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ABSTRACT

Early developments in sampling theory and methods largely concentrated on efficient sampling designs
and associated estimation techniques for population totals or means. More recently, the theoretical foun-
dations of survey based estimation have also been critically examined, and formal frameworks for inference
on totals or means have emerged. During the past 10 years or so, rapid progress has also been made in
the development of methods for the analysis of survey data that take account of the complexity of the
sampling design. The scope of this paper is restricted to an overview and appraisal of some of these
developments.
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1. SOME EARLY MILESTONES

jl The motivation behind much of the work in survey sampling prior to the 1950’s or 60’s was
the desire to obtain reasonably efficient estimates, at a desired cost, of totals, means, or pro-
portions for large, and increasingly complex-structured, finite populations. A discussion of
the early work in sampling human populations may be found in several review papers (sec e.g.,
Hansen, Dalenius and Tepping 1985 and Bellhouse 1988).

The history of the mathematical theory of survey sampling has its origins in the late nine-
teenth century through the work of the Norwegian statistician A.N. Kiaer. Kiaer was the first
to promote what was then called ‘the representative method’, or sampling, over complete
enumeration. What Kiaer (1897) meant by representative sampling was that the sample should
mirror the parent finite population. This can be achieved in two ways, by randomization or
by balanced sampling through purposive selection. Initially, purposive selection was the
preferred method of sample selection, but gradually randomization became a strong compet-
itor to balanced sampling for sample selection. By the 1920’s random sampling and purposive
selection were both widely used as sample selection techniques. The major theoretical
developments in both areas which occurred during this era are summarized in Bowley (1926).
This summary includes the development of stratified random sampling with proportional alloca-
tion and the derivation of formulae to obtain the precision of an estimate from a purposively
selected sample.

The equal footing of random sampling and purposive selection gradually changed after the
publication of Neyman’s (1934) classic paper. Neyman was able to show, both theoretically
and with practical examples, why random sampling was preferable to purposive selection for
the large-scale sampling problems of the day. With the publication of the 1934 paper, Neyman
also opened up new avenues of development for random sample selection techniques.
Previously, Bowley and his followers used only sampling designs with equal inclusion
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probabilities for every population unit. Their reasoning was that this method of sampling would
provide a representative sample of the universe. Neyman (1934) broke out of this sampling
straitjacket with his theories of stratified sampling with ‘‘optimal’’ allocation and cluster
sampling with ratio estimation. In both situations, ‘‘valid’’ estimates of population totals,
means or proportions are obtained without reliance on a representative sample selected through
a design with equal inclusion probabilities. Neyman’s final contribution to the theory of survey
sampling is his introduction of cost functions to find the sample allocation in two phase
sampling which minimized the variance subject to a fixed budget (Neyman 1938).

Neyman’s fundamental contributions inspired various important extensions of his theory.
Among these, we should mention ratio and regression estimation with two-phase sampling
{Cochran 1939), determination of ‘‘optimal®’ stratification points and ‘‘optimal’’ allocation
with multiple parameters/characters (Dalenius 1957), and sampling on two occasions with
partial replacement of units (Jessen 1942) which was subsequently extended by Patterson
(1950) and Hansen ef al. (1953, pp. 470-503) to sampling on more than two occasions (also
called rotation sampling). Rotation sampling and associated ‘‘composite’’ estimates are now
extensively used to estimate levels and changes from continuing large scale, multi-purpose
surveys (e.g., the Current Population Survey (CPS) carried out by the U.S. Bureau of the
Census).

Neyman’s work also greatly influenced Morris Hansen, William Hurwitz, and their col-
leagues at the U.S. Bureau of the Census. Inspired by their practical problems in large-scale
survey design and by Neyman’s approach to sampling theory, Hansen and Hurwitz (1943)
developed the theory of sampling with probability proportional to size and with replacement
(also called PPS sampling). The effect of this approach to multistage surveys is that it provides
approximately equal interviewer work loads which makes the administration of a multistage
survey easier. This procedure also leads to significant reductions in the variances of the
estimates, by controlling the variability arising from unequal cluster sizes without actually
stratifying by size and thus allowing stratification on other variables to reduce variance. The
theory of Hansen and Hurwitz was extended by Horvitz and Thompson (1952) and Narain
(1951) to unequal probability sampling without replacement. By making the inclusion proba-
bilities of units at each stage proportional to their sizes, the desirable features of the Hansen-
Hurwitz method are retained, using the so-called Horvitz-Thompson estimator of a population
total. The basic work of Horvitz and Thompson and Narain stimulated many theoretical and
applied contributions to unequal probability sampling without replacement. Brewer and
Hanif (1983) and Chaudhuri and Vos (1988) have provided comprehensive accounts of these
developments.

Madow and Madow (1944) have given the basic theory of systematic sampling, and
introduced population models to examine the features of systematic sampling. Cochran (1946)
introduced the ‘‘superpopulation’’ approach in which the finite population is regarded as being
drawn from an infinite superpopulation having certain properties. The expected (or anticipated)
variances under the superpopulation model are then compared to study the relative efficiency
of alternative sampling strategies. His 1946 paper stimulated much subsequent research in the
use of superpopulation models in the choice of sampling strategies and also for model-dependent
or model-assisted inference (see Section 2).

Mabhalanobis (1946) developed the technique of interpenetrating subsamples, and used it
extensively in large-scale surveys in India for assessing both sampling and non-sampling errors.
This technique consists of drawing the sample in the form of two or more independent sub-
samples according to the same sampling scheme such that each subsample provides a valid
estimate of the parameter of interest. By assigning the subsamples to different interviewers
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(or interviewer teams), a valid estimate of the total variance can be obtained that takes proper
account of the correlated response variance component due to interviewers. Deming (1960)
used this method (sometimes called replicated sampling) extensively to obtain simple estimates
of variance. It has led to resampling techniques such as the jackknife, balanced repeated repli-
cation and the bootstrap for getting variance estimates of complex non-linear statistics (see
Section 3).

Yet another milestone in the emergence of ideas and theory surrounding complex surveys
is the concept of design effect (DEFF), due to Leslie Kish (see Kish 19635, sec. 8.2). The design
effect is defined as the ratio of the actual variance of a statistic under the specified design to
the variance which would be achieved under a simple random sample of the same size. The
concept of design effect has been found to be especially useful in the presentation and modelling
of sampling errors, and also in the analysis of survey data involving clustering and stratifica-
tion (see Section 4).

