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Estimating a System of Linear Equations
with Survey Data

PHILLIP S. KOTT!

ABSTRACT

This paper develops a framework for estimating a system of linear equations with survey data. Pure design-
based sample survey theory makes little sense in this context, but some of the techniques developed under
this theory can be incorporated into robust model-based estimation strategies. Variance estimators with
the form of the single equation *‘linearization’’ estimator are nearly unbiased under many complex error
structures. Moreover, the inclusion of sampling weights in regression estimation can protect against the
possibility of missing regressors. In some situations, however, the existence of missing regressors can
make the estimation of a system of equations ambiguous.
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1. INTRODUCTION

Kott (1991) showed that design-based techniques developed for estimating a single linear
regression equation could be exploited in a more conventional model-based framework. In
particular the use of sample weighted regression was shown to help protect against the possible
existence of missing regressors, while the so-called linearization variance estimator was shown
to produce nearly unbiased estimators of mean squared error for many complex variance
structures.

This paper extends those results to the estimation of a system or ‘‘grouping’’ of linear
equations, a topic of considerable interest to econometricians (see, for example, Johnston 1972,
pp. 238-241). Two simple examples may shed some light onto the subject for those not already
schooled in econometric methods or their equivalent.

Suppose we have a sample of farmers and want to estimate the relationship between the
amount of planted soybean acres and the size of the farm. Zellner (1962) showed in effect that
even if a simple quadratic equation with independent and identically distributed errors correctly
described the universe, a better estimator than the one produced by ordinary least squares
(OLS) might exist. This estimator could be found by taking into consideration other linear
relationships, say between planted corn acres and farm size, that had errors terms correlated
with those in the original relationship. Zellner called the system-wide estimation of a group
of such equations ‘‘seemingly unrelated regression.”’ Oddly, in order for Zellner’s generalized
least squares (GLS) estimator to produce different results from OLS, it is necessary for some
equations to contain regressors not found in other equations. Alternatively, one can think
of each equation as containing the same regressors but with certain coefficients constrained
to zero.

A second example concerns a sample of firms each producing one output, y, from two
inputs, x; and x,, with unit prices, p; and p,. Economists often assume that each firm
possesses the same technology (plus or minus an error term). Given p,, p,, and y, each firm
would choose x; and x, so as to minimize total cost, ¢ = p;x; + pyXx,. Suppose that the
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relation between p;, p,, ¥ and the cost minimizing ¢ can be expressed by the following equa-
tion (on average):

log(c) = by + bilog(py) + bylog(py) + bilog(y). e8]

Economic theory tells us that a rational firm faced with implicit cost equation (1) would
choose its level of x; so that

x1py/c = by. V2]

Naturally, in order to estimate equations (1) and (2), we need to add a stochastic structure.
For simplicity, assume that both equations (1) and (2) fit the behavior of all firms subject to
respective independent (across firms) and identically distributed random errors. Observe that
in addition to the strong possibility that the error terms in the two equation will be correlated
for a particular firm, there is also a coefficient (b;) shared by both equations.

When faced with a system of linear equations in which the coefficients are known to be
constrained, the design-based approaches to linear regression reviewed in Kott (1990a) make
little sense. For that reason, although design-based practice inspires many of the procedures
discussed here, only the extended model-based approach introduced in Kott (1991) will be used
to justify them.

Section 2 lays out the theoretical model for the estimation of a system of linear equations
based on data from the full population. Section 3 introduces the sample weighted analogues
of full population OLS and GLS estimators for a system of linear equations. Section 4 addresses
robust mean squared error estimation of both the sample weighted OLS and GLS estimators
employing a straigtforward generalization of the linearization variance estimator (see, for
example, Shah, Holt, and Folsom 1977). Section 5 discusses a general method for developing
test statistics that can be used to evaluate, among other things, whether sample weighted
OLS and GLS are actually estimating the same thing. Section 6 explores a simple example.
Section 7 sketches an extension of the methodology developed here to what econometricians
call “‘simultaneous equations.’’ In the stochastic version of equation (1), for example, many
economists believe that log () should be treated as a random variable and that log(c) can be
assumed to be fixed. This causes a simultaneity bias if not specifically addressed by techniques
like two and three stage least squares (see Johnston 1972, pp. 341-420). Finally, section §
contains a brief discussion.

