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The Time Series Approach to Estimation
for Repeated Surveys
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ABSTRACT

Papers by Scott and Smith (1974) and Scott, Smith, and Jones (1977) suggested the use of signal extraction
results from time series analysis to improve estimates in repeated surveys, what we call the time series
approach to estimation in repeated surveys. We review the underlying philosophy of this approach,
pointing out that it stems from recognition of two sources of variation - time series variation and sampling
variation - and that the approach can provide a unifying framework for other problems where the two
sources of variation are present. We obtain some theoretical results for the time series approach regarding
design consistency of the time series estimators, and uncorrelatedness of the signal and sampling error
series. We observe that, from a design-based perspective, the time series approach trades some bias for
areduction in variance and a reduction in average mean squared error relative to classical survey estimators.
We briefly discuss modeling to implement the time series approach, and then illustrate the approach by
applying it to time series of retail sales of eating places and of drinking places from the U.S. Census
Bureau’s Retail Trade Survey.
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1. INTRODUCTION

Papers by Scott and Smith (1974) and Scott, Smith, and Jones (1977), hereafter SSJ,
suggested the use of signal extraction results from time series analysis to improve estimates
in repeated surveys. If the covariance structure of the usual survey estimates ( ¥;) and their
sampling errors (¢,) for a set of time points is known, these results produce the linear func-
tions of the available Y,’s that have minimum mean squared error as estimators of the popula-
tion values being estimated (say 6,) for 8, a stochastic time series. To apply these results in
practice one estimates a time series model for the observed series Y; and estimates the
covariance structure of e, over time using knowledge of the survey design.

Section 2 of this paper gives a brief overview of the basic results and framework for the
time series approach. Section 3 considers some theoretical issues and section 4 some applica-
tion considerations for the approach. In section 5 we illustrate the approach with an example
using two time series from the Census Bureau’s Retail Trade Survey.

2. BASIC IDEAS AND GENERAL CONSIDERATION
OF THE TIME SERIES APPROACH

The basic idea in using time series techniques in survey estimation that distinguishes it
from the classical approach is the recognition of two sources of variability. Classical survey
estimation deals with the variability due to sampling - having not observed all the units in
the population. Time series analysis deals with variability arising from the fact that a time series
is not perfectly predictable (often linearly) from past data. Consider the decomposition:
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Y, = 6 + e, 2.1)

where Y, is a survey estimate at time ¢, 6, is the population quantity of interest at time #, and
e, is the sampling error. The sampling variability of e, is the focus of the classical survey
sampling approach, which regards the 6,’s as fixed. From a time series perspective all three
of Y;, 6,,and e, can exhibit time series variation, as long as they are random and not perfectly
predictable from past data. Standard time series analysis would treat Y; directly and ignore
the sampling error in the decomposition (2.1), not treating e, explicity, but only indirectly
in the aggregate Y;. In fact, time series analysts typically behave as if the sampling variation
is not present and the true values are actually observed. The most basic thing to keep in
mind about the use of time series techniques in survey estimation is that there are two distinct
sources of stochastic variation present that are conceptualized, modeled, and estimated
differently.

2.1 Signal Extraction Results

Suppose that survey estimates Y, are available at a set of time points labelled ¢ = 1, ..., T.
LetY = (Y}, ..., Yy)’ and similarly define § and ¢ so we haveY = ¢ + e. Assuming the
estimates Y; are unbiased and #, and e, are uncorrelated (see section 3.2)

E(X) = E(..o) =p = (ﬂ'ls “eey /"T)I
Yy =YX+ Lo (2.2)

where E denotes expectation over both the sampling and time series model distributions, and
Yy is the covariance matrix of Y, efc. Herey and Y, refer to the time series structure of 6,
which is not subject to sampling variation. If Y,, 8,, and e, do not require differencing, it is
well known that, since Cov(8,Y) = Y,, using (2.2) the minimum mean squared error linear
predictor of @ can be written

O=u+ Lily'@ - 2.3)
=g+ (I - LLy)(¥ —n) 249
=+ I+ L.L7) 'Y —n). (2.5)

Another standard result is that the variance of the error of this estimate is
Var(§ —8) = Ly — LyZy'Ts = L. — L.I7' L. (2.6)

If normality of (6,Y) is assumed (2.3) - (2.5) give E(@ | Y), the conditional expectation of
g given Y, and (2.6) gives Var (§ | Y), the conditional variance.

If Y, requires differencing the preceeding results need to be modified. Assume e, does not
require differencing, but 6, and Y; need to be differenced once (i.e. by applying 1 — B where
BY, = Y,_). Let the differenced databe W; = (1 — B)Y, = (1 — B)8, + (1 — B)e, for
t=2,...,T. Let A = [A;] be the (T — 1) x T differencing matrix with 4; = —1,
A, ;41 = 1, and all other elements zero, and write AY = W = AS + Ae. Then we use
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f=Y -~

=Y - LA LH A —w), @.7)

LI

Var(§ — 9) = T, — LA’ T AL,. 2.8)

The expressions (2.7) and (2.8) also apply when 6, and Y, require a more general differencing
operator (e.g. seasonal differencing), with appropriate definition of the differencing matrix
A, as long as e, does not require differencing. These results are analogous to (2.4) and (2.6),
but with A’ ¥ j'A playing the role of Ly . The results are given in Bell and Hillmer (1990),
where their optimality properties are discussed. They were essentially given by Jones (1980),
but without real justification.

Scott and Smith (1974) and SSJ used classical signal extraction results equivalent to (2.3) -
(2.6) based on covariance generating functions rather than covariance matrices. Bell (1984)
considers such results for models involving differencing. Another approach (Binder and Dick
1989, Bell and Hillmer 1989) involves putting time series models for 6, and e, in state space
form and using the Kalman filter and smoother, which can be viewed as an efficient way to
compute the matrix results given above. Also, see Tam (1987) for use of the Kalman filter in
an explicitly model-based approach to analysis in repeated surveys. In subsequent discussions
we generally refer to the results (2.3) - (2.6), though our remarks easily extend to cover the
use of (2.7) - (2.8).

In many cases, for time series Y; and 6, that are always positive, we will want to take
logarithms of ¥, to help induce stationarity of 6, and the sampling errors. In such cases we
rewrite (2.1) as

Y, =6,(1 +4d;) = 0, 2.9
where i, = ¢,;/0;and 4, = 1 + #,. Taking logs we get
Iog(Y;) = log(8,) + log(l + ) = log(8;) + log(u,). (2.10)

Letting g and ¥, now refer to log(§) = (log(6;), ..., log(fr))’,and Xy = Ly + X, refer
to log(Y), analogous to (2.4) our estimate is

log(d) =u + [I — LIy '|(oe®) — ). @.11)

The analogues to (2.6) - (2.8) are obvious. To estimate é, we use exp [log(éz )]; alternatively,
one could use exp[log(d;) + Var(log(d,) — log(d,))/2] for a more ‘‘unbiased’’ estimate of
6, with minimum mean squared error (see Granger and Newbold 1976).