2. THEORETICAL FOUNDATIONS

Although Neyman (1934) and others obtained best linear unbiased estimators for simple
designs using the standard Gauss-Markov set-up, the development of traditional sampling
theory progressed more or less inductively. Estimators (and designs) which appeared reasonable
were considered and their relative properties carefully studied by analytical and/or empirical
methods, mainly through comparisons of bias and mean square error, and sometimes also
using anticipated mean square error or variance under plausible superpopulation models. As
noted by Hansen ef a/. (1983), unbiasedness of estimators under a given design was not insisted
on since it ‘‘often results in much larger mean square errors than necessary’’. Instead, asymp-
totic design consistency of estimators was insisted on, at least when aggregate estimates from
reasonably large samples are needed, and the mean square errors of selected asymptotically
design consistent estimators were compared to arrive at a suitable estimator (and design).
Moreover, in large-scale surveys involving a great many statistics, uniform estimation pro-
cedures are often insisted on at the expense of variance inflation for some statistics (compared
to alternative estimators tailored to each statistic), due to time, cost and other operational
constraints.

Despite the usefulness of the traditional approach, the need for a formal framework for
inference from survey data was long felt. Realizing this need, several statisticians have made
important contributions to the theoretical foundations of inference from survey data, especially
during the past 10-20 years. Several review papers (see e.g., Chaudhuri 1988) and two books
(Cassel et al., 1977; Chaudhuri and Vos 1988) discuss various aspects of the theoretical
foundations. ‘

Most papers on the theoretical foundations of sampling theory have assumed the following
somewhat idealistic set-up. A survey population U consists of N distinct elements identified
through the labels j = 1, ..., N. The characteristic of interest y; (possibly vector-valued)
associated with element j can be known exactly by observing element j. Thus response or
measurement errors are assumed to be absent or ignored if present. The parameter of interest
is the population total ¥ = y; + ... + yuy or the population mean Y = Y/N (if N is
known). A sample is a subset s of U and the associated y-values, i.e., { (i,y;), i € s}, selected
according to a sampling plan which assigns a known probability p(s) tossuchthatp(s) = 0
for all s € S (the set of all possible s) and ¥, ;sp(s) = 1. The selection probability p(s) can
depend on known design variables z = (zy, ..., 2y)’, such as stratum indicator variables
and size measures of clusters, i.e., p(s) = p(s | z) where z; is possibly vector-valued. For
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probability sampling, the inclusion probabilities 7; = ¥ (5.jes;2(8) are positive, which
permits unbiased or consistent estimation of Y in the traditional sense. It is also customary
to impose the condition that the joint inclusion probabilities 7; = ¥ (5. (;.jyes;2(5) be
positive, which permits unbiased or consistent variance estimation in the traditional sense.

The basic problem is to make inferences (estimation, variance estimation and constructing
confidence intervals), about the total Y by observing a sample selected according to a specified
sampling plan p(s) and also using available supplementary data. This involves essentially three
steps: (i) choice of a sampling plan; (ii) choice of an estimator Y; (iii) choice of a variance
estimator and confidence intervals. There are essentially three different approaches to imple-
ment these steps: (i) design-based approach, also called probability sampling approach or ran-
domization approach; (ii) model-dependent approach, also called prediction approach or
probability speculation approach (H4jek 1981), (iii) a hybrid approach, called model-based
approach or model-assisted approach. Developments to date under each of these three
approaches are discussed below.

2.1 Design-based Approach

This approach uses probability sampling both for sample selection and for inference from the
data. The probability sampling distribution provides valid inferences irrespective of the popula-
tion y-values, even in complicated situations, in the sense that the pivotalt = (¥ — Y)/s(Y)
is approximately N(0,1), at least for large samples, where s( Y) is the standard error of ¥. This
approach has been critized on the grounds that such inferences, although assumption-free, refer
to repeated sampling from the survey population involving all samples s € S and the associated
probabilities p (s), instead of just the particular s that has been drawn. This criticism can be
countered to some extent by using either conditional design-based inference referring to a subset
of S that is “‘relevant’’ to the particular s or by a model-assisted approach.

Horvitz and Thompson (1952) made a basic contribution to foundational aspects of design-
based inference by formulating three classes of linear estimators of Y, and then raising the
possibility that the best (minimum variance) estimator among all possible linear unbiased
estimators of Y may not exist, even for simple random sampling. Prompted by the Horvitz-
Thompson formulation, Godambe (1955) proposed a general class of linear estimators given
by ¥, = Y bsivi,» where the weight b is attached to element i if s is selected and i € 5. He
proved that no best unbiased estimator of Y could exist in this class, for any sampling plan
p(s). Since the criterion of minimum variance had failed, several alternative criteria for the
choice of an estimator were proposed. Among these, the admissibility criterion is of some use
but is not sufficiently selective in distinguishing between the merits of estimators since too many
estimators are admissible. Ghosh (1987) provides an excellent survey of results on admissibility
and related criteria in finite population sampling. New criteria that give rise to a unique choice
of estimator in the Godambe class for any sampling plan have also been put forth, but the
optimality properties established have questionable relevance (see Rao 1971, Rao and Singh
1973). Basu’s (1971) well-known ‘‘elephants’’ example demonstrates the futility of two such
criteria, viz. necessary bestness and hyperadmissibility.

Godambe (1966) obtained the likelihood function from the sample { (i,y;), i € s} regarding
the N-vectory = (¥, ..., ¥n)  as the parameter of interest, but it provides no information
on (y;: i ¢ s), and hence on the total Y, since the N population units are essentially treated
as N separate post strata. A way out of this difficulty is to ignore some of the data to make
the sample non-unique and arrive at an informative likelihood function (Hartley and Rao 1968;
Royall 1968). Another route is to combine the uninformative likelihood function with ex-
changeable priors via Bayes theorem to arrive at informative posterior inferences (Ericson 1969).
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Conditional inference has attracted considerable attention (and controversy) in classical
statistics since Fisher (1925). The choice of a relevant reference set for making conditional
inference is not always clear-cut, but in the context of post-stratification it seems sensible to
make design-based inferences conditional on the realized strata sample sizes (Durbin 1969).
Holt and Smith (1979) provide the most compelling arguments in favour of conditional design-
based inference, although their discussion was confined to post-stratification of a simple
random sample. Rao (1985) considered a number of real examples involving random sample
sizes to illustrate conditional design-based inference and associated difficulties.

Robinson (1987) considered conditional design-based inference from a simple random
sample when only the population total X of a concomitant variable x is known. By conditioning
on the observed sample mean ¥, he showed that the usual ratio estimator ¥, = (/%)X is con-
ditionally biased. He obtained a conditional bias adjusted ratio estimator given by

Y.(adj) = ¥, + N(r — b)(* — X)X/x, @2.1)

where r = y/x and b is the sample regression coefficient. He also showed that a customary
variance estimator

s2(¥) = N*(1 = w/N) Y3 (0 = ) ?/n(n = 1) (2.2)
’ i€s
{
is conditionally biased, {while another classical variance estimator

s3Y,) = (X/x)%s2(Y,) (2.3)

I
is in fact conditidnally unbiased, for large n. Robinson also showed, through a simulation study,
that s2(Y,) is very close to the estimator of conditional variance of ¥,(adj).