2. FULL POPULATION ESTIMATION

2.1 The Unconstrained System:
Suppose we have a population containing M data points. Each data point 7 is associated
with G + K observed variables satisfying the following model:
Y=XB+ U+ V, 3
where Y isan M X G matrix of observed dependent variables (the ith row of Y contains the
dependent variables associated with the ith data point),

X isan M x K matrix of observed independent or regressor variables (the ith row of
X contains the independent variables associated with the ith data point),
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B is an K X G matrix of parameters,

U isan M X G matrix satisfying the relationship limy,_ o X’ U/M = Ogy (a matrix
of zeroes) - this assumes that there is an underlying process generating the data points
which could in principle generate points ad infinitum (see Kott 1991), and

V isaM X G matrix of random variables such that E( V) = Opxgand E(ViVy) = g

It is well known that if U = Opy, E(V;sv) = Ofori # j,and og;y = 0y for all i, then
Bois = (X'X)7'X'Y C))

is the best linear unbiased estimator for 3 (see, for example, Johnston 1972, p. 240). This means
that the gth column of Bos, call it B.,, is the best linear unbiased estimator of §.,, where

Vg = XBog + g + Vg, 5)

and y.,, u.g, and v., are the gth columns of Y, U, and V, respectively. Equation (5) can be
viewed as the gth equation in the system of equations represented by equation (3).

Let us call the matrix U in equation (3) the putative missing regressor matrix. Usually, in
conventional (i.e., model-based) regression analysis that part of the dependent variable (or
variables) not capturable by a linear combination of the independent variables is (are) assumed
to be purely random. Here, however, we follow Kott (1991) and allow for the possiblility
of non-random missing regressors. Note that even when U # Oprx 6, B, s remains nearly
(i.e., asymptotically) unbiased.

2.2 The (Possibly) Constrained System:

Efficient estimation is a more complicated matter when there are constraints on some
elements of §; for example, when Bkg is known to be zero or when ﬁhfis known to equal 3, T

In this paper, we are interested in a (possibly) constrained systems of equations that can
be modelled directly with the following equation:

y=XB+u+v, 6)

where y = (3.{, -3, ---» ¥.&)’, u and v are defined in an analogous manner, X is an
MG x K matrix, 8isa K x 1 vector, and K < GK. By definition, limy,_. X u/M = Og.

When the original 3 in equation (3) is unconstrained, K = GK, and
X~ -
X
X

When the original § is constrained, however, K < GK. For example, when an element of B
is known to be zero, it can be removed from the 8 vector in equation (6) along with the column
of the X matrix that corresponds to it. When two elements in the same row of 3 are known
to be equal, the second can be removed from 3, and X can be adjusted accordingly (it will no
Ionger be block diagonal).
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Whenu = Oy and Var(v) = ¥ & Iy (where ¥ = [04}), then bg s = (X'Xx)"x'y
is an unbiased estimator for 8, but bgis = (X' [L7! ® Iy1X) "'X' [T ~! ® I/]y, where
Iy is the M X M identity matrix, is the best linear unbiased estimator. In practice, the
elements of ¥ have to be estimated from the sample, say by 6,5 = r.;r.;/M, where r., =
Vg — X'gbOLS'

It is well known that bg;g and bg; g are equal when the parameter matrix in (3) is un-
constrained (again, see Johnston 1972, p. 240). Turning to the constrained case, if 4 # Oy,
then both bo; s and bg; g are nearly unbiased estimators of 8 when limy,_. . X' U/M = Ogy ¢
holds as we originally assumed. Unfortunately, bg; s may not be nearly unbiased under the
weaker assumption that lim,,_ X’ u/M = O, which is more in line with the extended model
in Kott (1991) when (6) is viewed as a single equation.

To see why this is, let X., denote the M X K matrix formed from the { (g — 1)M + 1}th
through the {gM}th row of X and ¥ ! = {¢/¥}, then

E(bgs — B) =« X'[Y7' ® Iylu/M =

§ X.é( Zf; afgu.f)/M = Zg: ; %X} u.f/M,

which approaches zero as M grows large under the stronger assumption but not necessarly the
weaker one.

3. ESTIMATION WITH SURVEY DATA

Suppose now that we observe variables values for only a random sample of the population.
Let P = diag{p;}, where p;is the probability of selection for data point i. Let S = diag{s;},
where s; = 1if data point / is in the sample and O otherwise. Finally, let W = (m/M)P~! S =
diag{w;} be the matrix of sampling weights, where m is the sample size. When all the
p; = m/M, note that W = S.