Notice that (2.3) - (2.6) require knowledge of g and any two of Ly, ¥4, and X, (the third
can be obtained from (2.2)). In practice these will not be known exactly and will need to be
estimated. Thus, the true minimum mean squared error linear predictor § cannot be obtained
exactly and (2.6) or (2.8) understates the mean squared error (MSE) since it does not account
for modeling errors. (See Binder and Dick (1989) and Eltinge and Fuller (1989).) The basic
assumption underlying the application of the preceeding results, which we shall call the time
series approach to survey estimation, is that g and Yy can be well-estimated from the time
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series data on Y, through a time series model, and X, can be well-estimated using survey
microdata and knowledge of the survey design (possibly also using a model). We discuss these
issues further in section 4 and illustrate the approach with the example of section 5.

2.2 Some General Considerations of the Time Series Approach

Smith (1978), Jones (1980), and Binder and Dick (1986) review and discuss the approach
known as Minimum Variance Linear Unbiased Estimation (MVLU). While both the MVLU
and time series approaches can use data from time points other than ¢ in estimating 8,, they
differ in that MVLU regards the 6,’s as fixed and still only treats one source of variation, that
due to sampling. MVLU was developed for cases (such as many rotating panel surveys) where
more than one direct estimate of 6, is available for each ¢ and the e,’s are correlated over time
due to overlap in the survey design. The use of Y] for j # ¢ in estimating 6, then comes from
generalized least squares results and the correlation of the e,’s. We can see the distinction in
terms of our results for the simple case (2.1) where only one direct estimate, Y;, of 6, is avail-
able, by letting Var(f,) — oo to get the MVLU. Then £ ' — 0and (2.5) becomes § = Y,so
without multiple estimates of 8, the MVLU just uses Y; to estimate 6,. These remarks apply
generally to composite estimation (Rao and Graham 1964, Wolter 1979), which is often used
as an approximation to MVLU.

One question that may arise regarding the time series approach is why one should consider
0, a stochastic time series? This issue has been discussed by SSJ and at length by Smith (1978).
They observe that (1) users of data from repeated surveys treat the data Y, as a stochastic time
series in modeling and would do the same with 8, if it were available (as it essentially is for
surveys with very low levels of error), and (2) classical results (e.g. Patterson 1950) for estima-
tion in repeated surveys (MVLU) assume a time series structure for the individual units in the
population, while maintaining the anomalous position that 8,, which is a function of these
individual units (such as the total), is a sequence of fixed, unrelated quantities. In fact, if we
assume 0, is a sequence of fixed, unrelated quantities, then data through any time point are
irrelevant to the future behavior of the true series 6,. If this were the case, then there would
be little point in doing the survey in the first place. The data would be out of date as soon as
they were published. The real questions here are whether or not we can estimate the time series
structure of §, and e, well enough to make beneficial use of this in survey estimation, how
worthwhile these benefits may be, and what risks are involved in doing so?

Along with opportunities for improving estimation in repeated surveys, the time series
approach offers potential for improved results in other problems where typically only one of
the two sources of variability is recognized. It also can potentially unify these as subproblems
under one general approach. Such problems include preliminary estimation in repeated surveys
(Rao, Srinath, and Quenneville 1989); seasonal adjustment (Wolter and Monsour 1981,
Hausman and Watson 1985, Pfeffermann 1991); time series trend estimation and the related
problem of detection of statistically significant change over time (Smith 1978); benchmarking,
the reconciling of results from a repeated survey with the results from another survey or
census estimating the same population characteristics (Hillmer and Trabelsi 1987, Trabelsi and
Hillmer 1990); and inference about time series properties of the true series 6, relevant to
economic models (Bell and Wilcox 1990).

Finally, we note that the decomposition (2.1) or (2.10) does not allow for nonsampling errors,
nor does the time series approach treat them explicitly. Whether nonsampling error is gener-
ally more or less of a problem for the time series approach than for the classical approach is
unclear, but one may wish to consider the possible effects of known or suspected nonsampling
errors on the time series estimators when applying them in particular situations.
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3. THEORETICAL CONSIDERATIONS

We now obtain some theoretical results relevant to the time series approach, and some
properties of the resulting estimators.

3.1 Consistency of Time Series Estimators

Following Fuller and Isaki (1981) we let Y? (from the ¢th sample at time ¢) be a sequence
of estimators of the characteristic 8 of the £t population at time ¢ where the populations and
samples for £ = 1, 2, ... are nested. (See their paper for details.) DefineY?, 6%, ¢, 4", L ys Lbs

! §* and % in the obvious fashion. We consider what happens to the time series estimators
§* when the estimators Y* are consistent, i.e. Y; — 87 in some fashion as £ — oo for # = 1,
..., T, with T, the length of the series, remaining fixed. For now we assume p', Tf and T
are known for each ¢, which generally means the time series models (including their parameter
values) for the components are known. Since ufand Y { are really superpopulation parameters
for the time series, 8%, we wish to estimate, we shall assume these are the same for each popula-
tion £, that is, p’ = g and Y§ = Y, (apositive definite matrix) for all £. This is also partly for
convenience since we could get the same results assuming p!—pand L§— Yyasf— oo.

From (2.5) it would appear that Y* — ¢ would imply §* — §* as long as Y ! — 0. This
condition suggests we need mean square convergence of Y’to 6%. We thus consider estimators
Y?of 8¢ such that E[ (Y{ — 6/)%] = E[(e})?] — Oasf — oo. Since E[ (e})?] = Var(el) +
[E(€%)1? this implies both Var(e!) — 0and E (e!) — 0. Assuming Y? — 6%in mean square
fort = 1, ..., Tthus implies Eﬁ — 0. We can now establish
Result 3.1: Consider§ = (6, ..., 67)’ given by (2.4). If Y? — 6% in mean square as { — o
fort = 1, ..., T, then ¢ — 9! in mean square as ¢ — w for¢ = 1, ..., T.

