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Robust Small Area Estimation Combining Time Series
and Cross-Sectional Data
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ABSTRACT

The common approach to small area estimation is to exploit the cross-sectional relationships of the data
in an attempt to borrow information from one small area to assist in the estimation in others. However,
in the case of repeated surveys, further gains in efficiency can be secured by modelling the time series
properties of the data as well. We illustrate the idea by considering regression models with time varying,
cross-sectionally correlated coefficients. The use of past relationships to estimate current means raises
the question of how to protect against model breakdowns. We propose a modification which guarantees
that the model dependent predictors of aggregates of the small area means coincide with the corresponding
survey estimators and we explore the statistical properties of the modification. The proposed procedure
is applied to data on home sale prices used for the computation of housing price indexes.

KEY WORDS: Kalman filter; Linear constraints; State-space models.

1. INTRODUCTION

Statistical Bureaus are often confronted with the demand to provide reliable estimators
for small area means. The problem with the production of such estimators is that the sample
sizes within those areas are usually too small to allow the use of direct survey estimators. As
a result, new estimators have been proposed in recent years which combine auxiliary informa-
tion (obtained from a census or administrative records) with the survey data obtained from
all the small areas. The common feature of these estimators is that they can be structured in
general as a linear combination of two components: a “‘synthetic estimator’’ of the form X/ B8
where X; represents the average auxiliary information at the small area level and § is a vector
of estimated regression coefficients; and a ‘‘correction factor’” of the form (y; — X,-B) where
7;and %; are the sample means of the target and the auxiliary variables. The correction factors
are used to account for the variability of the small area means not explained by the auxiliary
variables. The major difference between the various estimators is in the approach folliowed
to determine the weights assigned to the two components in the linear combination, ranging
from a “‘design based approach’’ (Sirndal and Hidiroglou 1989) to “‘empirical Bayes’’ (Fay
and Herriot 1979) and ‘‘mixed linear models”’ (Battese, Harter and Fuller 1989, Pfeffermann
and Barnard 1991).

Very few studies are reported in the literature on the possible use of the time series relation-
ships of the data to further increase the efficiency of the small area estimators. This is despite
the fact that many of the small area estimators are derived from repeated surveys such as labour
force surveys. The econometric literature contains a vast number of studies on the combined
modelling of time series and cross-sectional data, see e.g. Rosenberg (1973b), Johnson (1977,
1980), Maddala (1977, Chapter 7), Dielman (1983) and Pfeffermann and Smith (1985) for
reviews. However, none of these studies is directed to the problem of estimating (predicting)
small area means from survey data. Fitting time series models to survey data has been considered
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in the context of estimating aggregate population means, see the review papers of Smith (1979)
and Binder and Hidiroglou (1988) and the more recent articles by Binder and Dick (1989), Tiller
(1989) and Pfeffermann (1991). But again, these methods are not in routine use mainly because
the classical survey estimators of the aggregate means are often almost as efficient when the
models hold and more robust when the models fail to hold.

The situation is clearly different when dealing with a small area estimation problem; it seems
to us that for this kind of problem, the use of time series models can be of great advantage.
Although the exact nature of the model to be used in a particular application is obviously ‘data
dependent’, the class of models we consider in the next section is broad enough to apply to
many, if not most of the small area estimation problems arising in practice. These models have
the further advantage that their estimation is relatively simple. Estimation issues are discussed
in Section 3.

The use of a model always raises the question of how to protect against possible model
failures and this question becomes even more sensitive when considering the use of a model
for the production of official statistics. In Section 4 we consider this issue and propose a
modification to the model dependent predictors which guarantees that for aggregates of the
small area means for which the direct survey estimators can be trusted, the modified model
predictors coincide with the survey estimators. The statistical properties of the modified
predictors are explored. We conclude the article in Section 5 with empirical results which
illustrate the performance of the model with and without the proposed modification. The data
used for the illustrations are the sale prices of homes in the city of Jerusalem during the months
of September 1985 through November 1989. These data are used routinely by the Central
Bureau of Statistics in Israel for the computation of housing price indexes.

2. REGRESSION WITH CROSS-SECTIONALLY AND
TIME VARYING COEFFICIENTS

2.1 A General Class of Models

In what follows we denote by Y, the n; X 1 vector of observations on a target variable
Y, pertainingtoanareakattimet, k = 1, ..., K, ¢t = 1, 2, .... Weassume for convenience
that ny = 1 but as becomes evident later on, the model permits that some of the areas not
be observed at certain times. Let X, define the corresponding n,, X (p + 1) design matrix
of the auxiliary variables with a vector of ones as its first column. In many applications,
the same row vector x;, of auxiliary values applies to all the Y values of a given time so that
Xk = LnyXu where 1, . is a column vector of ones of length 7. This is the case when the only
available data are the small area survey estimators. Confidentiality as well as processing costs
often preclude the use of micro data on individual survey respondents. The theory described
in this article is not restricted to the availability of the micro data (see the example in Section 2.2)
but data availability has an obvious effect on model specifications and precision of estimation.

The regression model holding in area k at time ¢ is defined as
Y = XuBu + €us Elen) = 0, Elenelr) = oily, 2.1

where 8 = (Buos Bukt> - - -» Bp)-
We define the (superpopulation) mean of the target variable values in area k at time ¢ to be

Ou = E(My | Bu) = XuBuc @.2)
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where

Nik Ntk

Mk=]—V_"EYtki and Z(tk'_—N_tkE-thi

=) i=1

withi = 1, ..., Ny indexing the population units. Obviously, when X = Xk, then Xy = Xpx.
Let B, define an estimator for 84 . Then Ou = Xu By and

i q nex Nik R R 1 "tk "
M, = ——I: E Yii + E Xr'ki@tk] = Oy + ——< E (Yo — th'ki@zk))
N L 15 i=ngyg+1 Nue \ i1

implying that in the usual case of small sampling rates within the areas, é,k can also be con-
sidered as an estimator of the finite population mean My, . For this reason we no longer
distinguish between the finite and superpopulation means.

