The maximum number of occasions that a unit
remains in the sample is c.

If ¢ is small, then estimates of the correlation parameters in Q can be unstable, leading
to instability in the estimates of interest (i, fiz, - .., fix) . Viewed another way, the total
number of parameters is at least ¥ + 2 and increases with time, i.e. with the addition of new
occasions. Since the dimension of the parameter space increases with time, maximum like-
lihood estimates of parameters may be biased and inconsistent. The problem of the stability
of estimates has been addressed in sampling on successive occasions, for example, by Blight

1 D.R. Bellhouse, Department of Statistical and Actuarial Sciences, University of Western Ontario, London, Ontario,
Canada N6A 5B9.



70 Bellhouse: Marginal and Approximate Conditional Likelihoods

and Scott (1973), who assume that the elements of (u1, p2, - - -, Hi) T follow a time series
process. On using this assumption the dimension of the parameter space is fixed at a relatively
small number so that the problems of instability, bias and inconsistency are resolved. In this
paper, a different approach is taken. Here the fixed means assumption is retained and marginal
and approximate conditional likelihoods are derived for the parameters in 2, treating the fixed
means as nuisance parameters.

Marginal likelihood estimation was introduced as a general method for eliminating nuisance
parameters from the likelihood function (Fraser 1967; Kalbfleisch and Sprott 1970). Cox and
Reid (1987) introduced approximate conditional likelihoods which also address this problem.
They argued that the approximate conditional likelihood was preferable to the profile likelihood
obtained by replacing the nuisance parameters in the likelihood by their maximum likelihood esti-
mates when the parameters of interest are given. Bellhouse (1990) established the equivalence of
marginal and approximate conditional likelihoods for correlation parameters under a normal model.

Following on the work of Cox and Reid, Cruddas et al. (1989) obtained an approximate
conditional likelihood for the correlation parameter in several short series of autoregressive
processes of order one with common variance and autocorrelation parameters. Based on a
simulation study, Cruddas ef al. (1989) showed that the estimate based on the approximate
conditional likelihood had a much smaller bias and better coverage properties of the confidence
interval than the maximum likelihood estimate from the profile likelihood. The situation
described by Cruddas ef al. (1989) applies directly to sampling on successive occasions in sample
surveys. In order to reduce the response burden, individuals in a survey are retained in the
sample for relatively short periods of time. It is expected that the use of marginal and approx-
imate conditional likelihoods will improve the estimates of correlation parameters and conse-
quently improve the estimates of the mean for each occasion.

Within a rotation group, the sample measurements on an individual are usually modelled
by an autoregressive moving average process (ARMA), i.e. the parameters in Q are comprised
of the correlation parameters in the ARMA process. See Binder and Hidiroglou (1988) for a
review of the application of time series models to sampling on successive occasions. Conse-
quently, it is of interest to obtain marginal and approximate conditional likelihoods under
ARMA models with application to rotation sampling. The marginal and approximate condi-
tional likelihoods for the correlation parameters in a normal model are obtained in Section 2.
The general results of Section 2 are illustrated in Section 3 by applying the results to sampling
on successive occasions assuming simple random sampling of units in rotation groups. In
Section 4, some methods are given to apply these likelihood methods to complex surveys.

2. MARGINAL AND APPROXIMATE CONDITIONAL LIKELIHOODS
FOR CORRELATION PARAMETERS UNDER
A NORMAL MODEL

Let y be a vector of sampled observations of dimensionm x 1 which follows the linear model
y =XB + ¢ (2)

with error vector € ~ N(0,0°®), where & is the m X m correlation matrix and where 3 is the
p X 1vector of regression coefficients so that Xis m x p. The log-likelihood for 3, o2 and
& is given by

L(Bo%®) = — [mlng + (In | & )2 + (v — XB) 7@~ '(y — XB)/ 26D)]. Q)
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For a given value of &,
B=(XTe ' x)XxTe 1y
and
s2 = pTe-ly — yTo-1x (XTo-1x) ! X7~y @

are jointly sufficient for 8 and o2.