Proof: From Y’ = ' + ¢'with L/ — Owehave L§ — L, (evenif §and ¢’ are correlated.)
From (2.4) we have

g — 0" = (¥ -89 - L{IH) A —w). (€B))

The first term on the right converges to0 in mean square; the second has mean0 and variance
YI(ZH L&~ 0as? — oo. Since both terms converge toQ in mean square so does [

Convergence in probability is a more familiar concept in survey sampling. If Y! — 6 as
¢ — oo in probability for ¢ = 1, ..., Tthis does not guarantee ¥ — 0, which is mean square
convergence, a stronger condition. If we assume there are random variables {, with finite
variance such that | ef | < {, (almost surely) uniformly in ¢, then Y{ — 6} in probability
implies Y? — 6! in mean square (Chung 1968, p. 64). Therefore, using Result 3.1, we have

Result 3.2: If Y? — ¢! in probability as ¢ — o for # = 1, ..., T and there exist random
variables ¢, with finite variance such that | Y! — 6! | =< ¢, (almost surely) uniformly in £, then
6! — 6in probability as £ — o fort =1, ..., T.

These consistency results show that if the errors in the original estimates Y; of §, are
small (¥, is small) then the errors 6, — 6, will be small as well. From (3.1) we see this is
because § — Y becomes small as X, becomes small, thus when there is little error in the
original estimates ¥; the time series approach will not change them much. Binder and Dick
(1986) have noted this phenomenon, and also pointed out that in this case it does not matter
what time series model is used. That is, the convergence toQ of (3.1) depends only on ¥ F—~o
and not on g or L,. Thus, the consistency results extend to allowing g, Y, and also L lto
be replaced by estimates %, £ 4, and ¥/ (which will generally come from estimated models -
see sections 4 and 5), as long as p‘and ¥ § converge to something as £ — oo (it doesn’t matter
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what as long as the limit of 25 is positive definite) and 2;’ — 0, which should generally hold
when X ¢ — 0. It is also obvious that these results extend to the nonstationary case where §
is given by (2.7) instead of (2.4). While the results show that the time series estimates behave
sensibly in the situation of small error in the original estimates Y;, the gains from the time
series approach will come in the opposite case — when Var(e,) is large.

We can extend the consistency results to the case where we take logarithms and estimate
log(6,) using (2.11). In this case let L} = Var(log(u’)) where log(u®) = (log®?), ...,
log(u%))’. If we are taking logarithms it is reasonable to assume Y?and 6% remain bounded
away from 0, say | Y | = «and | 8; | = « (almost surely) for all # and £ for some constant
k> 0.

Result 3.3: If Y/ — ¢ in mean squareas { — o for ¢t = 1, ..., T, then log(Y?) — log(6%)
and log(é}) — log(6%) in mean squareas { — o for¢t =1, ..., T.

Proof: The analogue to (3.1) is
log(§") — log(6') = (log(Y") — log(¢")) — Li(L¥) 'Qoe¥") — w).

If we can show ¥ . — 0 we will have the result since this implies log(Y?) — log(*) in mean
square, and the second term on the right behaves exactly as that in (3.1). Notice

E[(3)?) = E[(€0)*/(09)"] < (BE)) =0 a5 t= o,

thus E[ (#%)%] = E[(u! — 1)2] — 0. This implies Var(u®) — 0 and E(u!) — 1. By
Jensen’s inequality (Chung 1968, p. 45), since exp(-) is a convex function,

1< exp(E[log(u‘,’)z]) < E(exp[log(uﬁ)z]) = E[(u‘,’)z]

But E[(u{)?] = Var(u;) + [E(u;)]* — 150 exp(E[log(u{)?]) — 1 implying E[log(u})*] — 0.
This yields Var(log(u%)) — 0 as desired.

As before we could get a convergence in probability result by imposing a boundedness
condition on the log(x!). Having log(d,) as an estimate of log(8,), we have the following
Corollary to Result 3.3 for using exp[log(f,)] as an estimate of 6.

Corollary 3.4: If Y/ — 6% in mean square as £ — o for ¢t = 1, ..., T, then (see (2.11))
exp[log@t)] — 6!in probabilityas f — o fort =1, ..., T.

Proof: Since log(6%) — log(%) in mean square implies convergence in probability, the result
follows since exp(-) is a continuous function (Chung 1968, p. 66).

An analogous result obviously holds for using exp [log(8%) + Var(log(d%) — log(8!))/2] to
estimate 8,, since then Var(log(8?) — log(6!)) — 0 as{ — oo.

3.2 Uncorrelatedness of § and e

Standard time series signal extraction results corresponding to (2.3) - (2.8) typically assume
and 6, and e, are uncorrelated with each other at all leads and lags (equivalent to independence
under normality). Previous papers on the time series approach to repeated survey estimation
have merely assumed this, but since 6, and e, depend on the same population units it is not obvious
that this assumption is valid. Fortunately, we can establish that it is valid under fairly general
conditions. (Tam (1987) discusses how this fails under an explicitly model-based approach.)
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We let y,, be the value of the characteristic of interest for the ith unit in the population at
time ¢, andletQ, = {y;:i = 1, ..., N;} be the collection of all N, of these units. We con-
sider time points 7 = 1, ..., Tandlet @ = (@, ..., @7)’. The y; are random variables,
asis 6, = 6,(Q,), which is a function of the y;,. The sample at time ¢, s, (denoting the indices,
not the values, of the units selected), has probability of selection p(s; | 2). The estimator ¥,
of 6, is a function of the values y; for the units sampled, thus a function of both Q;and s;, i.e.
Y, = Y,(Q,s,). We could let Y, depend on the sample at times other than ¢, but we ignore
that here for simplicity.

We consider estimators Y, of 6, that are design unbiased, which we shall define as
E(Y|Q) = X, Y,p(s |Q) = 6,. We could alternatively define design unbiasedness as
E(Y;| Q) = Es, Y,p(s; | Q) = 6,, and then would need to assume the sample selection
~ process is such that p(s; | Q) = p(s, | Q),50 E(Y; |Q) = E(Y; | ). If the sample design
is noninformative then s, andQ are independent, implying p(s; |2) = p(s, | &) = p(s,),
and either definition of design unbiasedness reduces to Zst Y;p(s;) = ;. This is the usual
definition, which generally assumes the y;, and so Q, and 0,, are fixed. (The assumption
p(s; |Q) = p(s; | Q) allows the sample selection process at time ¢ (p (s, | 2)) to depend on
the population values at time # (£;), but assumes the population values at time points other
than ¢ (Q; forj # t) offer no additional information on s, beyond that in Q,. This might occur
if sampling was with probability proportional to the size of an auxiliary variable at time ¢ that
was correlated with the y;, only at time #.) The assumptions we make here might even be
generalized.

Result 3.5: If Y, is design unbiased for all # then 6, and e, are uncorrelated time series.