The notable feature of (2.1) is that the coefficients 84 are allowed to vary both cross-
sectionally and over time. The following equations specify the variation of the coefficients over

time:
ﬁtkj] _ T[Bt—l,kj] + [1] =0 23
[Bkj J Bkj 0 Nikj» J y v P ( . )

where we use the notation 8y;,j = 0, 1, ..., p,to define fixed coefficients which we interpret
below, and 7; to define fixed (2 % 2) matrices and where the residuals {7,;} satisfy

E(n4;) = 0, E(ugnue) = 8o E(ue-de) = 0 for d > 0. 2.4

The implication of (2.4) is that residuals of different coefficients pertaining to the same time
¢ are allowed to be correlated but the serial and cross serial correlations are assumed to be zero.

Next, we illustrate the use of (2.3) by considering some simple cases:

@7 = [g }] implies that B,; = By + M SO that B, represents, in this case, a common
mean. This is the well known Random Coefficient Regression Model (Swamy 1971) which
is often used in econometric applications. Obviously, by postulating, var(yy;) = 0, the
model reduces to the case of a fixed regression coefficient over time.

b T = [(1) 8] implies that By; = Br—1.45 + Nk which is the familiar random walk model, see
e.g. Cooley and Prescott (1976) and LaMotte and McWhorter (1977) for application of
this model in econometric studies. In this case the coefficient By, is redundant and should
be omitted so that 7; = 1.

() T; = [§'[*] implies the first order autoregressive relationship (B4 — By) = P (Bi—14 — i)

+ 54 considered by Rosenberg (1973a).

@7 = [(1, }] implies that By; = B;—1,,5 + Bij + M which defines a local approximation to

a linear trend (Kitagawa and Gersch 1984). The coefficient 3, represents, in this case, a

fixed slope.
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It should be emphasized that different matrices 7} can be used for different coefficients 8y;.
In fact, by defining o = (B0, Bros Bekt> Brts - - -» Bups Bip); T = diagl[To, Ty, ..., T,l,
a block diagonal matrix with 7; as the j-th block; G = I, ® [ (1,] where 1, 1 is the identity
matrix of order p + 1and ® defines the Kronecker product and 55 = (N0, Mtkts - - > Ttap)»
the combined model holding for the coefficients 3, can be written as

an = T, 14 + Gus E() = 0, E(an/_ax) = AgA (2.5)

where A; = 1ford = 0and A; = 0 otherwise, and A = [§;] is defined by the variances
and covariances §; (equation 2.4).

The model defined by (2.5) specifies the variation of the regression coefficients of a specific
area over time. The common approach to account for cross-sectional relationships between
small area means is to allow for random small area effects which are time invariant {u,}. The
general model defined by (2.1) and (2.3) includes this case by writing Y = 1, 4y + XuBu
+ en = XjB% + e, say, and specifying uy = ,_ 14 + ng With uye = 0, var(ny) = o2
and var(y,) = 0 for £ > 1 (compare with case (b) above). By assuming in addition the
autoregressive relationship defined by case (c) for the intercept variable and fixing the other
regression coefficients (case (a) with zero residual variances), the resulting model is similar to
the model considered by Choudhry and Rao (1989) except that in their general formulation
of the model the observation residuals of equation (2.1) are allowed to be serially correlated.
Notice that equation (2.1) now contains two random ‘‘intercept terms’’ but the model is
nonetheless identifiable. Choudhry and Rao assume that the only available data are the survey
estimators so that the estimation of the serial correlations needs to be carried out externally,
using the micro observations. Alternatively, a model accounting for the serial correlations can
be postulated. Choudhry and Rao assume an AR(1) model in their study.

A more general way to account for the cross-sectional relationships between the small area
means is to allow for non zero correlations between the residual terms 7,; and ,,; of the
models specifying the time series variation of the regression coefficients 8, and 3,,,; operating
in areas k and m (equation 2.4). Often it is reasonable to assume that the correlations
decay as the distance between the areas increases. This can be formulated as, E (7, 1ymj) =
8;;pifi (k,m), k # m, where f; (k,m) is a monotonic decreasing function of the distances
D(k,m). The case of geometrically decaying correlations is obtained by defining f; (k,m) =
pjlk ~ml-1 The case of fixed correlations is obtained by specifying Ji(k,m) = 1and in what
follows we consider this case only. Allowing for fixed cross-sectional correlations for all the
regression coefficients can be formulated as

Eunim) = D(A)D, k # m (2.6)

where D(A) is the diagonal matrix with the variances §;; on the main diagonal and @ is another
diagonal matrix composed of the correlations p;.

Before concluding this section we present the model defined by (2.1), (2.5) and (2.6) in a
state-space form. Presenting the model in this form has important computational advantages.

Let Y/ = (Y71, ..., Yix) represent the vector of observations of length n, = ¥, n, for all
the areas at time fand let ¢/ = (¢/1, - . .,€/x) represent the corresponding regression residuals.
Define Zy = {1, Oneker Xe15 Ontker - - - » Xtkps Ot ] Where 0,1 is a vector of zeroes of length n, and
Xu; is the vector of values for the j-th auxiliary variable, j = 1, ..., p. Let Z, be the block diag-
onal matrix composed of the matrices Z,;,. The matrix Z,is of ordern, X [K X 2 X (p + 1)].
Define also %t’ = (gt’l’ ety Q‘tIK_?’ Z]t, = (‘!]tll’ LR ﬂth), Et = Dlag [0121,;”, ey alz(lr:tK] s
T=IL® T,andG = Iy ®G.
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Using this notation, the model defined by (2.1), (2.5) and (2.6) can be written compactly
as

Y, =Zg +e&; El@) =0, Elge) = L @.7
o = T,y + Gy E(n) = 0, E(gen/) = A, 2.9

where A = [Agl, k, £ =1, ..., K with Ay = A when k = £ and Ay = D(A)@ when
k # {. The matrices A ,are (p + 1) X (p + 1).