A marginal likelihood for & is obtained by making a transformation of the data y to the
sufficient statistics 8 and s? and the ancillary statistic

a =%y - X (XTe7X) ' XTe"ly)/s,

where & =" is the m X m dimensional matrix such that ® ! = & ~*& ", The marginal
likelihood for @ is the marginal distribution of the ancillary a times the product of the differ-
entials da;, i = 1, ..., m. See Kalbfleisch and Sprott (1970, eqgs. 6 and 10) for a general
discussion and a general expression for Ilda;. Bellhouse (1978) and, later independently
Tunnicliffe Wilson (1989), showed that the marginal likelihood for & under the normal model
is given by

Ly(®) = {| & |* | XTeIx |7 smP) L, )

Note that (4) is proportional to the maximum likelihood estimate of ¢ given & and that
s2(XT® ~1X) ~lis proportional to the estimated variance-covariance matrix of the maximum
likelihood estimate of 8 given ®. Then (5) can be written as

A Vi
LM(q,) = Hs_twg.(_é?_l. (6)
sm I ) I/z

To obtain an approximate conditional likelihood, it is first necessary to transform the
parameters to achieve parameter orthogonality between the parameters of interest and the
nuisance parameters, which now may depend on the parameters of interest. Sets of parameters
are orthogonal if the associated information matrix is block diagonal, with each block as the
information matrix for each parameter set. The conditional likelihood is related to the distri-
bution of the data y conditional on the maximum likelihood estimate of the nuisance parameters
for fixed values of the parameters of interest. The approximate conditional likelihood is
obtained by applying two approximations to this conditional distribution. See Cox and Reid
(1987, Section 4.1) for a discussion of the derivation. For example, let © be the vector of
parameters of interest and let A, possibly depending on ©, be the vector of nuisance parameters
orthogonal to ©. The full likelihood of the data for parameters © and A is denoted by L (©,A)
and the profile likelihood for ©,L (6,A) is the likelihood with A replaced by its maximum
likelihood estimate. The approximate conditional likelihood for O is

L(0,A) | I(6,A) | %,

where I( G,A) is the observed information matrix for A at a fixed value of ©. See Cox and Reid
(1987, eq. 10).
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Following Cruddas et al. (1989), Bellhouse (1990) suggested, for model (2), the parameter trans-
formation A = Ino + (In | @ |)/(2m) leaving B the same. The log-likelihood under the new
parameterization is denoted by L (8, \, $) and can be obtained from (3). If the entries of ® are
functions of a parameter ¢, then the nuisance parameters A and 3 are each orthogonalto &, i.e.

2
_1EFme®]=0
m dPpaN

and

2
_1EFmem]=m
m d¢aB

when each entry of ¢ is a continuous and differentiable function of ¢. Moreover, in this case
the approximate conditional likelihood for ®, L (®) is the same as the marginal likelihood
Ly (®), given by (5) or (6). See Bellhouse (1990) for details.

The marginal and approximate conditional likelihood in (5) or (6) can be evaluated at any
® using state space models in the approach of Harvey and Phillips (1979). For any given &,
once the recursions to estimate 8 and o? are complete, the value of s?and | ® |” can be
calculated from Harvey and Phillips (1979, egs. 5.6 and 6.6, and 4.3 respectively). It is then
necessary only to obtain X7® ~'X and its determinant. The value of X7®~'X may be
obtained from the final step in the recursive equations of Harvey and Phillips (1979, eq. 3.4).

3. SIMPLE RANDOM SAMPLING ON SUCCESSIVE OCCASIONS

3.1 Some General Results for Rotation Sampling

Suppose rotation group G, first appears in the sample on occasion u and last appears on
occasion v. Then u is either 1 or rand v is either r + ¢ — 1 or k. The total number of occa-
sions on which a unit in G, is present in the sampleisb = v + 1 — u. Let 7, ,, ..., 7y, be
the sample means or elementary estimates for G, on occasions u, ¥ + 1, ...,v—1v
respectively. Then under model (1), the contribution of G, to the log likelihood in (3) is

— {bn,Inc + (n,/2) In(| Q, ) + [nxTQ7 %, + (1, = 1) tr(Q7'8,)]/26H)}, D

where er is the 1 x b vector (Jur — Bus Puti,r = Butls +-os Pv—1,r = Bv—1s Pvr = Bv)s
where S, is the b x b matrix of sample variances and covariances for observations within the
rotation group, and where @, is the b X b correlation matrix on the observations on a single
unit within the rotation group. Note that the parameters in 2 as given in expression (1) will
also be the parameters in Q,. The correlation matrix Q is based on measurements from all
occasions 1 through k; the correlation matrix ©, is from the subset of the data observed from
occasions u through v. By the independence assumption, the full log likelihood is obtained
by summing (7) over all rotation groups.