Proof: Consider Cov(f,, ¢;) for any two time points ¢ and j. Since Y; is design unbiased
E(e |) = E(Y; — 6;12) = 0, implying E[E(¢; |9)] = E(e;) = 0. Also E(§, - ¢ |2) =
6, - E(e; | Q) = 0implying E(6, - ¢;) = 0. Thus Cov(b;,e;) = E(0; - ¢;) — E(0,)E(e;) = 0.

Comment: If E(e; | Q) does not depend on Q then ¢; is said to be ‘‘mean independent”” of {,
which is known to be a stronger condition than e; and @ uncorrelated, though not as strong
as stochastic independence (unless we have normality). This shows that actually we only need
E(e |Q) = E(Y; |Q) — 6,to not depend on Q for 8, and e, to be uncorrelated time series.
This would cover cases where Y; has a constant additive bias (not dependent on {;,) as an
estimate of 6,, or, using approximate Result 3.6 which follows, a constant percentage (multi-
plicative) bias.

We now consider the logarithmic decomposition (2.10) when the ¥, are design unbiased.
We assume that i7; is O, (r;) where r, — O as £ — oo in the superpopulation framework of the
previous section, omitting the superscript £ from random variables here for convenience. (See
Wolter (1985, p. 222) for definition of the order in probability notation O,(ry). For example,
when estimating a population mean we would often have Var(i;) < K/n;, where K is some
constant and n;,is the sample size at time j in the £th population. Then #; = 01,(nj}'5 ) from
Wolter (1985, theorem 6.2.1).) From a Taylor series linearization of log(%;) = log(1 + #;)
we have from Wolter (1985, theorem 6.2.2)

log(u;) = d; + O,(rf). (3.2
Using this we obtain the following.

Result 3.6: If Y, is design unbiased for all # and #; is O, (), then to terms that are O,( rd),
log(6,) and log(u,) are uncorrelated time series.



202 Bell and Hillmer: Time Series Approach for Repeated Surveys

Proof: From theorem 6.2.5 of Wolter (1985) Cov(log(f;), log(#;)) = Cov(log(b,), 4;) +
O,(r?). Notice E(d; | @) = E(e; | 2)/8; = 0implies E(ii;) = 0, and E(log(8,)#; | Q) =
log(6,)E(4; | @) = 0 implies E(log(6,) #;) = 0, so Cov(log(f,), ;) = 0, establishing the
result.

3.3 Design-Based Properties of Signal Extraction Estimates

Unconditionally, § in (2.3) is unbiased (E(§) = E( @) = p)and has minimum MSE given
by (2.6). It is easy to see that this is not the case when viewed from a design-based perspective.
Suppose we begin with design-unbiased estimators Y, i.e. E(Y | €) = #.From (2.2) and (2.4)
wehaved — 0 = (I —L.27") e —X.Ly!(8 — u). With some algebra, we can show the
design bias, variance, and MSE of § are given by

EGID —-0=-LLy'(@ - u),
Ee - Eez}jlze - zez;lzozl?lze’
Yo —L.Xy'L.

Var(§ — 9| Q)

E[@-0)@0 -0

—LIF [T - 0 —w @ —w L7 L. (I

From a design-based perspective we see use of § trades bias for a reduction in variance, since
Y. — Var(§ — ¢ | Q)is a positive semidefinite matrix. Whether this reduces the conditional
MSE (3.3) below Y., the MSE of Y, depends on the last two terms in (3.3), and in turn on §.
There can be particular realizations of § for which the conditional MSE of § exceeds Y.,
though on average signal extraction reduces the MSE by ¥, Xy ! L., since the unconditional
expectation of the bracketed term in (3.3) is zero. (Of course, (3.3) is unusable in practice since
it depends on §.) Also, as noted earlier, modeling error will contribute additional MSE to §,
so another fundamental question, more difficult to answer (see Eltinge and Fuller 1989), is
how the real unconditional MSE of § compares to L.?

4. APPLICATION CONSIDERATIONS

Application of the time series approach to survey estimation requires estimation of the
autocovariance structure of the sampling errors, estimation of the mean and autocovariance
structure of the signal, and computation of the estimates §, and Var(d, — 6,) as discussed in
section 2. The first two generally involve use of time series models, and are discussed in some
detail in Bell and Hillmer (1989). Here we make some general remarks. We assume the ¥, are
design unbiased estimators of the 6,. We illustrate application of the methods in the next
section with two time series from the Census Bureau’s Retail Trade Survey.

‘Sampling error autocovariances, Cov(e;,e;. 1), can be estimated in an analogous fashion
to sampling variances, Var(e;), which is done routinely and for which many methods are
available. (See Wolter 1985.) In practice, there may be difficulties in linking survey microdata
over time to directly estimate sampling error covariances. Nevertheless, in what follows we
assume we have available such estimates C'c';v(e,,e,+ ) for some set of time points ¢ and lags k.
Unfortunately, if there is a substantial amount of sampling error present (the situation where
time series methods can make a difference), such autocovariance estimates are likely to have
high variances themselves. This suggests some sort of averaging to improve the autocovariance
estimates.
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First, if we assume ¢ is covariance stationary, so Cov(e;,e,.x) = 7¥.(k) depends on £ but
not ¢, then each Cov (er e « ) is estimating vy, (k) a1 and we can simply average them, i.e. take
Ye(k) = (T — k) -1 X, Cov(eser k) if we have Cov(e Crak) fort =1, ..., T — k. Alter-
natively, Corr (eerpr) = Cov (ersersi)/ [ Var (e) Var(et+k) ] can be averaged over f to
estimate Corr (e;,e,, ), which also depends on k but not ¢, and the variance estimates can be
averaged as before.

Now suppose we are assuming e, is relative covariance stationary, so Cov(e,/0;, €., /0;1x) =
Cov(i,,l;+x) = 7v.(k) depends on k but not ¢. If i, is O,(r,) for all ¢, as in section 3.2, then
from (3.2) and theorem 6.2.5 of Wolter (1985), Cov(log(u,),log(u;+x)) = Cov(d,t; x) +
Op(rE) ~ v,(k). Taking C?v(e, Jer+x)/ (Y, Y ;) as estimates of Cov (#,,4,+), these can be
averaged over ¢ to estimate v, (k). Alternatively, using corollary 5.1.5 of Fuller (1976) we can
show that Corr(log(u,), log(u,+ &) = Corr(d;, 0, 5) + O (rg ), and takmg as estimates
of p, (k) = Corr (dy,l;4 ), (Covienesi)/ Y Yo }/1I Var(et) Var (e, 1) 1°/Y, Yoy} =
Corr(e,, e,+x), we can average the estimated autocorrelations of e, over ¢ to estimate p, (k),
which are approximately the autocorrelations of log(, ). Relative variance estimates can be
averaged as before.