The model defined by (2.7) and (2.8) conforms to the classical state-space formulation,
see, e.g. Anderson and Moore (1979) and Harvey (1984). By this formulation, (2.7) is the
observation equation and (2.8) is the state equation with ¢, defining the state vector. The
apparent advantage of restructuring the model in a state space form is that the vectors ¢,
and hence the population means O, as well as the estimation error variances can be esti-
mated conveniently by means of the Kalman filter. We discuss the use of the filter in
sections 3 and 4.

2.2 Explicit Estimators of the Small Area Means

In order to illustrate how past and neighbouring data are used under the model to
“‘strengthen”’ the small area estimators we consider the case where the same vector xy of
auxiliary values applies to all the units of a given area at a given time. In this case the obser-
vation equation can be formulated in terms of the sample means, i.e.

Yu = X0Bu + s E(Ex) = 0, E(h) = 01%/":1“ k=1,...K 2.9)

Suppose that the regression coefficients follow a random walk (case (b) of equation 2.3)
so that for area k

Buj = Bi—1,i5 + M5 E(ug) = 0, Eggnme) = 8 Jo =1, ..., p  (2.10)
and for areas k # m,
Euinemi) = 8505 EMajnme) = 0,7 # L. .11

The random walk model implies that the coefficients drift slowly away from their initial
value with no inherent tendency to return to a mean value. Obviously, for residuals »; such
that E (nfkj) = 0 the corresponding regression coefficients are fixed over time. Notice also
tpat since B = B;—1,x + N, the predictor of 3, at time (¢ — 1) is the same as the predictor
Bi—1,4 0f Br—1,k-

Using the Kalman filter equations presented in section 3, it is shown in the Appendix that
the estimator O, of the small area mean O, (equation 2.2) can be structured in this case in
the following form

N

2 2 K
A , A Ok - , A Ok - , A
Ou = XiBr—1,6 + (1 - 2) Yo = XiBi-16) + —— Y Vin(Yom — XimBe—1,m)
Ve m=1 2.12)

m#=k
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where the coefficients {vy,,} are the partial regression coefficients in the regression of
ew = (Yo — x/ B, 1, k) against the prediction errors {e,, = (Y, — X/ Bi— 1,m) ] obtained
in the other areas and v is the residual (unexplained) variance in the regression.

The estimator 8, is composed of three components: the ‘‘synthetic’’ estimator, x/; 3, Lk
where §3,_ 1, % 18 the optimal predictor of 3, based on all the observations up to and including
time ¢ — 1, the “‘correction factor” (¥, — x/; Q,_l, 1) based on the prediction error in area
k, and an ‘“‘adjustment factor’’ based on the prediction errors observed for the other areas.
The first two components correspond to the components of the classical small area estimators
discussed in the introduction. Notice that the smaller the sample size n,;, the smaller is the
weight assigned to the current sample mean Y in the estimation of O, and the larger is the
weight assigned to the time series predictor x}, 3, 1,k - The third component in the right hand
side of (2.12) represents the information borrowed from neighbouring areas. The weight
assigned to this component depends on the magnitude of the correlations p; between the cor-
responding error terms {7} in the models holding for the regression coefficients (equation
2.11). Obviously, when the regressions in the various areas are independent so that o= 0 for
all j and hence v,,, = 0 for all m, the third component vanishes and the predictor G,k reduces
to a weighted average of the current mean Y and the time series predictor x/, 8, Lk-

3. MODEL ESTIMATION AND INITIALIZATION
USING THE KALMAN FILTER

3.1 Estimation of the Regression Coefficients by Means of the Kalman Filter

In this section we present the Kalman filter equations for the updating and smoothing
of the state vectors g, defined by the equations (2.7) and (2.8) (the area regression coeffi-
cients in our case). We assume that the V-C matrices ¥, and A are known. Estimation of
these matrices is considered in section 3.2. The theory of the Kalman filter is developed in
numerous publications (see e.g. Anderson and Moore 1979 and Meinhold and Singpurwalla
1983) and so we restrict the discussion to aspects most germane to the small area estimation
problem.

Let &,_ be the best linear unbiased predictor (blup) of ¢,_; based on all the data observed
up to time (¢ — 1). Since &,_; is blup for ¢,_;, &1 = Tq_, is the blup of g, at time
(¢t — 1). Furthermore, if P,_; = E(&_; — a;_;) (@&_; — a,—;)’ is the V-C matrix of the
prediction errors at time (¢ — 1), Py,_; = TP,_;T’ + GAG’ is the V-C matrix of the
prediction errors (&,,—; — a,). (Follows straightforwardly from 2.8).

When a new vector of observations [ ¥;, Z,] becomes available, the predictor of ¢, and the
V-C matrix P,_, are updated according to the formulae

& = Q-1 + P Z/F7N(Y, — Yie-1)
3.1
P, = - Pt|t—IZtIFt_IZt)Pt|t-—l

where ¥;,_y = Z,&,_, is the blup of ¥, at time (¢ — 1) so thate, = (¥, — Yi—1) is the
vector of innovations with V-C matrix F, = (Z: P11 Zf + X4).