Given the parameters in 2, or equivalently the parameters in @y, ..., Qyc—1, expressions
for the maximum likelihood estimates f and &2, for u and o? respectively, may be found.
Likewise, V(ji), the estimated variance-covariance matrix of 4 may be obtained. This is
illustrated for a first-order autoregressive process in Section 3.2. Then the marginal likelihood
for the parameters in @y, ..., Qx,c_1 is given by (5) with the expressions in (5) given by
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k+c—1

|¢|%=Hﬂrs
r=1

|XT(I’_1X|1/2 = V(ﬁ)/sk, (8)
k+c—1
= Y (nET07'% + (n, — 1) 0(Q]1S)),
r=1

and p = k, where £, is x, with the u’s in x, replaced by their maximum likelihood estimates.

3.2 First-Order Autoregressive Processes

When specific forms of the correlation matrices @y, ..., Q4. are used, some simplifi-
cations to the general form of the marginal likelihood for correlation parameters, given by
(5) ar:d (6), may be obtained. For example, assume the first-order autoregressive model

Yy = e+ O Diorj — 1) + €y ®)

where €, ~ N(0,0%) fort =1, ..., kandj = 1, ..., N, and where the €’s are mutually
independent. Model (9), essentially Patterson’s (1950) model, is a special case of (1). As in
Section 3.1, the vector of regression parameters 8 = (@, ..., pg) T When the data vector
y contains the measurements on each unit grouped by all the occasions on which it was sampled,
as in the rotation sampling description of Section 3.1, the correlation matrix ®, now a function
of the autoregressive parameter ¢, can be written as a direct sum of matrices, each of which
are the correlation matrices of a first-order autoregressive process.

The following notation, similar to Patterson (1950), is used to denote various sample sizes,
means and sums of squares and cross products (corrected for the appropriate mean) for occasion ¢:

x, = the proportion of units on occasion ¢ that are matched with units from the previous
occasion (¢ — 1);
n, = the number of units sampled on occasion ¢;
y{ = the mean of the units on occasion ¢ that are matched with units from the previous
occasion (¢t — 1);
7 = the mean of the units on occasion ¢ that are unmatched with units from the previous
occasion (f — 1);
J; = the mean of all the units on occasion ¢;
%/ = the mean of the units on occasion ? that are matched with units from the following
occasion (7 + 1);
syy; = the sum of squares among units on occasion ¢ which are matched with units from the
previous occasion (¢ — 1);
syy/ = the sum of squares among units on occasion ¢ which are unmatched with units from
the previous occasion (f — 1);
sxx; = the sum of squares among units on occasion ¢ which are matched with units from the
following occasion (¢ + 1);
syy, = the sum of squares among all the units on occasion #;
sxy, = the sum of cross products for measurements on sample units from occasion ¢ matched
with sample units from (# — 1).
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Under the special case of model (9), and after much algebra, it may be shown that (7) summed
over all rotation groups r, the log-likelihood for the data reduces to

L(py, « s oy 05 ¢) = — mlno + (d/2)In(1 — ¢?)
— {A(p,9) + B(¢)}/(20%), (10)

where d is the distinct number of units sampled (irrespective of the number of occasions on
which a unit is sampled) and m is the total sample size (n; + ... + n;). Further in (10),

A(p,d) = (1 — dH)n(F; — m)?

k
+ E [tht{y_t’ — = (X — )+ (= mn (1 = ) (3 — l‘-t)z]
t=2 (11)

and
k

B(¢) = (1 — ¢ syyy + Y, [P/ — 20509/ + syy/ + (1 — &") sy} (1))
t=2

For any given value of ¢ the maximum likelihood estimator is i = G~ !z and 6% =
{A(f,0) + B(¢)}/m, where A (i1,¢) is (11) with u replaced with its maximum likelihood
estimate and where G is a symmetric k X kband matrix of band width3and zisak X 1 vector.
The nonzero entries of G are