Actually, the usual survey estimates of variances and autocovariances will be estimating
Var(e, | ©) and Cov(e,,e;, | @). These estimates may also be suitable as estimates of
Var(e,) and Cov(e;,e,, ), e.g. if they make sense from a model-based perspective. If not,
and if Y, is design unbiased so E(e, | @) = 0, then averaging autocovariance estimates over
time still makes sense. First, if e, is assumed stationary, then v,(k) = Cov(e;,e;,4) =
E[Cov (e, e, x | @)1, so we can average estimates of Cov(e;, e, | @) to estimate v, (k).
Or if e, is relative covariance stationary, then since E(d, | Q) = E(e, | 2)/0; = 0, 'yu(k) =
Cov (i, d,4x) = E[Cov(dy, sk | Q)] = Cov(log(u,),log(u;1x)) + Op (rt ), and
estimates of Cov(#;,#,,, | @) can be averaged to estimate v, (k). It is less clear how to justify
averaging estimates of conditional (on Q) correlations, since E[Corr(e,e;x | @)1 #
Corr(e,,e,.r ), though this may be true to a sufficient approximation. In general, approaches
to estimation of sampling error autocovariance structures bear more investigation.

Given an estimate of the sampling error covariance structure, and using any relevant
information about the design of the survey, we can attempt to determine a time series model
and its parameters to closely reproduce this structure. This is illustrated in the example of
section 5.

We now turn to developing a model for the signal, 6;. Since the behavior of most published
time series Y; is dominated by their signals (otherwise, they would not be published), in
developing models for signals 6, we can draw on experience modeling time series Y, without
allowing for sampling error. Such experience suggests use of nonlinear transformations,
differencing, and regression mean functions in the model for 8, will be important. The loga-
rithm is the most common nonlinear transformation used in time series, and taking log(Y;)
lets us model log(8,) through (2.10), with consequences for the sampling error discussed above.
The following remarks are given in terms of use of (2.1), but apply equally well to use of
(2.10). While other transformations could be considered, they would not generally yield a
convenient decomposition of transformed ¥, in terms of transformed 8, and some sampling
error. Choosing between taking logarithms or not transforming seems sufficient for modeling
many series.

Assuming e, has mean zero (implied by design unbiasedness) and does not require
differencing, 6, and ¥, will require the same differencing and have the same mean function.
The mean function can often be modeled with a linear regression function, p, = X/8,
for some vector of regression variables X, and parameters 3. We often use ARIMA
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(autoregressive-integrated-moving average) models to account for the needed differencing and
to explain the autocovariance structure of the differenced 6,. A convenient approach to
developing the 6, model is to first model ¥, ignoring the sampling error, and then use a model
with the same regression terms and ARIMA order for 6,. The parameters of the §; model can
then be estimated using the time series data for Y; and the previously developed model for ¢,,
holding the parameters in the model for ¢, fixed. Diagnostic checking may suggest modifica-
tions to the 8, model. The final fitted model can then be used in the signal extraction estima-
tion of 6,. The model fitting and signal extraction computations are not trivial; Kalman
filter/smoother algorithms are discussed in Bell and Hillmer (1989). These have been
implemented in some software recently developed in cooperation with members of the time
series staff of the Statistical Research Division of the Census Bureau. This software was used
in the analysis of the next section.

5. EXAMPLE: U.S. RETAIL TRADE SURVEY - SALES
OF EATING AND DRINKING PLACES

As an illustrative example we analyze time series of sales (in millions of dollars) of Eating
Places and of Drinking Places, which are estimated in the monthly U.S. Retail Trade Survey.
The Retail Trade Survey has a list panel of large businesses that are selected into the sample
with certainty and report sales every month, and 3 rotating list panels of smaller businesses
that are selected into the sample by stratified simple random sampling. There is also a rotating
panel area sample covering companies not in the list universe. Quarterly, a sample of new firm
births is introduced, and firm deaths as determined from activity checks are removed from
the sample. The rotating panels report current month and previous month sales at intervals
of 3 months for the list sample and 6 or 12 months for the area sample. Horvitz-Thompson
(HT) estimates of current and previous months’ sales are constructed; the resulting time series
shall be denoted Y/ and Y;,. From these composite estimators are constructed as described
in Wolter (1979). The final composite estimates will make up our time series Y;. (While it
might be interesting to instead analyze Y, and Y/, directly, these estimates are not saved for
a long enough period of time for seasonal time series modeling.) Sampling variances are
estimated using the random group method (Wolter 1985, chapter 2) for the list sample with
16 random groups, and the collapsed stratum method for the area sample. Further informa-
tion on the survey is given in Isaki et al. (1976), Wolter et al. (1976), Wolter (1979), Garrett,
Detlefsen and Veum (1987), Bell and Wilcox (1990).

There are several complicating factors in the survey. The sample is redesigned and
independently redrawn about every five years, with new samples having been introduced in
September of 1977, and January of 1982 and 1987. This produces a break in the covariance
structure of e, every five years, which can be handled by the Kalman filter/smoother as
discussed in Bell and Hillmer (1989). We shall use data from September, 1977 through
December, 1986, so there is one redrawing of the sample near the middle of our series. When
a new sample is introduced approximate MVLU estimates are used for the first three months
before switching to the composite estimates (Wolter 1979). This introduces a transient effect
into the sampling error autocorrelations that we shall ignore. Finally, the monthly estimates
are benchmarked to annual totals estimated from an annual survey and from the economic
census taken every five years. To avoid this complication we use data that are not benchmarked.
The reader should be aware, however, that for this reason the data used here do not agree with
published estimates.
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Table 1
Sampling Error Correlations for Horvitz-Thompson Estimates

Lag
4 8 12 16 20 24
Eating Places
Averaged! 72 71 .79 .63 .65 77
From (5.1)? 5 .69 .81 .60 53 .61
Drinking Places
Averaged! .70 .67 .78 .60 .60 .61
From (5.1)2 72 .66 .80 .56 .50 .59
Number of Correlations Averaged 23 19 15 11 7 3
Weights Used in Determining s 1 1 1 .5 0 0

’ 7

! Raw estimates of Corr (ef ,ej’) and Corr(e; 1,6/ . 1) were available for all pairs of months from January, 1973
through March, 1975. Averages of the correlations for the lags shown were taken after applying Fisher’s transfor-
mation, and the results then transformed back. . .