2.2 Model-dependent Approach

A strict model-dependent approach involves purposive sampling, and the model distribu-
tion (generated from hypothetical realizations of y = (4, ..., ¥n) ' obeying the model) pro-
vides valid inferences referring to the particular sample s that has been drawn.

The model-dependent approach was first proposed by Brewer (1963) and extensively studied
by Royall and his co-workers, starting with Royall (1970). It is best illustrated under a simple
regression model

E,(y)=08x;, i=1,...,N; 8>0,x,>0 (2.4)

where E,, denotes the model expectation. It is further assumed that the model variance
V,.(¥;) = o} where o? is known except for a multiplicative constant, and that the model
covariance cov,(¥;, y;) = 0, i # j. Royall (1970) showed that the customary design-
unbiased estimator, Ny, under simple random sampling is biased under the model given by
(2.4), and that Ny leads to serious underestimation if the observed sample contains mostly units
with small sizes, x;. These results can also be shown under the conditional design-based
approach without assuming a model (Rao 1985).

The best linear model unbiased estimator (or prediction estimator) of ¥ under the model
(2.4) is given by

Y = E yi + E Bx,' (2'5)

ies i€§
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which reduces to the usual ratio estimator ¥, if 6? = o%x;, where§ = U — sis the set of non-
sampled units and 3 is the best linear unbiased estimator of 8. The uncertainty in ¥ is measured
by E, (Y — Y)? = V,,(¥Y — Y) which in the case of ¥, reduces to

V(Y — Y) = {X(X — nx)/(n%)}o. (2.6)

Since (2.6) decreases as X increases, the optimal design is a purposive sample consisting of the
n units whose x-values are largest, assuming that the population x;’s are known. A model
unbiased estimator, s2,(¥ — Y), of ¥,,(¥ — Y) is obtained from (2.6) by replacing ¢ with
its weighted least squares estimator 62, and the resulting pivotal ¢,, = (¥ — Y)/s,,(¥Y — Y)
is approximately N(0,1) under the model distribution. These theoretical results are impressive,
but such model-dependent strategies could lead to serious biases if the assumed model is not
completely correct.

To protect against model misspecifications, Royall and Herson (1973 a,b) considered model
deviations consisting of second or higher order polynomial terms in x (say g-th order) or an
intercept or both, and demonstrated that a balanced sample for which x¥) = XV j = 1,

.., g provides robustness in the sense that ¥, remains model unbiased, where ) = ¥ .
xi/nand XY) = Y, . x{/N. Further, they have shown that stratification on x with optimal
allocation and balanced sampling within each stratum together with the separate ratio estimator
of Y provides increased efficiency. Purposively chosen balanced samples have a number of
difficulties, nevertheless. First, due to lack of rigorous rules in the sample selection one might
be tempted to select units whose x; are close to X (in the case of ¢ = 1) which can produce
an unrepresentative sample if y is positively correlated with x (Yates 1960, p. 40). Second,
balancing is sensitive to departures from the polynomial regression model (Madow 1978,
p. 320). Balance is required on the alternative model, which may contain higher-order poly-
nomial terms or other variables or both, and the extra variables in the alternative model must
be known in advance. Third, balanced sampling is not feasible for surveys with multiple
characters of interest since different samples may be required for each variable.

If the extra concomitant variables z in the model are unknown or unmeasured, Royall and
Pfeffermann (1982) recommend simple random sampling since it provides ‘‘grounds for con-
fidence that the selected sample is not badly unbalanced on z’’, but more recently Royall and
Cumberland (1988) seem to favour some form of restricted randomization: ‘‘Many techniques,
including restricted randomization, stratification and systematic sampling, can be used to help
achieve balanced samples. We are not advocating one scheme over another; . ..”’. In any case,
it appears that most advocates of the model-dependent approach seem to recommend pro-
bability sampling in some form, as noted by Smith (1984), and hence the main difference
between the probability sampling approach and the model-dependent approach is in the choice
of the pivotal involving the estimator ¥ and a measure of its uncertainty.

Despite the above-mentioned limitations, the model-dependent approach is useful for
studying the conditional performances of conventional procedures, under different plausible
models. For instance, the variance estimator s2( Y,) is consistent with the behaviour of the
conditional variance V,,(Y, — Y) under the model (2.4) with o? = o2x;, while s2(Y,) is
model-biased (Royall and Eberhardt 1975). The variance estimator s2( ¥,) is also robust to

deviations from the assumption ¢? = ox;.

2.3 Model-assisted Approach

Hansen, Madow and Tepping (1983) illustrated the dangers in using model-dependent
strategies even when the model is apparently consistent with the sample data. By introducing
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a misspecification to the model (2.4) which is not detectable through tests of significance from
samples as large as 400, they showed that the design-based coverage of the confidence intervals
derived from the model-dependent pivotal ¢, = (¥, — Y)/s,(Y,) is substantially less than
the desired level and that it becomes worse as the sample size increases. The poor performance
of ¢, was due to the asymptotic inconsistency of the estimator Y, with respect to their stratified
random sampling design.

The model-assisted approach considers only asymptotically design consistent estimators ¥
that are also model unbiased under an assumed model. Variance estimators that are consis-
tent for the design variance of ¥ and at the same time model unbiased (at least approximately)
for the conditional variance V,,(Y — Y) are also constructed. Thus the resulting pivotal leads
to valid inferences under an assumed model and at the same time protects against model
misspecifications in the sense of providing valid design-based inferences irrespective of the
population y-values. However, very little attention has been given to studying conditional
design-based properties of model-assisted strategies under model misspecifications.

Godambe (1955) assumed the model (2.4) with V,,(»;) = ¢/ and cov,,( Yooy;) = 0,i #J,
and obtained a lower bound, ¥ ;cy (1/7; — 1)o?, to the anticipated variance of any design
unbiased linear estimator, ¥,. He also showed that any fixed sample size plan with 7; =
(nx;) /X together with the Horvitz-Thompson estimator, Yy = ¥ ;¢.¥;/7; , attains the lower
bound, provided 67 = o2x?. “Optimal” design unbiased strategies do not exist if 6? # o%x?,
and as a result asymptotically optimal strategies were developed by relaxing the restriction to
design unbiased estimators and considering asymptotically design-consistent estimators. The
generalized regression estimator

Ve = Y, yi/mi + 6()( -Y x,-/1r,-> @.7)

ies i€s

for any fixed sample size plan with w; proportional to g; is asymptotically optimal (i.e.,
the asymptotic anticipated variance attains the lower bound), where B is a linear model un-
biased estimator of 8 and E,,,EP(B — B)% — 0asn — oo, where E, denotgs the design expec-
tation (Sdrndal 1980). In particular, the best model unbiased estimator 8 = ( ¥ jesWix;y)/
(L iesWix?) with w; = 1/07 may be chosen.