The new data observed at time 7 can be used also for the updating (smoothing) of past
estimators of the state vectors and hence for the updating of past estimators of the small area
means. Denoting by #* the most recent month with observations, the smoothing is carried out
using the equations
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Qe = & + IJtT,Pt_+11|t(@t+Ht‘ - Tg,)
(3.2)
Py =P + PT PPy — Py )P TP £ = 2,3, ..., 1*

where P, is the V-C matrix of the prediction errors (&, — o). Notice that & » = &e and
Py = P, define the starting values for the smoothing equations.

Estimators of the small area means or aggregates of the means are obtained from the filtered
(or smoothed) estimators of ¢, in a straightforward manner using the relationship Ou =
XubBu = Zivaw = ZikAud, where Zj = (1, 0, X, 0, .. ., Xup, 0) and Ay is the appro-
priate indicator matrix. Hence, if 0} = LX_, w0y, then 8} = LE_ \wi ZiAud, = a/w,
say. For given V-C matrices ¥, and A, the MSE’s of the estimation errors are obtained as

E(étk - etk)z = ZtlkAtthAtlthk and E(éﬁc - O%) = @wPiam- (3.3)

Notice that the MSE’s in (3.3) are with respect to the joint distribution of the observations
{Y.]) and the vectors of coefficients {8} so that they represent average MSE’s over the
possible realizations of the area means.

3.2 Estimation of the V-C Matrices and Initialization of the Filter

The actual application of the Kalman filter requires the estimation of the unknown elements
of the matrices X, and A and the initialization of the filter, that is, the estimation of the vector
, and the corresponding V-C matrix P, of the estimation errors. In this section we describe
simple estimation procedures which can be used for these purposes.

Assuming a normal distribution for the residual terms ¢, and 5, of equations (2.7) and (2.8),
the log likelihood function of the vectors Y,,.1, ..., Y, conditional on the first m vectors
Y, ..., Ym, can be formulated as

1 &
L()\) = constant — 3 E (log | F,| + e/ Fle) (3.9

t=m+1

where )\ contains the unknown model variances and covariances written in a vector form. The
scalar m defines the number of time periods needed to construct initial values for the Kalman
filter. (For the random walk model considered in section 2.2, m = 1, provided that sufficient
data are available in every area to allow the computation of the OLS estimators of the vectors of
coefficients). The expression in (3.4) follows from the prediction error decomposition, see
Schweppe (1965) and Harvey (1981) for details. For given matrices X, and A, the innovations
e, and the V-C matrices F; can be obtained by application of the Kalman filter equations (3.1).

The computation of the likelihood function requires the initialization of the Kalman filter
which can be carried out most conveniently by application of the approach proposed by Harvey
and Phillips (1979). By this approach, the nonstationary components of the state vector are
initialized with very large error variances which corresponds to postulating a noninformative
prior distribution so that the corresponding state estimates can conveniently be taken as zeroes.
(For the random walk model, initializing with a noninformative prior yields the OLS estimators
after one time period, see Meinhold and Singpurwalla 1983, for a Bayesian formulation of
the Kalman filter). The stationary components of the state vector are initialized by the cor-
responding unconditional means and variances which may be part of the unknown parameters
defining the arguments of the likelihood function.
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Maximization of the likelihood function (3.4) can be implemented using the method of
scoring with a variable step length. In particular, let )\, define initial estimates of the un-
known elements in A. Then the method of scoring consists of solving iteratively the set of
equations

Moy = N—ny + rlIDa—n1) gl (3.5)

where \(;_1, is the estimator of ) as obtained in the (i — 1)-th iteration, / [Ai-1y] is the
information matrix evaluated at \;_; and g[);_)] is the gradient of the log likelihood
evaluated at A;_;. The coefficient r; is a variable step length introduced to guarantee that
L[Ai] = L[Mi-1] in every iteration. The value of r; can be determined by a grid search
procedure in the region [0,1]. The formulae for the k-th element of the gradient vector and
the k{-th element of the information matrix are given in Watson and Engle (1983).

Having estimated the model variances and covariances, these estimates can be substituted
for the true parameters in the Kalman filter equations (3.1) - (3.2) to yield the estimators of
the regression coefficients and the V-C matrices and hence the small area estimators and their
variances (see equation 3.3). Notice however that the estimated V-C matrices ignore the
variability induced by the need to estimate the unknown elements contained in ). Ansley and
Kohn (1986) propose correction factors of order 1/¢* to account for this extra variation in state
space modelling using first order Taylor approximations. Hamilton (1986) proposes a Monte
Carlo procedure which consists of sampling from a multivariate normal distribution with mean
given by the maximum likelihood estimator of the vector A and V-C matrix defined by the
inverse of the information matrix, and estimating the state vectors for each random realization
of the parameter values. This procedure is more flexible in terms of the assumptions involved
and provides further insight into the sensitivity of the Kalman filter estimators to errors in the
variance and covariance estimators. However, it is computationally more intensive.

4. MODIFICATIONS TO PROTECT AGAINST
MODEL BREAKDOWNS

4.1 Description of the Problem and Proposed Modifications

The use of a model for small area estimation seems inevitable in view of the small sample
sizes within the areas. However it raises the question of how to protect against model break-
downs. Testing the model every time that new data becomes available is often not practical,
requiring instead the development of a ““built-in mechanism”’ to ensure the robustness of the
estimators when the model fails to hold.