&y = TN, + (1 — 7r,)n,(l - ¢2) + 7r,+1n,+1¢2, for t = 1, ey k

and
gt,t+1 = - 7r,+1nt+1¢, for ¢t = 1, cony k — 1,

where m; = m4; = 0. The entries of z are
zr = mn(y, — ¢X{_y) + (1 — m)ny/ (1 — ¢%) — Tt M1 (Fie1 — 0%/),
fort =1, ..., k, where 7; = m;,, = Oand §{ = y,. The vector of estimated means f is

unbiased for u under model (9) and its variance-covariance matrix is 02G L. It follows from
(5) or (6) that the marginal and approximate conditional likelihood for ¢ is

(1 _ ¢2)d/2
(A(p.0) + B(¢)}m=P2 G |%

Ly(¢) = (13)

3.3 Example

The data for this example are forestry data taken from Cunia and Chevrou (1969, p. 220).
The data are the merchantable volume of timber per plot measured on three occasions with
partial replacement of the sample units. In rotation sampling it is assumed that once a unit
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Figure 1. Marginal Likehood for the AR(1) Parameter

is dropped from the sample it is not selected again. In view of this assumption an adjustment
to the data in Cunia and Chevrou was made. In particular, the measurements from sample
units matched on the first and third occasions without matching units on the second occasion
were dropped from the current example. From the remaining data the following calculations
may be made:

my, = 86/139, w3 = 76/100, n, = 104, n, = 139, n; = 100, y, = 161.5581,
73 = 179.9211, yp{ = 154.0673, y; = 167.2075, $7 = 181.125, X/ = 147.6512,
X; = 163.4342, syy; = 864129.2, syy; = 555369.5, syyy = 943948.5, syy; =
266820.7, syyy = 271762.6, sxx{ = 800753.5, sxx; = 559850.7, sxy, = 812435.7,
sxy; = 550943.6, d = 181, and m — k = 340.

On substituting these data into (13) the marginal and approximate conditional likelihood
of the data for the autoregressive order one parameter ¢ may be obtained. This is shown in
Figure 1.

4. COMPLEX SURVEYS

There are several ways in which one may proceed to analyze time series data from complex
surveys. Each method that can be put forward will depend upon the sample information that
is available.
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If data are available at the micro level, then variance-covariance matrices based on the
complex design can be computed for the elementary estimates for each rotation group. A pseudo
marginal likelihood is obtained by replacing £, and S, in (5) and (8) by their complex survey
counterparts. A similar approach is taken, for example, by Roberts, Rao and Kumar (1987)
in logistic regression analysis for complex surveys: obtain a likelihood or a set of likelihood
equations and replace the usual statistics by their complex survey counterparts.

Under simple random sampling, S, estimates the finite population variance-covariance
matrix for measurements on the occasions covered by rotation group r. Consequently, in a
complex design, S, is replaced by a design-consistent estimate of the corresponding finite
population variance-covariance matrix. For example, Kilpatrick (1981) looked at a stratified
sampling design on two occasions for evaluation of the standing volume of state forests in
Northern Ireland; the strata were based on the times, beginning in the 1920’s, at which the
forests were planted. In order to calculate the stratified sampling equivalent to §,, it is
necessary to have the estimates of the means on each occasion, strata means, strata variances,
and strata covariances for the unmatched and matched samples from the two occasions. For
a stratified population, the finite population variance (or covariance) may be decomposed into
terms comprising the variation (or covariation) between strata and the variation (or covariation)
within strata; see, for example, Cochran (1977, eq. 5.32). Estimates of the means and strata
means would be used to obtain a consistent estimates of the between strata variation or covaria-
tion component and estimates of the strata variances and covariances would be used to obtain
estimates of the within strata variation and covariation. Unfortunately, only certain strata
variance and covariance estimates were relevant to Kilpatrick’s study, so that there is insuffi-
cient published data in the article to calculate a maximum marginal likelihood estimate for
the correlation between timber volumes on the two occasions.