If B = (LiesWixibi/m)/ (T esWixF/m;) with w; = 1/x; is chosen, then ¥, reduces to the
simpler form (ratio estimator)

Yreg = XB = E gsiyi/7ri’ (28)

i€s

where g,; = X/ (Y jesX;/7;) and g,; converges in probability to 1 as n — oo (Sdrndal and
Wright 1984). Sarndal, Swensson and Wretman (1989) proposed a new variance estimator for
estimators ¥ of the form (2.8) which is design consistent and at the same time approximately
unbiased for the conditional variance V,,(¥ — Y). Their variance estimator for ¥, is given by

sz(Yreg) = E (‘ll‘,'ﬂ'j - 7rij)7rij_'l(gsiéi - gsjéj)2 2.9

i<jes

where & = (y; — 3x,~)/ «; . For simple random sampling, s%( Y',eg) reduces to s2(¥,), given
by (2.3), which was justified under the prediction and conditional randomization approaches.
Kott (1987) proposed a ratio adjustment to the conventional Yates-Grundy variance estimator,
5% (Y), of any model unbiased asymptotically design consistent estimator ¥. His variance
estimator
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§%6(Y) = s%6(DN V(¥ — V)/Epsio(D)] (2.10)

is model unbiased and at the same time asymptotically design consistent. However, for
estimators of the form (2.8) Sirndal et al. variance estimator appears simpler since it is obtained
simply from the conventional variance estimator s3¢ (¥) by changing é; to g;; &;.

The conventional regression estimator is obtained by first considering a fixed constant B
in place of § in (2.7), and then substituting a consistent estimator of By, the value of B
minimizing the design variance. This estimator does not depend on the validity of any model.
However, the optimal design variance can be approximately attained in the model- assisted
framework by modifying the model (2.4) to E(y;) = Bx; + y=; and then using (8,4)", the
weighted regression estimator of (8,y)’ with weights w; = 1/x?. The resulting estimator of
Y reduces to (2.7) with 3 changed to 3 (Isaki and Fuller 1982; Montanari 1987). Any other
choice of 8 in (2.7) will give a larger asymptotic design variance.

Little (1983) argued that only models that yield asymptotically design consistent, best linear
model unbiased estimators should be used since the latter estimators are optimal if the model
is in fact true. One way to accomplish this is by introducing an additional auxiliary variable
u; = o?(1 — m;)/7; into the model (2.4), i.e. by using E(y;) = Bx; + yu; (Sirndal and
Wright 1984). If we change the model to E(y;) = 8x; + yo?/m; + 80? by adding two
auxiliary variables o?/7; and o7 to the model (2.4), then we get an asymptotically design
consistent, best linear model unbiased estimator of the form ¥ = ¥ i, g, ¥;/m; (Sdrndal and
Wright 1984). The lower bound to asymptotic anticipated variance is also attained if we choose
a sampling plan with ; proportional to ¢;. The above desirable properties, however, are
obtained at the expense of a slight increase in the model variance under the original model (2.4).

Godambe and Thompson (1986) employed the theory of estimating functions to derive design
consistent estimators through an assumed model. For example, if y; is expected to be unrelated
to ; for some character y in a multisubject survey, then the “‘optimal’’ estimating function
gives the Hajek (1971) estimator of Y-

Vi = < ) y,-/1r,->/< 2 1/7r,~> . @.11)

ies

The superpopulation model here is given by y; = 6 + ¢;, with independent errors ¢;, which
reflects the situation at hand. The estimator ¥, avoids the difficulties associated with the
Horvitz-Thompson estimator Yg7/N, as illustrated by the ‘‘elephants’ example of Basu
(1971). The method of estimating functions looks promising, but further work remains to be
done on its use in getting ‘‘better’’ estimators or pivotals or both. It is interesting to note that
the well-known Fieller method of computing confidence limits for a ratio (Fieller 1932) and
the method of Woodruff (1952) for computing confidence limits for medians are essentially
equivalent to the method of estimating functions.

The results in Sections 2.2 and 2.3 use models appropriate to unistage sampling. In the case
of multistage sampling, the models are more complex due to intra-cluster correlations (Scott
and Smith 1969; Montanari 1987). The resulting best linear model unbiased estimators or predic-
tion estimators involve weighted combinations of estimators, where the weights depend on intra-
cluster correlations which can be estimated from the sample data. Bellhouse and Rao (1986)
investigated the relative efficiency of such estimators, under the repeated sampling framework.
Their empirical results suggest that the prediction estimators may not be significantly more
efficient than the customary estimator in two-stage sampling with PPS sampling of clusters
and simple random sampling within sampled clusters.
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If the clusters are regarded as strata and if the strata means are the parameters of interest
as in small area estimation, then the prediction estimators of strata means are likely to be
significantly more efficient than the customary design-based estimators since the prediction
estimators ‘‘borrow strength’’ from all the strata unlike the customary estimators. In the case
of two-stage sampling with cluster means as parameters of interest, only a prediction estimator
for the nonsampled clusters can be implemented.

3. VARIANCE ESTIMATION AND CONFIDENCE INTERVALS

3.1 Linear Statistics

A substantial part of traditional sampling theory is devoted to the derivation of mean
square errors or variances of linear estimators of a total Y, and their estimators. Rao (1979)
developed a unified approach for estimators belonging to Godambe’s general linear class,
Y, = ¥ icsbisyi, Which enables the derivation of mean square error in a straightforward
fashion, and also exhibits the necessary form of any non-negative quadratic unbiased estimator
of the mean square error. For multistage designs, a general estimator of Y is of the form
Yiym = X icsbis ¥, where s now denotes a sample of primary sampling units (psu’s) and ¥;is
an unbiased linear estimator of psu total Y; based on subsampling the psu. Unified variance
formulae for multistage designs have been worked out by Raj (1966) and Rao (1975).

Large scale surveys often employ many strata, L, with relatively few psu’s n,, sampled
within each stratum 4. In fact, it is a common practice to select #, = 2 psu’s within each
stratum to permit maximum degree of stratification of psu’s consistent with the provision of
a valid variance estimator. If the psu’s are sampled with replacement with probabilities p,; in
stratum 4, then the estimator of total Y is given by ¥ = Y,7,, and an unbiased variance
estimator is simply obtained as

(9 = ¥ {2 (i — fh)z/[nh(nh - 1)1}, (3.1)

h

where 7y, = Y;rui/ny,ri = Yui/ppiand Y, is an unbiased estimator of the i-th psu total in
stratum A(i = 1, ..., ny; h= 1, ..., L). This stratified design is frequently used in com-
paring methods for nonlinear statistics (Section 3.2). Because of its simplicity, s*( ¥) is often
used even when the psu’s are sampled without replacement. This procedure leads to overestima-
tion of variance, but the relative bias would be small if the first stage sampling fraction is small.