One possibility is to modify the regression estimators derived in the various time periods
so that they satisfy certain linear constraints obtained by equating aggregate means of the raw
data with their expected fitted values under the model. More precisely, we propose to augment
the model equation (2.1) by linear constraints of the form

YWY, Ya= Y, W& Y tuBu £=1,2, .., L), t=1,..,* 41
k i k i

where the coefficients W are fixed, standardized weights such that ¥,n, W = 1. An
example for such a constraint would be the equation
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K K K K
E NtkMtk/ E Ny = E Ntk(x;kgtk)/ E Ntk 4.2)
k=1 k=1 k=1 k=1

where M, is the direct, survey estimator in area k. For X, = Xy, the equation (4.2)
guarantees that the model dependent predictor of the aggregate population mean coincides
with the corresponding survey estimator. Such a constraint can be justified by arguing that
the survey estimators, although not reliable enough for estimating the small area means due
to the small sample sizes, can be trusted when being combined for estimating the aggregate
mean. Notice that ‘‘adding up”’ constraints are ordinarily imposed on statistical agencies
anyway. Battese, Harter and Fuller (1988) and Pfeffermann and Barnard (1991) use a similar
constraint for analysing cross-sectional surveys. Often, the small areas can be grouped into
broader groups, with sufficient data in each of the groups to justify the use of the survey
estimators for estimating the corresponding group means. In this case, one can impose several
constraints of the form (4.2) where the summation is now over the areas belonging to the same
group. Notice in this respect that in view of the correlations between the regression coefficients
operating in the various areas, a constraint applied to a sub-set of the areas will modify the
regression estimates in all the areas. We illustrate this property in the empirical study.

It is important to emphasize that the set of constraints in (4.1) does not represent external
information about possible values of the regression coefficients. Rather, it serves as a ‘‘control
system’’ to guarantee that the model estimators adjust themselves more rapidly to possible
changes in the behavior of the regression coefficients. As a result, the variances of the modified
regression estimators are slightly larger than the variances of the optimal estimators under the
model. Obviously, when no such changes occur and the variances of the aggregate means are
sufficiently small, one would expect the constraints to be satisfied approximately even without
imposing them explicitly. As mentioned above, it is possible to incorporate several separate
constraints in each time period but it is imperative that the variances of the corresponding
aggregate means will be small enough to ensure that the modifications are indeed needed and
do not interfere with the random fluctuation of the raw data.

4.2 Inference Incorporating the Linear Constraints

In Section 4.1 we proposed to amend the model equations (2.1) by imposing the set of
constraints (4.1) thereby ensuring the robustness of the regression estimators against sudden
drifts in the values of the coefficients.

Computationally, this can be implemented most conveniently by augmenting the vectors
Y, of equation (2.7) by the scalars X, W9 ¥; Yy, augmenting the matrices Z, by the corre-
sponding row vectors (W 1,1Zu, ..., Wi 1,xZ) and setting the respective variances of
the residual terms to zero. The augmented set of equations, together with (2.8), form a pseudo
state-space model which could be estimated using the Kalman filter equations (3.1). Notice
that the pseudo V-C matrix ¥ of the augmented residual vector is no longer positive
definite (the last L (¢) rows and columns of ¥ # consist of zeroes) but this does not cause
computational difficulties.

The drawback of applying the Kalman filter to the pseudo model is that the V-C matrices
of the regression estimators fail to account for the actual variability of the aggregate means
appearing in the left hand side of (4.1). In order to deal with this problem, we propose to amend
the formula for the updating of the V-C matrix P, (equation 3.1) so that the variances and
covariances of the aggregate means will be taken into account.
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Let Y/ and Z{) represent the augmented Y vector and Z matrix at time  and denote by
L4 the actual V-C matrix of the residual terms [Y{? — Z4 q,]. The matrix T/ is of
order [n, + L(¢)] with ¥, in the first n, rows and columns and the variances and covariances
of the means ¥, W4? ¥;Y,; among themselves and with the vector Y, in the remaining rows
and columns. Denoting by &/} the robust predictor of o,_, as obtained at time (f — 1) using
the pseudo model and by P4 the actual V-C matrix of the errors (&1} — @, ), the
modified state estimator at time ¢ is obtained as

4 = Tad) + PR, ZA (FPY - [1 @ - ZTeA) 4.3)

fleld

where RffY| = (TP T’ + GAG’) and FP) = ZM P,z + ¥ P (Compare with
3.1). It is shown in the Appendix that the actual V-C matrix P of the errors (&4 — q,)
satisfies the recursive equation

P = [I - KPZMPI, + KDL — TPk, @.4)

where KP) = P{#),Z{4)" (F{)) = is the pseudo Kalman gain. The first expression on the
right hand side of (4.4) corresponds to the usual updating formula of the Kalman filter (compare
with 3.1)). The second expression is a correction factor which accounts for the actual variances
and covariances of the means X, W ¥, ¥,;, not taken into account in the first expression.
The amended Kalman filter defined by the equations (4.3) and (4.4) produces robust predictors
&Y instead of the optimal, model dependent predictors, &; but otherwise uses the correct V-C
matrices under the model. Thus, this filter can be used for the routine estimation of the vectors
of coefficients and hence for the estimation of the small area means, and when the model holds
it will give similar results to those obtained under the optimal filter. In periods where the model
fails to hold, the updating formula (4.4) could be incorrect (depending on the particular model
failures) but the predictors @) will nonetheless satisfy the linear constraints (4.1). The
smoothing equations (3.2) can likewise be modified to satisfy the linear constraints.

S. EMPIRICAL RESULTS

5.1 Description of the Data and Model Fitted

In order to illustrate the important features of the class of models defined in Section 2, we
fitted such a model to home sale prices in Jerusalem. The sale prices are recorded on a monthly
basis and are routinely used by the Central Bureau of Statistics in Israel for the computation
of monthly housing price indexes (HPI) adjusted for changes in quality. The HPI is computed
separately for each city or group of cities and for each house size defined by the number of
rooms, ranging from 1 to 5. The number of transactions carried out each month is very small
in many of these cells and for 1 room apartments it occasionally happens that there are no
transactions. The mean and standard deviation (S.D.) of the monthly number of transactions
carried out during the period July 1987 - November 1989 are listed below.