In many cases the data at the micro level will not be available. The estimation procedure
then depends upon the data that are available. One scenario is considered here; others could
be formulated. Suppose that only the elementary estimates and their design effects are available.
Let 7, , be the estimate from rotation group G, on occas1on t based on a sample of size m,.
Let deff, , be the design effect associated with 7, ,. If o %/m, is the variance of ¥, , under simple
random sampling, then on appealing to the Central Limit Theorem,

(Frr — m)/ (deff,) " ~ N(0,6%/m,) (14)

approximately. The modelling may proceed by assuming, within G,, an ARMA-type process
such as

Frr — )/ (deff )" = & (Fro1, — pe—1)/(deffi_y )" + €, (15)

where €, has constant variance. This may be easily cast into the framework of model (2), where
the data vector y contains data of the form y, ./ (deff,,) % where B8is (1, f2s +--» &) s
where X contains entries of the form 1/(deff,_, ,) % The marginal likelihood, obtalned asa
special case of (5) or (6), may be evaluated using the state space models of Harvey and Phillips
(1979) as noted in Section 2. Marginal and approximate conditional likelihood estimation is
especially desirable under the model given by (14) and (15). The estimate of ¢ in this case is
based on the variation between elementary estimates within each rotation group; the varia-
tion within elementary estimates is not available. The length of time a rotation group remains
in the sample is short so that the problems of bias and inconsistency in the maximum likelihood
estimates will be applicable here.
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5. DISCUSSION

Binder and Dick (1990) have also suggested the use of marginal likelihood estimation
techniques for sampling on successive occasions. In their framework, suppose that the survey
estimates of the means, say 7,, are available for each occasion ¢t = 1, ..., k. Also, the matrix,
say S, of variances and covariances of the surveys estimates is available. As in Binder and Dick
(1989, 1990), among several others, the 7,’s may be modelled by

Jr=p t &, (16)

where ¢, is the survey error at time # with variance-covariance matrix estimated by §. The
means on each occasion, p, for occasion ¢, follow an ARMA process. Model (16) is a special
case of the random coefficients regression model, so that the appropriate marginal likelihood
is different from (5).

A marginal or approximate conditional likelihood for correlation parameters in a random
coefficients regression model is obtained as follows. Suppose in model (2) that 8 is a random
vector modelled by B8 = W& + u, where W is a p X ¢ matrix of known values, 6 is a
g X 1 vector of parameters, and u ~ N(0, vT"), independent of €. Under the composite
model y = XWs + Xu + ¢, the log-likelihood for 6, Q, T, 'yz, and k = 02/72, denoted by
L(8,x,42,T,9Q), is given by (3), with @ replaced by «Q + XTXT and XB replaced by XWs.
Likewise, the marginal likelihood, denoted by L,,(x,T,Q), is given by (5), with X replaced by
XW and Q replaced by «Q@ + XT'X7. This yields

Ly, T,2) = {| «Q + XTXT |* | (XW)T(xQ + XTXT)y~'xw | g™ "', (17)

where
g = y7(x@ + XTX7) "y

- yTQ + XTXT) " XWw((XW)T(xQ + XTXT) ~'XW) ~L(XW)T(«Q + XTXT) "1y,

Now the dimension of Q may be large in comparison to T'; this can be the case in sampling on
successive occasions. As an alternate approach, one could take the likelihood implied by (3),
multiply it by the distribution for 3, and integrate over § to obtain the likelihood for the para-
meters under the random coefficient model. This will yield matrices of the same dimension as I'".

Since S is available, an estimate of Q, the correlation matrix of the survey error, may be
easily obtained. An estimate of k = ¢%/v2, may also be obtained. From assumptions which
lead to the marginal likelihood in (17), it is necessary to assume that e, in (16) is a stationary
random variable. Then an estimate of o2 is the average of the diagonal elements in S. If v2
is the variance of the p’s then the variation between ¥,, ¢t = 1, ..., k provides an estimate
of 0> + 4% From these two estimates, an estimate of x may be obtained. Under model (16),
Xin(17)isthe k x kidentity matrix, while Wisa k X 1column vector of 1’s. The resulting
marginal likelihood is a pseudo likelihood since some of the parameters have been replaced
by estimates. In this case, the pseudo marginal likelihood for the parameters in I' (pseudo since
x and © have been replaced by their estimates) and is given by (17) with the appropriate substitu-
tions. The parameters in I' are the correlation parameters in the ARMA process on y,. If &,
the number of occasions, is relatively large in comparison to the number of parameters in I',
then the marginal and approximate conditional likelihood estimates should be similar to the
maximum likelihood estimator. For ease of computation, it seems that the full likelihood
approach using the state space models as outlined by Binder and Dick (1989a, Section 3)
appears to be the simplest approach to use in this situation.
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