3.2 Non-linear Statistics

Many non-linear, finite population parameters of interest, 8, such as ratio, regression
and correlation coefficients, can be expressed as smooth functions, g(Y) of totals Y =
(Y1, ..., Y,)’ of suitably defined variates such that g(Y) o g;(Y\/M, ..., Y, /M),
where Y, = M, the population size. The parameter 6 is estimated by g(Y) « g, (¥;/M, ...,
Y,_1/M). Such estimators are well-behaved even when the variates attached to the elements
t are not related to the inclusion probabilities (¢ = 1, ..., M) since g(Y) is a function only
of the Hdjek-type estimators Yj = )7',-/1\71 of the means Y'J . As an example of g(Y), the esti-
mator of a finite population regression coefficient B = ¥ (x, — X)(y;, — ¥)/ X (x, — X)?
can be written as

B = [Z/IM — (X/IM)Y(Y/M)]IW/M — (X/M)*] (3.2
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where X, Z and W are the estimators of the totals X, Z and W of the variates x,, z, = y,x;
and w, = x? respectively.

Variance estimation methods for non-linear statistics, g(Y), include the well-known
linearization method and resampling techniques like the jackknife, balanced repeated replica-
tion (BRR) and the bootstrap. The linearization method is applicable to general sampling
designs, but it involves a separate variance formula for each statistic. On the other hand,
resampling methods use a single variance formula for all statistics. The jackknife and BRR,
however, are strictly applicable only to those designs in which the psu’s are sampled with replace-
ment (or the first-stage sampling fractions are negligible). The bootstrap seems to be more gen-
erally applicable, but it is computationally more cumbersome and its properties have not yet
been fully examined.

Linearization method

If we denote the variance estimator of ¥ = Y(y,) for a general design as v(y,), the
linearization method provides a variance estimator for a nonlinear statistic § as v(z,) fora
suitably defined synthetic variable z, which depends on the form of 4. For a general statistic
6 = g(Y), the variance estimator is given by

st(8) = v(z) with z = Y yugi(¥), (3.3)

(Woodruff 1971), where y,; is the value of ith character for ¢th unit, and g;(¥) is the partial
derivative dg(Y)/dY; evaluated at Y = Y(/ = 1, ..., g). One drawback of the formula
(3.3)is that the evaluation of partial derivatives may be difficult in some cases, although useful
approximations to the desired partial derivatives can be obtained using numerical methods
(Woodruff and Causey 1976). The variance estimator can also be obtained in many cases,
without actually evaluating the partial derivatives g;, by recasting 0 as a ratio-type statistic and
using the usual variance formula for a ratio. For example, the sample regression coefficient B
may be expressed as B = Y(z;,)/Y(zy) withzy, = (3, — Y)(x, — X) and z,, = (x;, — X)?,
so that

s1(B) = v(zy — Bzy)/ [ ¥ (2217 3.4

Similar techniques can be used for other statistics like the multiple regression coefficients (Fuller
1975; Folsom 1974). Binder (1983) extended the scope of linearization method to statistics
defined implicitly as the solution of a set of nonlinear equations. His formulation covers finite
population parameters derived from generalized linear models which include the linear regres-
sion model and the logistic regression model.

Resampling methods

We now turn to resampling methods for the commonly used stratified multistage design
of Section 3.1. Letting 6" be the estimator of # computed from the sample {r;;} after omit-
ting r;; = Y,,;/ps;, a jackknife variance estimator of 8 = g( Y. 1) is given by

s3(0) = ) {(ny = 1)/ny) E (6% — )2 (3.5)
h i

Several variations of (3.5) can be obtained; for instance, § in (3.5) may be replaced by §” =
Y6 /ny,.
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MeCarthy (1969) proposed the BRR method for the important special case of n, = 2. A
set of J *“balanced"’ half-samples is formed by deleting one psu in the sample from each stratum.
This set may be constructed from Hadamard matrices. The BRR variance estimator is given by

sher(6) = 3 (49 — 1), (3.6)

d

where §Y? is the estimator computed from the j-th half sample. Again, several variations of
(3.6) can be obtained. The BRR method has been extended recently to the general case of une-
qual ny, using asymmetrical orthogonal arrays (Gupta and Nigam 1987; Wang and Wu 1988).

The bootstrap method for the stratified design involved the following steps (Rao and Wu
1988): (1) Draw a simple random sample [r;,]ﬂ", of size my, with replacement from [rp:) I
independently for each fi. Calculate

Fu =y + [my/my — D1l — B )iy = n ! E T
i

and @ = g( ) F,). (ii) Independently replicate step (i) a large number, B, of times and calculate
the corresponding estimators §', . . ., #%, (iii) The bootstrap variance estimator of & is given by

stoor(®) = ) (0° = 6) /(B - 1). 3.7
]

Confidence intervals can also be obtained by approximating the distribution of t = (§ — #)/
55 () by its bootstrap counterpart 7 = (§ — ) /53 (), where 53(#) is obtained from s3(6)
by jackknifing the particular boolstrap sample [r]. Two-sided 1 — o level ““bootstrap-#'"
confidence intervals on # are then given by

(6 = fups; (6).0 — fowss (D)), (3.8)

where fi ow and fyp are the lower and upper «/2 points of £ obtained from the bootstrap
histogram of 7!, ..., f?. One-sided confidence intervals can also be obtained from the
bootstrap histogram. Also, one could use the linearization variance estimator ifistead of the
jackknife variance estimator in constructing the confidence intervals. For conflidence intervals
we need a much larger number, B, of bootstrap samples than for variance estimation. Regarding
the choice of bootstrap sample sizes my, the choice m, = n, — 1 is attractive since it gives
fm- = 'I';}‘

Comparison of the methods

Theoretical properties of the methods reported in the literature include the following:
(1} All the variance estimators reduce to the “standard” one, s2( P) given by (3.1), in the
linear caseg(Y) = Y. (2) For smooth functions g(Y), all the variance estimators are asymp-
totically design consistent (Krewski and Rao 1981). The jackknife variance estimator, how-
ever, is known to be inconsistent for nonsmooth functions like the quantiles, even in the case
of simple random sampling. Hence, caution should be exercised in using jackknife software.
(3) If ny = 2 for all &, then the jackknife and linearization variance estimators are asymp-
Lotically equal to high order terms for smooth functions g( Y ), indicating that the choice between
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these methods in this important special case should depend more on other considerations like
computational costs (Rao and Wu 1985). Turning to empirical studies, Kish and Frankel
(1974) studied the linearization, jackknife and BRR methods, using data from the Current
Population Survey and sample designs with n, = 2 clusters from each of L = 6, 12 and 30
strata. They evaluated the empirical coverage probability of the 1 — « level confidence
intervals, § + t, ,zs(é), for ratios, regression and correlation coefficients, where ¢, is the
upper «/2-point of a t-variable with L degrees of freedom and s* (0) is anyone of the variance
estimators. The BRR method performed consistently better, in terms of coverage probability,
than the jackknife which in turn was better than the linearization method; the observed dif-
ferences were small for ratios. The methods performed in the reverse order with regard to
stability of variance estimator. Other empirical studies in the literature reported similar results.
Regarding the bootstrap, a simulation study by Kovar, Rao and Wu (1988) indicates that the
bootstrap #-intervals track the nominal error rate in each tail better than the intervals based
on the normal approximationtoz = (§ — 6)/s(#), but the bootstrap variance estimators are
less stable than those based on the linearization or the jackknife. The second order equivalence
of the latter two variance estimators for the special case n, = 2 is also confirmed.