Size 1 2 3 4 5

Mean 2.7 29.0 | 101.9 | 39.7 5.6

S.D. 2.6 12.9 50.4 | 18.8 3.5
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The need to adjust for changes in quality results from the fact that the transactions performed
are not under control, giving rise to large differences in quality from one month to the other
particularly in the small cells. The following quality measure variables (QMV) are recorded
for every transaction: X)) - the apartment floor area, X® - the age of the apartment, X,
X® _ dummy variables defining districts within the city.

The problems involved in the computation of the HPI and the method used in Israel are
discussed at length in a recent article by Pfeffermann, Burck and Ben-Tuvia (1989). The
following model was proposed by the authors as an alternative to the model in current use.
The triple index “‘tki”’ defines the i-th transaction of size k in month # with Yy, standing for
the log of the sale price and X = log(X{),j = 1, 2.

Yii = Buo + Bua XS + Bua X + Bus X% + BuaX$P + €ui ¢.D

Bio = Bi—140 + Bro + Mo
5.2

Buj = Br—ihj + Mjpp J = 1, -y 4,

with the error terms €,; and n,; satisfying the assumptions (2.1), (2.4) and (2.5). Notice that
the model assumed for the intercept term is the local approximation to a linear trend defined
under case (d) of Section (2.1). The model assumed for the other coefficients is the random
walk model defined under case (b).

The regression defined by (5.1) forms the basis for the construction of an HPI
adjusted for changes in quality. By fixing the values of the QMV’s at their average population
values which are constant over time, (the values of these variables are adjusted approximately
every five years), average sale prices can be computed using (5.1) and these averages are
comparable between months since they refer to homes of similar qualities.

Pfeffermann, Burck and Ben-Tuvia discuss the considerations in selecting the model defined
by (5.2) for the regression coefficients. They show empirical results which validate the fitness
of the model. However, the results of that study were obtained by fitting the model to each
cell separately, that is, without accounting for the cross-sectional relationships of the regres-
sion coefficients. This aspect of the model is explored in the present study. Another major
purpose of the empirical study is to illustrate the performance of the modifications proposed
in Section 4 to protect against model breakdowns.

5.2 Estimation of the Model

The model defined by (5.1) and (5.2) can be put in a state-space form similar to (2.7) and (2.8).
In fact, the vectors g, and the matrices Z,, Tand G assume, in this case, simple structures, since
forj =1, ..., 4, By = 0(seecase (b) of Section 2.1). Thus, o = (Bwos Bros B> - - +» Bika)s
Ztk = [lntk,Qntka XtScl)’ .. "~XI$€4)] ’ T = [gl’gl + €€, .. -’QG] ,a6Xx 6 matrix with 9]
having a one in position j and zeroes elsewhere and G = [e,e;, - ..,e) whichis6 X 5. The
matrix A is defined as in (2.5). The vector ¢, and the matrices Z,, T, G and A are obtained
from the vectors {a,} and the matrices {Z,}, T, G and A in the same way as in (2.7) and
(2.8).

Having set the model in a state-space form we next attempted to estimate the unknown
variances and covariances using the method of scoring algorithm described in Section 3.2.
As it turned out, however, the computer time needed for convergence was way beyond the
capacity of the IBM 1481 mainframe used for this study. Notice that the number of unknown
parameters of the combined state-space model is dim(}) = 25 whereas the dimension of the
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state vectors and hence the dimension of the corresponding V-C matrices is dim(q;,) = 30. The
total number of observations per month ranges from 55 to 353. The computer program written
for this study uses numerical derivatives so that each iteration of the method of scoring requires
a separate sweep through all the data with each sweep involving [dim(A) + 1] computations
of the state vector &, and the V-C matrix P, (equation 3.1) at each point in time. These
computations are needed in order to evaluate the log likelihood functions and hence the cor-
responding derivatives. It is clear therefore that the computational costs increase with the length
of the series, the number of observations, the size of the state vector and the number of unknown
parameters.

In order to deal with this problem we estimated the variance o7 (equation 2.1) and the
matrix A (equation 2.5) separately for each of the five apartment sizes using the time series
of observations corresponding to each size and then estimated the correlations p; (equation
2.6) by a crude, grid search procedure. We found that setting p; = %2 for every j gives satisfac-
tory results both in terms of the behaviour of the innovations (the one step ahead prediction
errors) and in terms of the smoothness of the regression coefficients corresponding to apart-
ments of size one and five where the monthly sample sizes are very small. Notice that by
estimating the variances and covariances defining the time series relationships of the regression
coefficients separately for each size, one is more flexible in terms of the model assumptions
although there is some loss of efficiency if the variances and covariances are indeed the same
across the different sizes.

5.3 Results

Pfeffermann, Burck and Ben-Tuvia (1989) illustrate the adequacy of the time series models
fitted to the various apartment sizes. As mentioned earlier, our purpose in this study is to
compare the results obtained with and without the accounting for the cross-sectional correla-
tions and to illustrate the performance of the modifications (4.1) in protecting against model
breakdowns.

In order to sharpen the comparisons as much as possible, we deliberately inflated the
Y-values by 5 percent in each of the following four months: October 1987, November 1988,
January 1989 and May 1989. Thus all the Y-values of all the apartment sizes corresponding
to the months October 1987 — October 1988 were inflated by 5 percent, the Y-values correspon-
ding to November 1988 - December 1988 were inflated by 10.25 percent (5 percent on top of
the previous 5 percent) and so forth. These kinds of model breakdowns (although obviously
not in such magnitudes) may result from intentional devaluations of the currency and are of
main concern when modeling sale prices. See Pfeffermann, Burck and Ben-Tuvia for further
discussion. Similar model breakdowns may occur, for example, with series of unemployment
rates in periods of abrupt economic recessions.