2 QgrrelationsAare shown from model (5.1) for m = 4 with parameters d>4 = .604, 1, = .723 (Eating Places) and
o7 = .580, ¢ 2= .714 (Drinking Places). These parameter values were determined to minimize the weighted sum
of squared deviations of the correlations from model (5.1) and the averaged correlations using the weights shown.
Lagﬁ 20 fmd 24 were not used (given zero weight) because of the small number of correlation estimates available
at these lags.

5.1 Development of Sampling Error Models

Our first step will be to develop a model for the correlation structure of the sampling errors.
Let us write Y = 6, + e/ for the current month (¢) HT estimate, and Y/, = 6,_; + e/,
for the previous month (¢ — 1) HT estimate. We shall use the same models for e/ and e; ;.
Estimates of Corr(e/,e/_;) are extremely high - typically .98 or higher. While this is partly
artificial (due to businesses reporting the same figure for current and previous month sales,
and possibly due to the way missing values are imputed), in the absence of other information
it is difficult to distinguish characteristics of e/ from those of ¢/;.

Since the three rotating panels in the survey are drawn (approximately) independently
(Wolter 1979), auto- and cross-correlations for (e/,e/’;) should be nonzero only for lags that
are multiples of 3. Estimates of such lag correlations can be averaged over time assuming
correlation stationarity. While estimates of lag correlations are not regularly produced for
the Retail Trade Survey, this was done as part of a special study using micro-data (random
group totals) from the Retail Trade Survey sample for January, 1973 through March, 1975,
albeit at a time when the survey had four rotating list panels. Lacking more recent data, we
“averaged’’ the correlations at lags 4, 8, 12, 16, 20, and 24 for ¢/ and e;;. (This was actually
done after applying Fisher’s transformation .5 log((1 + r)/(1 — r)), to make the distri-
bution of the transformed correlations more symmetric, and then transforming the results
back.) The results are shown in Table 1. They show fairly strong positive correlation in the
sampling errors, and evidence of seasonality from the correlations at lag 12. A possible model
given such data is

(1 — ¢"B™)(1 — ®B?)e; = vy, 5.1

where m = 4 for the 4-panel survey, with the same model assumed for e/, with vy,
replacing v,,. (v, and v, ,_, are white noise with variance ol
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A particularly convenient property of (5.1) is that if the sampling error in each panel would
follow (5.1) with m = 1 if it were observed every month, then for any number m (that is a
divisor of 12) of independent panels reporting successively, e/ follows (5.1). This allows us
to use the 4-panel survey results in Table 1 to estimate ¢* and ®, and (assuming ¢ > 0) con-
vert these to estimates of ¢° and ®, the parameters of the model for the current 3-panel survey.
This was done by finding ¢* and ® to minimize the sum of squared deviations of the correla-
tions from (5.1) with those of Table 1. (Lags 20 and 24 were dropped, and lag 16 given a weight
of .5, due to the smaller number of correlation estimates that were averaged together at these
higher lags.) This resulted in ¢> = .685, & = .723 for Eating Places, and ¢ = .664,
$ = .714 for Drinking Places. The resulting correlations for m = 4 from (5.1) are shown in
Table 1, and may be compared to the averaged correlations. More formal statistical estima-
tion procedures for ¢° and ®, as well as a possible test of model fit, could be considered. (We
may pursue this later if sampling error autocorrelation estimates can be produced from more
recent micro-data from the 3-panel survey.)

We make the further assumption that Corr(e/,e/”;_z) = p Corr(e/,e/_;) for all k. To
justify this, note the population regression of e/’; _; on e/_ is pe/_, + €, where if € is not
uncorrelated with e/, at least it is certainly small since Var(€) = (1 — p?)Var(e/) and p is
very near 1. With this assumption (5.1) leads to the following bivariate model for (e/,e/”;):

(1 — ¢°B)(1 — #B'2) [e" ] = [”” ] Var[”“ ] = af[l "], 5.2)
e/ Uy -1 Vo1 [

with p = Corr(vy,v, ;) = Corr(e/,e/’,). Estimates of Corr(e/,e/’,) are regularly pro-
duced and were available for 1982 through 1986. Averaging these (with Fisher’s transforma-
tion) produced 5 = .985 for Eating Places and 5 = .986 for Drinking Places.

We can now use (5.2) to derive a model for the sampling error of the linear form of the
composite estimator (Wolter 1979), which is given by

Y/'' =1 -8)Y + B(Y/I{ + Y — Y/ ') (preliminary estimator),
5.3
Yio1 = (1 — @)Y/ + Y/ (final estimator).

In the (3-panel) retail trade survey, values of « = .8, 3 = .75 are used. It is easily seen that
(5.3) also holds for the sampling errors, i.e. with Y replaced by e. We can use the resulting
relations to derive the following equation for e, in terms of e/ and e/ ':

(1 — .75B)e, = .2¢}' — .75¢/’; + .8¢/. (5.4)
Using (5.2) and (5.4) we then get
(1 —.75B)(1 — ¢’B’)(1 — ®B) e, = 2vy — .TSvup,_y + .8vy. (5.5)

The right hand side is a first order moving average process (Box and Jenkins 1976, p. 121) whose
parameters can be determined given estimates of ¢2 and p. Thus, (5.5) would yield an ARMA
model for e;.

Rather than pursue this further, we shall instead make the rather strong assumption that
a model of the same form holds for log(#,) in log(Y;) = log(d,) + log(u,), thus

(1 —.75B)(1 — ¢3B%)(1 — ®B?)log(u,) = (1 — 3B)c,. (5.6)
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Table 2
Coefficients of Variation (CV)! for Retail Sales Estimates
Horvitz-Thompson Final Composite? Signal Extraction3
Cv Ccv Low High
Eating Places .042 .025 017 .023
Drinking Places .088 .052 .032 038

Iev = (Relative Variance) 3 .

2 The values for the final composite estimator are obtained using models (5.7a,b).
The values for signal extraction actually vary over time, being highest at the end of the series and lowest near the
middle. We show the lowest and highest values, which are attained for both series in January 1982 (low) and December
1986 (high). The signal extraction variances are not symmetric in time because the sample redraw in January 1982
is not exactly at the center of the series.