Computationally simpler methods of variance estimation than the previous methods have
also been proposed in the literature, e.g., random group method and partially balanced repeated
replication, but these variance estimators do not reduce to the ‘‘standard’’ one in the linear
case. Methods of constructing models from which sampling errors can be imputed have also
been proposed. Such methods are useful in producing ‘‘smoothed’’ standard errors for
estimators for which direct computations have not been made, and also in presenting stan-
dard errors in a concise form (e.g., graphs) in published reports.

Wolter’s (1985) book gives an excellent introduction to recent developments in variance
estimation, and illustrates the methods on data from a variety of large-scale surveys. Recent
review papers on variance estimation include Rust (1985) and Rao (1988).

4. ANALYSIS OF SURVEY DATA

Standard methods of data analysis are, in general, based on the assumption of simple random
sampling. These methods have also been implemented in standard statistical packages, including
SPSS¥, BMDP and SAS. Application of standard methods to survey data without some
adjustment for survey design, however, can lead to erroneous inferences, since most such data
are obtained from complex sample surveys involving clustering, stratification and unequal pro-
bability sampling, and as a result do not satisfy the assumption of simple random sampling.
In particular, standard errors of parameter estimates and associated confidence intervals can
be seriously understated if the effect of design is ignored in the analysis of data. Similarly, the
actual type I error rates of tests of hypotheses can be much bigger than the nominal levels.
Standard exploratory data analyses, such as residual analysis to detect model deviations, are
also affected. Kish and Frankel (1974) and others drew attention to some of these problems
with standard methods and emphasized the need for new methods that take proper account
of the complexity of survey data. During the past 10 years or so, rapid progress has been made
in developing such methods for the following types of analyses: (a) analysis of multi-way con-
tingency tables; (b) analysis of domain means or domain proportions; (c) linear regression
analysis; (d) multivariate analysis including principal component analysis and factor analysis.
A brief account of some of these developments is given in this section, and the reader is referred
to review articles by Nathan (1988), Rao (1987) and Smith (1984), and a book edited by C.J.
Skinner, D. Holt and T.M.F. Smith (1989).
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4.1 Analysis of Multi-way Contingency Tables

Chi-squared tests (or likelihood ratio tests) are frequently used for the evaluation and selec-
tion of parsimonious models on p, the population cell probabilities, in a multi-way contingency
table with 7 cells. For this purpose, loglinear models are convenient because of their close
similarity to analysis of variance in systematically providing test statistics of various hypotheses
associated with a multi-way table. Rao and Scott (1984) made a systematic study of the impact
of survey design on the standard chi-squared test of goodness-of-fit of a loglinear model,
denoted by X2. They showed that X? is asymptotically distributed as a weighted sum, ¥ &;W;,
of T — r — 1 independent x? variables W, where the weights §; are the eigenvalues of a
““generalized design effects’” matrix and 7" — r — 1 is the degrees of freedom. This general
result shows that the survey design can have a substantial impact on the type I error rate of X2.
For instance, under a constant design effects clustering model, §; = X for all i, the actual type
I error rate, for nominal level o, is approximately given by Prix%_,_; > N x%_,_i ()]
which increases with the clustering effect, A.

Rao and Scott (1984,7) obtained simple first-order corrections to X which can be comput-
ed from published tables that include estimates of design effects (or standard errors) for cell
estimates p and their marginal totals, thus facilitating secondary analyses (see also Fellegi 1980,
Gross 1984, and Bedrick 1983). A first-order correction refers X2/5. to x%_,_1, where 5. is
an estimate of the average design effect 6. = Y 8,/(T — r — 1) or an estimate of an upper
bound on é. . The corrected test is asymptotically valid in the case of constant design effects
clustering, and in general it should perform well when the variability of the §;’s is small. More
accurate, second-order corrections that take account of the variability in the §;’s can also be
obtained by using the Satterthwaite approximation to the weighted sum of independent x>
variables (Rao and Scott 1984). These tests, however, require the knowledge of a full estimated
covariance matrix of p. Alternative methods that take account of the survey design include
the Wald statistics based on weighted least squares (Koch, Freeman and Freeman 1975) and
the jackknife chi-squared tests (Fay 1985). The latter tests are applicable to survey designs
permitting the use of a replication method, such as the jackknife or the BRR. The Wald tests
require the full estimated covariance matrix of p, whereas the jackknife tests require access
to cluster-level estimates.

Fay (1985) and Thomas and Rao (1987) showed that the Wald test which refers to x%_,_,
although asymptotically correct, can become highly unstable as the number of cells in the
multi-way table increases and the number of sample clusters decreases, leading to unaccep-
tably high type I error rates compared to the nominal level, . On the other hand, Fay’s jack-
knife tests and the Rao-Scott corrections performed well under quite general conditions. A
simple modification to the Wald test which refers to an F distribution on T — r — 1 and
f — T + r + 2degrees of freedom performed better than the Wald test in controlling the type
I error rate, where f is the degrees of freedom for estimating the covariance matrix of p.

4.2 Analysis of Domain Means or Domain Proportions

Analysis of domain (or subpopulation) proportions associated with a binary response
variable is of considerable interest to researchers in social and health sciences, and other sub-
ject matter areas. Logistic regression models are extensively used for this purpose in conjunc-
tion with standard statistical methods for binomial proportions. Rao and Scott (1987) obtained
simple first-order corrections to standard chi-squared tests of goodness-of-fit and of nested
hypotheses which can be computed from published tables that include estimates of design effects
(or standard errors) of domain proportions. Roberts, Rao and Kumar (1987) derived more
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accurate second-order corrections to standard tests, but these require access to a full estimated
covariance matrix of domain proportions. Diagnostics for detecting outlying domain propor-
tions and influential points in the factor space were developed as well, again taking the sampling
design into account.