Table 1 shows the average mean squared errors (AMSE) of the model residuals €,; =
(Yui — Buo — Ljo1 X Biy) and the model innovations ex; = [ Y — (Br- 140 + Bro) —

j‘-‘=1 X, ,3{,-’ B,_ 1,k ] (see equations 5.1 and 5.2), separately for each of the five apartment sizes.
The AMSE’s were computed as AMSE, (€) = I/N LN, (1/n, L, €%,); AMSE(e) =
I/NIN, (1/n, T ek;) wheret = 1, ..., Nindexes the months of July 1987 - November
1989. We distinguish between four different estimators of the regression coefficients as defined
by whether the model accounts for the cross-sectional correlations (o; = 1), (p; = 0) and
by whether or not the estimators are modified to protect against the model breakdowns
(abbreviated as ‘‘Rob. Inc.”’ and ‘‘No Rob.”’ in the table). The modifications were carried
out by augmenting the observation equation of each month by three linear constraints of the
form 4.2. These constraints forced the aggregate means of the fitted values in each of the three
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Table 1

Average Mean Squared Errors of Residuals and Innovations With and Without
the Accounting for Cross-sectional Correlations and the Inclusion of the
Robustness Modifications, by Size

Mean Squared Errors of Innovations Mean Squared Errors of Residuals
Agxpzta p=W p=0 p=Y p=0
Rob.Inc. NoRob. Rob.Inc. No Rob. Rob.Inc. No Rob. Rob.Inc. No Rob.
1 .141 134 176 218 .021 .027 .056 .092
2 .070 .090 .084 123 .021 .039 .023 .070
3 .065 .090 .070 197 .017 042 .019 .143
4 .067 123 .072 .198 .019 .066 .021 .141
5 .067 114 .077 .193 .023 .033 .065 .106

districts to coincide with the corresponding means of the observed values. When incorporating
the constraints, the model was fitted using the amended Kalman filter as defined by the
equations (4.3) and (4.4).

In order to illustrate the performance of the four sets of regression estimators in the various
months and in particular, in and around the months where we inflated the data, we plotted
the monthly MSE’s of the innovations and residuals as obtained for 3 and 5 room apartments.
The plots are shown in Figures 1 to 4. Notice that the values of Table 1 for 3 and 5 room
apartments are correspondingly the averages of the values shown in the four figures.

The main conclusions from the table and the graphs are as follows:

Accounting for the cross-sectional correlations and including the linear constraints to pro-
tect against the model breakdowns yields better results than in the other cases considered. This
outcome is most prominent in the cells of 1 and 5 room apartments where the sample sizes in
each month are very small. In the other three cells, there are only small differences between
the case (p = Y2, Rob. Inc.) and the case (p = 0, Rob. Inc.) which could be expected since
as the number of observations in each month increases, there is less borrowing of information
from neighbouring cells (small areas in the more general context). The situation is different,
however, when the linear constraints are removed. Accounting for the cross-sectional correla-
tions yields in this case much better results than when not accounting for them and this is true
for all the apartment sizes. Thus, by borrowing information from one cell to the other, the
estimators of the regression coefficients adapt themselves much more rapidly to the sudden
drifts in the data as seen also more directly in the figures [The four peaks in each graph are
in the months where the data were inflated and as can be seen, the graphs corresponding to
the case (0 = ¥, No Rob.) return to their normal level of the months before the inflation much
faster than the graphs representing the case (p = 0, No Rob.)

Another interesting comparison is between the case where the linear constraints are included
and the case where they are not. Clearly, the inclusion of the constraints improves the results
substantially when accounting for the serial correlations and the improvements are even more
prominent when the serial correlations are set to zero. It is interesting to compare in this context
the figures exhibiting the monthly MSE’s of the innovations with the figures exhibiting the
monthly MSE’s of the residuals. In the four months where we inflated the data the MSE’s of
the innovations are high which is obvious since the innovations are the differences between
the observations and their predictors from previous months. Still, when the linear constraints
are included, the MSE’s return to their normal level right after the months of inflation. As
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1.2

o—o (pj = %, Rob. Inc.) e (pj = 0, Rob. Inc.)
—— (pj = %, NoRob,)  ------ (p; = 0. No Rob.)

Figure 1l Monthly Mean Squared Errors of Innovations, 3 Room Apartments

o—o (pj = %, Rob.Inc.)  ceeeeee- (pj = 0, Rob. Inc.)

——— (pj = %, NoRob)  ------ (pj = 0, NoRob)

Figure2 Monthly Mean Squared Errors of Residuals, 3 Room Apartments
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1.2

(p] = ;_’ Rob. Inc.) ........... (pJ = O, Rob. Inc.)
— (]

M
i

%, NoRob.)  -==—-- (pj = 0, No Rob.)

Figure3 Monthly Mean Squared Errors of Innovations, 5 Room Apartments

(pj = % Rob.Inc) e (pj = 0, Rob. Inc.)
(pj = £, NoRob) -=---- (pj =

Figure 4 Monthly Mean Squared Errors of Residuals, 5 Room Apartments

= (0, No Rob.)
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for the residuals, once the linear constraints are included, there is practically no increase in
the MSE values in the months of inflation in the case of 3 room apartments and, when
accounting for the serial correlations, only a slight increase in the case of S room apartments.
However, when ignoring the serial correlations, the residual MSE’s for 5 room apartments
are much larger in the months of inflation than in the other months even when imposing the
constraints. This outcome has a simple explanation. The linear constraints are imposed on the
aggregate means of the fitted values in each district but since the number of observations in
5 room apartments is a small fraction of the total number of observations, the constraints alone
have a relatively small effect on the estimated regression coefficients in this cell. On the other
hand, the constraints have a large effect on the estimated coefficients in the other cells so that
when accounting for the cross-sectional correlations, the estimators corresponding to 5 room
apartments are also modified since they are correlated with the other coefficients.