It is not difficult to show that for many sample designs and populations (see Kott 1990b
and 1991), the sample weighted OLS estimator:

Bwows = (X'l ® WIX) ™' X' [I ® W1y (7

is a design consistent estimator for bg; 5, Wwhich means that plim,, _ o, (Bw-oLs — bors) = Ox.
Under similar conditions, semple weighted GLS estimator:

Bwors = (X' ® WIIE ' ® Iyl X) X' (I ® WIIL ™' ® Iyly

(X' [£7'®@ WIX) X[ ® Wiy, @®)

where

M
agf = r.é Wr.f E Wi, and r =y — XBw.oLs»

i=1

is a design consistent estimator for bgg. Like borg and bgrs (and for the same reasons),
Bw-.oLs and By.qLs are equal for an unconstrained system of equations.
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If By.oLs and Bw.cLs are design consistent, both are also nearly unbiased estimators of 8
when limy,_ o X' U/M = Ogy¢, because bors and bgy s are; however, Bw-cLs - like bgrs -
may not be nearly unbiased under the weaker assumption that limp;_ o X" u/M = 0.
(Unbiasedness here is always defined with respect to the model in equation (6)).

4. MEAN SQUARED ERROR ESTIMATION

Suppose the sample design is such that there are H strata, ny, distinctly sampled PSU’s
in stratum A, and mj; sampled data points in PSU hj. Both By. -OLS and fBy.gLs have the
form 8 = Cy. Without loss of generality, they can be rewritten as B8 = C*y*, where y*
On’s -5 Yeng') contains only elements corresponding to sampled data points, and yy; is
the vector of G X my,; y-values associated with data points in PSU A4j. Define r* and r,; in
an analogous manner to y* and yy;.

Let D,,j be a diagonal matrix of 0’s and 1’s such that Dy;y* = (0’, ..., y4f, ..., 0), and
let g,; = C*Dy;r*. Extending the design-based linearization variance estimator in a straight
forward manner, the estimator for the mean squared error of B = C*y* has the form:

H ny 1 np "h
mse = [ E 8ni&ni — —( E ghj) ( Z ghj')]- )]

h= j=1 Jj=1

Under mild restrictions on the sampling design, mse is nearly unbiased when U (from
(3)) = 0y« and V obeys the following property:

= 0 when s and ¢ are from different PSU’s

| E(vsg vtf) l
< Q otherwise.

See Kott (1991) for the proof in the G = 1 case; the extension to the G > 1 case is trivial.
The estimator mse remains reasonable when U # 0y« (see Kott 1990a).

5. TEST STATISTICS

Let B;.ors and B.gLs be the unweighted counterparts of Bw.oLs and By.cs derived by
replacing the Win (7) and (8) by S. One is often interested in determlmng whether using the
sampling weights really matters. This comes down to testing whether Br.oLs and Bw.oLs are
significantly different; that is, whether they are estimating the same thing.

When weights are determined to matter, another question of some interest is whether
Bw.oLs and Bw.cLs are significantly different; that is, does limy,_. X' U/M = Ogy¢hold so
that these two estimators are estimating the same thing?

A general statistic for testing whether:

5(1) = E E {C1)*Dyjy*} and By = Z E {C2)*Dyjy*}
h J

h J

are equal is

T = (B — B(Z)]lA_l[B(l) - B, (10)
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where

- Ea{ B H(E ) ()

dnj = C)*Dujrnj1y = C(2)"Dujrajizy> and raj gy = Yoy — XniB(p)-

Under the null hypothesis, the test statistic, T2, is asymptotically a x? random variate with
K degrees of freedom. Given our concern for robustness, it seems prudent to question the null
hypothesis when prob (X(ZK) > T?) is at considerably less than the standard 0.1 or 0.05 level,
but not when 72 is less than its expected value, K.

6. AN EXAMPLE

Consider the following example synthesized from data from the National Agricultural
Statistics Service’s June 1989 Agricultural Survey. The data set, previously analyzed in Kott
(1990a), is briefly described below.

A sample of 17 primary sampling units was selected from among 4 strata. These PSU’s were
then subsampled yielding a total sample of 252 farms. Although the sample was random, not
all farms had the same probability of selection.

Suppose we are interested in estimating the parameters, 8; and 3,, of the following
equation:

Yu = XiB + xiB + uy + vy, 11

where i denotes a farm,

Y1 isfarmi’s planted soybeans to cropland ratio when i’s cropland is positive, zero otherwise;
xy; is 1 if farm / has positive cropland, zero otherwise; and

X,; is farm #’s cropland divided by 10,000.

(Note: dropping all sampled farms with zero cropland from the regression equation will
have no effect on the parameter estimation, but it can affect mean squared error
estimation.)