Koch, Freeman and Freeman (1975) used weighted least squares methods to analyze domain
means of a quantitative variable, y, and developed Wald tests of goodness-of-fit of the model
and of linear hyptotheses on the model parameters. The performance of Wald tests can be
improved, as in Section 4.1, by using an F-modification.

4.3 Linear Regression Analysis

In Section 3.2, we considered design-based inferences on nonlinear, finite population
parameters such as the finite population simple regression coefficient B. The pivotal ¢ =
(B — B)/s(B) is approximately N(0,1), where B is the design-consistent estimator, (3.2), of
B, and its standard error, s(B), can be obtained either through the linearization method as
in (3.4) or by using one of the replication methods. This approach readily extends to multiple
regression coefficients. The design-weighted estimator B or its multiple regression analogue
can be obtained by the weighted regression option of standard packages by using the survey
weights attached to the sample elements as the weights in the regression. However, the stand-
ard error of B resulting from this routine remains incorrect.

Some people argue that most users are concerned with inferences on parameters of an
appropriate superpopulation model rather than inferences on finite population parameters like
B. However, the interest in B can also be justified by considering it as the least squares estimator
of the superpopulation parameter 8 in the model

yi=a+ Bx; +¢ with E,(¢) =0, i=1,...,N. @.1)

If the population size is large, then estimating B is effectively equivalent to estimating 3, while
if the model (4.1) is misspecified to the extent of making 8 meaningless, then B may still be
of interest as the slope of the least squares line fitted to the N-pairs (y;,x;) (Godambe and
Thompson 1986).

Scott and Holt (1982) used a model-dependent approach to investigate the effect of two-
stage sampling on standard regression analysis. They assumed a regression model of the form
(4.1) with equi-correlated error terms ¢; within each cluster, as in Fuller (1975). This model
also holds for the sample pairs (v;,X;), i€s, if the selection probabilities are not related to the
dependent variable, as in the case of two-stage random sampling. The results of Scott and Holt
indicate that the effect of a positive intra-cluster correlation is to understate the standard errors
of parameter estimates, and consequently inflate the type I error rates of customary tests. Wu,
Holt and Holmes (1988) made a systematic study of the effect of two-stage sampling on the
customary F-statistic, and proposed a correction for the F test for unknown intra-cluster cor-
relation, as an alternative to iterative generalized least squares (GLS) procedure. Both the GLS
procedure and the F-correction require known cluster labels which may not be available when
the survey data are used for secondary analysis.

If the regression model includes all the design variables z related to the dependent variable,
such as stratum indicator variables and size measures of units, and the errors ¢; are indepen-
dent with a constant variance o2, then standard regression analysis is valid under the model-
dependent approach (Pfefferman and Smith 1985). However, such models may involve too
many parameters to be useful. Also, the design variables may not be of intrinsic interest to
the user, or may not be available in secondary analysis. In such situations, we are often interested
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in models of the form (4.1), where x is not a design variable. The sample pairs (y,,x;),ies
however, may not satisfy the model due to sample selection bias, Nathan and Holt (1980) pro-
posed an adjusted regression approach to take account of selection bias, and compared it with
ordinary least squares and the design based approach based on & and s( £). This approach
assumes specific relationships between the regression variables and the design variables. Their
empirical resulls indicate that ordinary leasl squares inferences can be highly unreliable, that
the design-based approach is basically reliable except under extreme selection schemes, and
that the adjusted regression approach performs well. Plefferman and Holmes (1985) study the
robusiness of these procedures to misspecification of relationships between the regression
variables, and conclude that the adjusted regression approach is very sensitive to model
misspecification. The design-weighted estimator # is robust, but a more efficient estimator
is obtained by modifying the adjusted regression estimator to be design-consistent for the finite
population regression coefficient, B,

4.4 Multivariate Analysis

The methods in Section 4.2 for the analysis of domain means can be extended to the
multivariate case of domain mean vectors, but no detailed studies of such extensions have been
reported in the literature. The litevature on multivariate anlaysis of survey data is largely devoted
to the analysis of covariance structures, in particular to principal component analysis and factor
analysis. Bebbingtap and Smith (1977), Tortora (1980) and Skinner, Holmes and Smith (1986)
investigated the effect of sampledestgn on standard principal component analysis. Their results
indicate that the application of standard methods, without some adjustment for the sample
design, can lead to erroneous inferences. In particular, the estimators of eigenvalues and
eigenvectors of the covariance matrix, [,, can be severely biased for non-self-weighting
sample designs. Skinner, Holmes and Smith (1986) proposed maximum likelihood (ML)
estimators, under a multivariate normal model, and probability-weighted (or design-based)
estimators, to adjust for the effects of the sample design. Their simulation study indicates that
both estimators perform well unconditionally, while the probability-weighted estimators exhibit
a conditional model bias. The ML estimators, however, may be sensitive to model misspecifica-
tion. A probability-weighted version of the ML estimators may be more robust, as demonstrated
by Plefferman and Holmes (1985) in the context of the adjusted regression approach (section
4.3). Fuller (1987) derived design-based estimators of the parameters in factor analysis, and
the estimated covariance matrix of the estimators. He showed that the estimated variances based
on normal theory can seriously underestimate the true variances of the factor estimators.

5. COMPUTER SOFTWARE

Several computer package programs for variance estimation in complex surveys were
developed in the mid to late 1970's, often in conjunction with programs for regression analysis
of survey data, Wolter (1985, pp. 393-412) reviewed the latest versions of these programs to
about 1985. Among the programs listed by Wolter, the ones most commonly used are
CLUSTERS (Verma and Pearce 1977), the programs &PSALMS and &REPERR in the OSIRIS
1V system (Vinter 1980 and Lepkowski 1982), SUDAAN (Shah 1981a, 1981b, 1982 and Holt
197%), HESBRR (Jones 1983) and SUPER CARP (Hidiroglou, Fuller and Hickman 1980).
The programs HESBRR and the OSIRIS IV program &REPERR use balanced repeated replica-
tion as the variance estimation technique; the remaining three use the Taylor linearization
method,



18 Rao and Bellhouse: Foundations of Survey Based Estimation and Analysis

Cohen, Burt and Jones (1986) evaluated the variance estimation programs for means and
ratios, with the exception of CLUSTERS, using a large data set from the National Medical
Care Expenditure Survey. They found that the programs SESUDAAN and RATIOEST in the
SUDAAN collection were the most efficient in terms of CPU time usage and easier to program
than the others.