The way by which the linear constraints protect against sudden drifts in the data is illuminated
in Figure 5 where we plotted the monthly intercept estimates for 3 room apartments.

As can be seen, with the linear constraints included, the intercept adapts itself to the new
level of the data in the same month that the inflation occurs. Without the inclusion of the
constraints, the adaption to the new level of the data takes several months. The plot of the
monthly intercept estimates of 5 room apartments does not have this nice pattern since with
the small sample sizes observed each month, the effect of the inflation is to alter also the other
regression coefficients.

7.0

3.5 l

o——— (pj = %, Rob. Inc.) —— (pj = %, No Rob.)

Figure5 Monthly Estimates of Intercept, 3 Room Apartments
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10

Jul. 87 Jan. 88 Jan. 89 Nov. 89
Optimal estimators o———o Serial correlations setto zero  ~-—--- QLS estimators

Figure 6 Variances of Estimators of Cell Means (X 104), 3 Room Apartments

14

12

Jul. 87 Jan. 88 Jan. 89 Nov. 89

Optimal estimators o———o Serial correlations set to zero

Figure7 Variances of Estimators of Cell Means (X 104), 5 Room Apartments
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Our discussion so far centered on the empirical distribution of the model residuals and
innovations. A major application of small area estimation is the prediction of the small area
means (equation 2.2). Clearly, when a model yields residuals with well behaved properties it
can also be expected to yield good estimators for the population means. Nevertheless, it is
interesting to compare the theoretical variances of the small area means estimators as obtained
with and without the accounting for the cross-sectional correlations, under the model which
accounts for these correlations with p; = %2. This comparison permits the assessment of the
loss in efficiency when the serial correlations are ignored.

Figures 6 and 7 show the monthly variances of the cell mean estimators as obtained for 3
and 5 room apartments. (The variances have been multiplied by 10*.) The figure for 3 room
apartments also contains the variances of the ordinary least squares (OLS) estimators of the
population means, that is, the variances of the estimators when estimating the regression
coefficients in each month by OLS. These estimators are not operational in the case of 5 room
apartments because of the very small monthly sample sizes.

The important conclusion drawn from the two figures is that by accounting for the cross-
sectional correlations the variances of the resulting estimators can be reduced quite substan-
tially, depending on the sample sizes. This is obviously the case in the case of 5 room apart-
ments but is also true for 3 room apartments despite the fact that the sample sizes in these cells
are relatively very large. The large sample sizes ordinarily obtained for 3 room apartments make
the OLS estimators quite comparable to the estimators obtained when ignoring the cross-
correlations in the estimation of the population means. Notice however the big gap between
the variance of the OLS estimator and the variance of the other two estimators in October 1987.
In this month there were only 10 observations of 3 room apartments and it is here where the
use of the past data has its main impact even when ignoring the cross-sectional correlations.
(The number of observations for 3 room apartments in November 1987 is 28; in all the other
months there are at least 46 observations.)

Another important outcome arising from the two figures is the much greater stability of
the variances of the optimal estimators under the model as compared to the variances of the
estimators which ignore the cross-sectional correlations. Notice in this respect that the
differences in the variances from one month to the other depend not only on the sample sizes
in each month but also on the values of the explanatory variables (the design matrix) and the
amount of past data observed. Still, it is the sample sizes which mostly explains the differences
in the variances of the estimators particularly towards the end of the series.
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APPENDIX

a) Derivation of Equation (2.12)

When Xu; = Xu» Ou = XiBu = Zixdusothat &, = (O, ..., Ou)’ = Z,4,.
Also, for the random walk model the matrix 7 is the identity matrix and by equation (3.1)

Z,&y = 21y + (ZtPt|t—1Zt')Ft_l(¥t - Zt@t—l) =
(I- ZtFt_l)..Yt + L' Zdy (A1)

since F; = (Z,Py1Z{ + ¥,). Suppose for convenience that k& = 1 and define

, ’ h ,h,
F, = [f“ Ji ] and H, = Fl= [ -1 ] were f;; and Ay,
J1Fx hy ,Hy

are scalars, [{ and h{ are [1 X (K — 1)] and F,, and Hp are [(K — 1) X (K — DI].
Using this notation, it follows from (A1) that

2 2 2 K h
R (51 — 0] a 01 1k _
6, = (1 - —h11> Yo + —hy ()!t'l@t-l,l) - — E by —— &y (A2)
43! nyy ng =, hu
Letyi = (Y125 --+» 115) =f1 Fzz defines the partlal regression coefficients in the regression
of &, on (2, ..., &x) and v} = (fy — JiFx fl) define the residual variance in the
regression.

Equation (2.12) follows directly from (A2) since

_ 1, ) el g —
fl’Fzzl = - ;{'bl; ( 11 —lezzl.fl) ''=hy (A3)
11

by well known properties of the inverse of a partitioned matrix.

b) Derivation of Equation (4.4)

By (4.3),
&® = (I - KDz Te{) + KOYD. (A4)

Hence,

@t(A) - = (I - Kt(P)Zt(A)) (T@z(ff - Qlt) + Kt(P) (~Yt(A) - Zt(A)Qlt)- (A5)
The prediction errors (T&4) — q) are independent of the residuals (¥ — Z q,) and so,
P = E[(&™ - a)(@™ - a)'] = QP10 + KOLOKD (A6

where we denote for convenience @, = (I — K{PZ{).
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By definition of the matrix FP) (see below 4.3), equation (A6) can be written in the form
Pt(A) = QtPt(lf—)l - Pt(f?llzt(A)'Kt(P), + Kz(P)Ft(P)Kt(P)I

+ KO(SA - LMKP (A7)

which implies the relationship (4.4) by straightforward algebra.
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