We do this because estimates of sampling variance for these series are highly dependent on
the level of the series; estimates of relative variance are much more stable over time. We also
assume we can use estimates of relative variance and of p in determining » and ¢2. Estimates
Y,, Y/, V?r(e,’) and V?r(e,’_’l) were available for 1982 through 1986. The resulting relative
variance estimates were used in the spirit of maximum likelihood estimation for the lognormal
distribution - taking the average of the logs of the relative variance estimates, adding one half
of the sample variance of the logged estimates to this, and exponentiating the results. (Merely
averaging the relative variance estimates produced similar results.) This was done separately
for Rel Var(Y;) and Rel Var(Y;_;), and these two results were then averaged, producing a
common relative variance estimate that is constant over time. The results are shown in Table 2
under the heading ‘‘Horvitz-Thompson”’. Using these and the 5’s given earlier, one can solve
for n and o2 for the right side of (5.6). The resulting sampling error models are

(1 — .75B) (1 — .685B%) (1 — .723B'?) log(u,) = (1 + .130B)¢, (5.7a)

(Eating Places) 62 = 1.948 x 107°

(1 — .75B)(1 — .664B%) (1 — .714B)log(u,;) = (1 + .134B)c, (5.7b)

(Drinking Places) 62 = 9.301 x 1073,

One can use the method of McLeod (1975,1977) to solve for Var(log(,)) in these models,
which is an estimate of the relative variance of the final composite estimator. The results are
shown in Table 2. The corresponding coefficients of variation, .025 for Eating Places and .052
for Drinking Places, are quite close to estimates published in the Census Bureau’s Monthly
Retail Trade Reports that are obtained more directly.

5.2 Time Series Modeling and Signal Extraction

Figures 1a,b show plots of the time series of final composite estimates Y; for Eating Places
and for Drinking Places, respectively. To develop models for 8, we shall begin by modeling
the ¥, series directly. Both series show trends and strong seasonality, with the magnitude
of the seasonal fluctuations larger the higher the level of the series. This suggests taking
logarithms and the need for differencing; both are typical for economic time series. Examination
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Figure 1.a Retail Sales of Eating Places — Composite Estimates (not benchmarked)

Millions of dolars
1,000

900 —

700 -

}
]
}
1
1
1
[}
[}
1
1
1
i
1
800 —:
1
1
I
1
1
I
l
l
l
1
|

|
|
|
L}
[}
1
I
|
i
[}
|
|
|
I
600 [~ !
1
1
1

I |

| ] |

i 1 I | |
1 | | | |
] | i | |
! | 1 | |
] 1 i 1 |
| 1 t 1 |
| i i 1 i
| 1 I | i
| 1 I | |
| | | | i
| | | I |
| 1 | 1 i
| | ] 1 |
| | | | |
| | | | i
| i

[} [} ] 1 [} 1
500 o e oo o oo e e b oo sl g

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

Figure L.b Retail Sales of Drinking Places ~ Composite Estimates (not benchmarked)



Survey Methodology, December 1990 209

of sample autocorrelations for log( Y;) and its differences suggested the difference operator
(1 — B)(1 — B') for both series. Retail trade series are known to contain trading-day
variation, which can be modeled by including seven regression variables in the model: X3, =
number of Mondays in month ¢, ..., X7, = number of Sundays in month ¢. Following Bell
and Hillmer (1983), a more convenient parameterization is obtained by using instead the vari-
ables T}, = X,, — X7, (number of Mondays — number of Sundays), ..., T, = Xs — X7,
(number of Saturdays — number of Sundays), 75, = ¥ | X (length of month #). To identify
the ARMA structures, the autocorrelations and partial autocorrelations of the residuals from
regressions of (1 — B)(1 — B?) log(¥;) on (1 — B)(1 — BT, i =1, ..., 7, were
examined. This suggested an ARIMA (0,1,2)(0,1,1);, model for Eating Places, and an ARIMA
(0,1,3)(0,1,1);, model for Drinking Places. The resulting estimated models were

(1 — B)(1 — B') [log(Y,) - E B,-Ti,] = (1 — .25B — .22B%*)(1 — .79B'?) q,

(Eating Places) 62 = .000230 (5.8a)

(1 -B)(1-BY) [Iog(Y,) - Y 3,.7',-,] = (1 —.21B — .15B% 4+ .03B%) (1 — .56B"?) q,

(Drinking Places) 62 = .000587. (5.8b)

For brevity, we omit the estimates of the trading-day parameters. While the lag 2 and lag 3
moving average parameters in (5.8b) are small, we shall retain them since we shall only use
(5.8a,b) as starting points for modeling log(8,) for both series.

Taking models of the form of (5.8a,b) for log(é,) with models (5.7a,b) for log(u,), the
parameters of the models for log(f,) were estimated. For both series the seasonal moving
average parameters were estimated to be very near 1(.985 for Eating Places and .992 for
Drinking Places), implying nearly deterministic seasonality that can be modeled by cancelling
a (1 — B'2) from both sides of the §, model and instead including a trend constant and a
seasonal regression function of the form Y{!v;M;, where M;, is 1 in January, —1 in
December, and 0 otherwise, ..., M, is 1 in November, — 1 in December, and 0 otherwise
(Bell 1987). Estimation of the resulting models produced the following:

(1 — B) [Iog(O,) - Y AT - ), ~‘y,~M,-,] = .00762 + (1 — .20B — .29B)b,
i i

(Eating Places) 6% = .000139 (5.9a)

(1-B) [1og(0,) - Y 8T - ), ~‘y,~M,-,] = .00352 + (1 — .18B — .09B% — .42B%)b,
i i

(Drinking Places) 6% = .000244. (5.9b)

We again omit the estimates of the regression parameters. We do not provide standard errors
for the ARMA parameters; doing so for models of the sort used here is a topic for further
research, made particularly difficult here by the unrealistic assumption that the sampling error
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Figure 2.a Eating Places: Composite (solid) and Signal Extraction (dotted) Estimates
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Figure 2.b Drinking Places: Composite (solid) and Signal Extraction (dotted) Estimates
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Figure 2.c Drinking Places: Alternative Signal Extraction Estimates




Survey Methodology, December 1990 211

model is known. Examination of standardized residuals produced by the Kalman filter, and of
their autocorrelations, suggested no major inadequacies with the fitted models for either series.

The estimated models, (5.7a,b) with (5.9a,b), were used to produce signal extraction
estimates of log(6, ), which were then exponentiated to produce estimates of 6,. The results
are shown in Figures 2a,b for the series with the estimated seasonal and trading-day effects
removed. Notice that signal extraction makes only slight differences in the estimates for Eating
Places, which contained little sampling error (low relative variance), but it makes a considerable
difference in the estimates for Drinking Places, which contained much more sampling error
(higher relative variance). Signal extraction variances for log(6,) were also produced; these are
relative variances for the estimates of 6,. Table 2 shows that, depending on the location in the
series, signal extraction produces about an 8%-32% improvement in CV over the final com-
posite estimates for Eating Places (though the composite estimate CV is small), and about a
27%-38% improvement in CV for Drinking Places. As noted previously, these results are
optimistic, since they assume the true component models are those that were estimated. To
partly address concerns about this, we next examine the sensitivity of the results for Drinking
Places to variation in the model parameters.