Letting 5’(1) in equation (10) be the pure OLS estimator for the vector (8;, 8;)’, and )
be the sample weighted estimator, one computes a T2 of 4.58. Under the null hypothesis that
OLS and sample weighted least squares are estimating the same thing (for which u;; = 0 is
sufficient but not necessary), 72 is asymptotically x(zz). We cannot reject this null hypothesis
at the 0.1 level. Nevertheless, since T2 is considerably greater than 2, it seems that the existence
of a putative missing regressor is more than likely. Thus, the sample weighted regression
estimator should be employed rather than the OLS estimator.

Table 1 displays both the pure OLS and the sample weighted coefficient estimates. Although
the sample weighted estimator for 3, is not significantly different from zero at the 0.1 level,
we retain it in the model because it exceeds its estimated root mean squared error. This parallels
the reasoning for preferring sample weighted regression over OLS.

Notice the loss of efficiency that results from using the sample weighted estimator in place
of pure OLS. The estimated root mean squared error for the 8, estimator more than doubles
(note: both root mean squared errors were estimated using equation (9)).
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Table 1
Alternative Estimates for Equation (11)

OLS yii = 0.268x; — 0.92xy; + up; + vy
(.044) (3.95)

sample weighted y1i = 0.191xy; + 12.15xy; + uy; + vy;
(.075) (9.95)

sample weighted GLS Y1i = 0.197xy; + 10.26xy; + uy; + vy;

0.71) 6.97)

Numbers in parentheses are root mean squared errors.

We can increase the efficiency of the sample weighted estimator by adding a second farm
equation and estimating it and (11) as a system. Let

Yoi = XiiB3 + uy + vy, 12)

where y,; is farm i’s planted corn to cropland ratio when i’s cropland is positive, zero
otherwise.

The sample weighted estimators in Table 1 and their estimated root mean squared errors
are unchanged under system-wide sample weighted OLS. The system approach, however, allows
us to calculate sample weighted GLS estimator for 3; and 8, which are also displayed in the
table. Observe that the estimated root mean squared error for 3, is reduced by approximately
30% without a loss of robustness, assuming that sample weighted OLS and GLS are estimating
the same thing.

The T? value for a test comparing the sample weighted OLS and GLS estimators for the
vector (84, B8,) ' is 0.97. This number is considerably less than 2. Thus, the two estimators do
appear to be estimating the same thing. That is to say, there is no additional regressor in one
equation related to the putative missing regressor in the other (which is not surprising since
when an x,; term was added to the right hand side of equation (12), its estimated coefficient
was less than its estimated root mean squared error).

7. SIMULTANEOUS EQUATIONS

In a simultaneous equation framework, some of the columns of the dependent variable
matrix, Y, (see (3)) are actually contained on the right hand side of the gth equation (see (5)).
Formally, we can write

y=Yya+XB+u+v or y=Z5s+u+v,

where Y, = ’ )

Z = (Y,X), and &= [g].
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Most of the columns of Y, are O-vectors. The rest (no more than G-1 columns) are columns
of Y from equation (3).

Define ¥, as X(X’'WX) ~'X'WY,. Now replace X in (5) by Z = (Y. X) and
proceed as before. Equation (7) produces 5w.oLs, akin to two stage least squares, while (8)
produces 8w.GLs, akin to three stage least squares. Mean squared error estimation follows
along the same line of reasoning that produced equation (9).

8. DISCUSSION

The purpose of this paper was to show how procedures developed in the design-based survey
sampling literature - in particular, sample weighted regression and the linearization mean
squared error estimator - could be adopted to the estimation of a system of linear equations.

One somewhat unexpected discovery was when estimating the parameters of a constrained
linear system, the sample weighted analogues of OLS and GLS might be estimating different
things. On further reflection this is not so suprising. If there are missing regressors in our
working model, perhaps we don’t always know enough about the true model to put constraints
on the parameters in the first place.

It is important to realize that mse in equation (9) can be used to estimate the mean squared
error of parameter estimators even when there are no missing regressors. The advantages of
mse to conventional practice is that it allows for the possibility of heteroscedasticity and complex
correlations across data points (but within PSU’s).

If there are no missing regressors, however, the following estimator has all the advantages
of mse and is generally more efficient:

H n
n

mse’ = E E i l{ghjghj' — gg'/n}, (13)
h=1 j=1

where n = Tn,and g = ¥ Lgy (note: if Xg = (1, ..., 1)’ for some K-vector g, then
g = 0).

When there are missing regressors the diagonal elements of mse’ may tend to be biased
upward. The reasoning here follows that in Wolter (1985) for collapsed strata variance
estimators in design-based sampling theory.
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