5.3 Sensitivity Analysis for Drinking Places

Here we focus on sensitivity of results to variation in the sampling error model, since this
was determined with less information than the signal model. Our approach is to vary parameters
of the sampling error model, then reestimate the signal model and redo the signal extraction.
While it would be preferrable to have more formal statistical measures of the signal extrac-
tion error due to model error (which the present state of theory and computer software does
not allow), this approach should at least help indicate in what respects the signal extraction
results are sensitive to parameter variation and in what respects they are not.

Comparing models (5.8b) and (5.9b) gives some indication of the sensitivity of the signal
model to changes in o2, the innovation variance of the sampling error model, since (5.8b)
corresponds to 62 = 0 and (5.9b) to 62 = 9.3 x 10~°. The most noticeable differences are
in the estimate of og, which is to be expected, and in the estimate of the seasonal moving
average parameter, 7;, say, which was found to be essentially 1 in obtaining (5.9b). Reestimation
of the signal model for other values of o2 yielded #;, = .99 aslongas ¢? = 3.0 x 107°. In
light of this, and to simplify presentation of results, we assume ;, = 1 and use a signal model
with seasonal indicator variables as in (5.9b).

Figure 2.c. shows (seasonally and trading-day adjusted) signal extraction estimates 6, corre-
sponding to sampling error models with (¢3,®) = (.564,.614) and (.764,.814), and with p =
.986 and Var(log(x,)) = .00776 (the relative variance of the Horvitz-Thompson estimates)
held fixed. These cover the extremes of §; for the sensitivity analysis. The nature of the dif-
ferent estimates §, we have generated seems to roughly correspond to the value of CVs =
[Var(log(fss) — log(fs¢)]”, the signal extraction coefficient of variation achieved at the
middle of the series. (CVs is very close to the lowest value, which is achieved at # = 53 - see
Table 2.) The lower CVg is, the smoother (5, is. CVs4is 2.78%, 3.28%, and 3.70% for (¢3,9)
equal to (.564,.614), (.664,.714), and (.764,.814) respectively. Other estimates 6, we generated
lie closest to the signal extraction estimate in Figure 2.b. or 2.c. with the closest CVs.

We now consider the sensitivity of CVs4 to variations in the sampling error model
parameters, beginning with p. The only parameter in (5.7b) affected by a change in p is 9 . Table
3 reports the values of 5 and corresponding values of p considered, and the resulting CVsg’s.
We see CVs, is somewhat sensitive to changes in p, especially increases: CVsq for p = 1(3.49)
is 6% larger than for p = .985 (3.28), the value used for (5.7b).
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Table 3
Sensitivity of CVs! for Drinking Places to Changes in n (Changes in p)

] .00 —.05 -.10 —-.15 -.20 -.25
p 9375 .9642 9792 .9888 9953 1.000
CVsg 3.03 3.12 3.21 3.31 3.40 3.49

1 CV g is the signal extraction coefficient of variation for # = 56 (the middle of the series), expressed as a percentage,
i.e. the square root of Var(log(4;) — log(6,)) multiplied by 100.

Table 4
Sensitivity of CVs¢ for Drinking Places to Changes in Var(log (u;) ! (Changes in 002)

Var(log (1)) .00676 .00726 .00776 .00826 .00876
CV(HT)? 8.22 8.52 8.81 9.09 9.36
a2 x 10° 8.16 8.76 9.30 9.97 10.57
CVss 3.16 3.23 3.28 3.35 3.40

1 Var(log(#;)) is the relative variance of the Horvitz-Thompson estimators.
CV(HT) is the coefficient of variation of the Horvitz-Thompson estimators, expressed as a percentage, i.e. the square
root of Var(log(u,)) multiplied by 100.

Table §

Sensitivity of Results for Drinking Places to Changes in (¢3,<I>)

(i) Values of 62 x 10° for given (¢>,®)
3

¢
.564 614 .664 714 764
614 16.90 14.70 12.36 9.98 7.64
.664 15.03 13.00 10.87 8.72 6.62
& 714 13.04 11.23 9.30 7.44 5.60
764 10.96 9.40 7.78 6.15 4.58
814 8.79 7.51 6.17 4.85 3.58

(ii) Values of CVg for given (¢°,&)

¢3
.564 614 664 714 764
.614 2.78 2.88 2.99 3.12 3.27
.664 2.95 3.04 3.14 3.26 3.38
& 714 3.10 3.19 3.28 3.39 3.50
.764 3.24 3.33 3.42 3.51 3.60
.814 3.36 3.45 3.54 3.62 3.70

We next consider the sensitivity of CVsg to changes in Var(log(u,)). The only sampling

error model parameter this affects is o2. Table 4 reports the values of Var(log(u,)), its square
root CV(HT), the corresponding o2, and the resulting CVss. We see less sensitivity of CVsg
here than in Table 3.
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Finally, we examine the sensitivity of CVs4 to ¢> and ®. Holding Var(log(u,)) fixed at
.00776 and changing (¢°,®) also changes o2. Table 5 reports the grid of values used for (¢*,®),
and resulting values of o2 and CVs. Notice o varies more here than in Table 4. We see CVsq
increases substantially as ¢ and ® are increased.

We conclude from this analysis that moderate changes in the sampling error model
parameters have relatively small impacts on 6,. The largest changes we observed in 6, were
around 2 percent. The same moderate changes in the sampling error model parameters have
relatively larger impacts on the signal extraction variances, with CVs6’s changing by as much
as 17 percent. This suggests that for this example the greatest concern in not knowing the
sampling error model parameters may be in the effect on signal extraction variances, and the
resulting measures of improvement over the composite estimates. However, in all the cases
considered in the sensitivity analysis the signal extraction estimates showed a significant
improvement in variance.

5.4 Conclusions

The Drinking Places example illustrates the potential gains that may be achieved with the
time series approach to survey estimation. Both examples also illustrate the complex and delicate
nature of the time series modeling that may be required. We view the results as preliminary
for several reasons. First,the optimistic nature of the signal extraction variances that do not
reflect parameter estimation error has been mentioned. Second, we have no clear explanation
of why the signal extraction estimates lie above or below the composite estimates for long
stretches of time. (This is obvious in Figure 2.b., and actually the case in Figure 2.a. as well.)
For the Drinking Places example this behavior was evident throughout the sensitivity analysis,
and so does not appear to be due to uncertainty in the parameters of the sampling error model.
We are in the process of exploring whether this may be due to the forms of the sampling error
model or signal model being incorrect. In fact, Bell and Wilcox (1990) report that the correla-
tions of e/ and e/, at lags not multiples of three are not necessarily zero, as was assumed by
the model.
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