One major current trend in software development is the development of menu-driven
packages on micro-computers. Variance estimation and specialized survey analysis software
is no exception to this trend. A notable enhancement to the commonly used variance estima-
tion programs since 1985 is the introduction of PC CARP (Schnell ef a/. 1986 and Schnell
et al. 1988), available on IBM AT/XT or compatible micro-computers with a math co-
processor. This package, like its predecessor SUPER CARP, uses Taylor linearization methods
for variance estimation. A second variance estimation package is also available on micro-
computers. The package listed as BELLHOUSE in Wolter (1985, p. 399) has been adapted
for IBM micros with or without a co-processor by Rylett and Bellhouse (1988) under the pro-
gram name TREES. This software uses tree structures to mimic the structure of stratified
multistage sampling designs and applies tree traversal algorithms, in conjunction with general
results on variance estimation in multi-stage sampling (see section 3.1), to the calculation of
variance estimates.

A second trend in the computer implementation of survey variance estimation and survey
analysis techniques is the integration of survey software with widely used statistical analysis
systems. A leader in this trend from the early 1980’s is the SUDAAN system, which is com-
prised of a series of several SAS procedures. Freeman et al. (1985) and Hidiroglou and Paton
(1987) both used the PROC MATRIX procedure in SAS to obtain survey variance estimates,
the former by balanced repeated replication and the latter by Taylor linearization. Mohadjer
et al. (1986) report the development of a new SAS procedure WESVAR to obtain survey
variance estimates by balanced repeated replication.

A variety of packages and computing techniques are available to carry out the analyses of
survey data reviewed in Section 4. Among the available specialized packages, the most com-
prehensive appears to be the PC CARP. The original program, SUPER CARP, was designed
to carry out regression analyses developed by Fuller (1975); the PC version retains this option.
The current version now contains additional options for categorical data analysis, and inferences
on cumulative distribution function and associated quantiles, following methods given by Fran-
cisco and Fuller (1986). For categorical data, there is an option for the analysis of two-way
contingency tables, based on the Rao-Scott corrections to chi-squared test of independence.
The program can also be manipulated to perform factor analyses of survey data.

There are four other specialized packages for the analysis of survey data; between them
they cover topics in regression and categorical data analysis. The &REPERR program in
OSIRIS IV and the SURREGR procedure in SUDAAN both calculate standard errors of
regression coefficients so that regression analyses can be carried out. The programs CPLX,
developed by Fay (1982), and RSPLX, also by Fay, handle categorical data analyses of log-
linear models for two and multi-way tables. The analysis in CPLX is carried out using jack-
knifed chi-square statistics, while RSPLX applies second order Rao-Scott corrections to the
usual test statistic.

The four programs for the regression analyses for complex survey data were evaluated
by Cohen, Xanthopoulis and Jones (1988). The older version, SUPER CARP, was included
in this analysis rather than PC CARP. Similar to the earlier study of Cohen, Burt and Jones
(1986) on variance estimation, data from the National Medical Care Expenditure Survey were
used. Once again, a program in the SUDAAN suite of programs, SURREGR, was the most
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efficient in terms of CPU time usage and easier to program than the others. However, the
efficiency of the SUDAAN programs might be balanced by the flexibility of the PC CARP
program, depending upon the survey analysis required.

Significant enhancements to SUDAAN are provided in the new SUDAAN system under
development (LaVange ef al. 1989). Variance estimation and data analysis methods not available
in SUDAAN are among the many modifications incorporated into the new SUDAAN System.

Running almost parallel to the emerging trend in the calculation of variance estimates,
there is pagea move towards incorporating methods for the analysis of complex survey data
into standard statistical packages and systems. Following on their variance estimation methods
using SAS procedures, Hidiroglou and Paton (1987) describe further SAS procedures to
carry out log-linear analyses, with Rao-Scott corrections, of multi-way contingency tables.
Likewise, Freeman (1988) notes that he used the SAS procedure PROC MATRIX for both
variance estimation and for the analysis of variance of his survey data. Similarly, Mahodjer
et al. (1986) describe two other new SAS procedures in addition to the variance estimation
procedure WESVAR. These are the previously mentioned NASSREG and NASSLOG which
carry out weighted least squares regression analyses and logistic regression analyses respec-
tively. Both procedures depend on balanced repeated replication for variance estimation
of the model parameters. An alternative approach to using SAS procedures is to use the
matrix algebra language GAUSS (Platt 1986). Based on their own experience, Rao and
Thomas (1988) favorably report on the use of this language for categorical data analysis in
complex surveys.

6. CONCLUDING REMARKS

The early milestones in the development of efficient sampling designs and associated estima-
tion techniques for population totals and means have firmly established sample survey theory
and methods as a major discipline in statistics. Subsequent developments in theoretical foun-
dations of sampling theory have provided useful insights into inferential aspects. In particular,
the model-assisted approach and the conditional design-based approach appear to be promising
since they attempt to fill the ‘‘gap’’ between the traditional approach and the model-dependent
approach by retaining the desirable features of both approaches, but more research is needed
in this area to handle complex sampling designs. Recent advances in variance estimation and
confidence intervals for nonlinear statistics and the associated computer software, are also
equally impressive. It is also gratifying that rapid progress has been made in the development
of methods for the analysis of survey data that take account of the complexity of the sampling
design, and the associated computer software.

We can expect to see important new developments in the next 10 years or so in the areas
of variance estimation for nonlinear statistics (especially, nonsmooth functions), analysis of
survey data (especially, multivariate analysis), and other topics not covered here (especially,
sampling in time and small area estimation).
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COMMENT
T.M. FRED SMITH!

Sample surveys are one¢ of the most important areas of the application of statistics. The paper
by Professors Rao and Bellhouse is an excellent review of the theoretical development of sample
surveys and I find it hard to be critical; but in the best traditions of the Royal Statistical Society
I shall make the attempt in as constructive and a controversial manner as possible. In any review
paper the choice of topics, especially relating to recent work, must be to some extent subjec-
tive. This affords a discussant an easy target; criticize the authors for their sins of omission.
Also areview must be wide ranging and this allows discussants freedom to ride their own hobby
horses over the range. I shall adopt both approaches and my objective in so doing is to iden-
tify some additional issues which I believe are important thus widening the review still further.

There is now general agreement about the milestones of our subject. These are associated
with the names of Kiaer, Bowley, Neyman, Cochran, Hansen, Hurwitz, Madow, Mahalanobis,
Horvitz and Thompson - an international collection dominated, latterly by contributions from
the USA. Kiaer and Bowley’s work was fundamental because they demonstrated that valid
conclusions could be drawn from representative samples of quite small size drawn from large
populations with arbitrary values. Representative samples were stratified samples with pro-
portional allocation, and Bowley derived the appropriate theoretical results. Neyman and subse-
quent authors argued the case for random sampling and developed a comprehensive theory
of randomisation inference applicable to most sampling schemes. Durbin (1953) completes the
theory with his multi-stage sampling results. Despite the importance of these results sample
surveys became a Cinderella subject on the fringes of mainstream statistics, and even today
most university departments do not have a sampling statistician on their staff. Why is this?

One reason is that sample survey theory has developed mainly within social science and
official government statistics, whereas most statisticians have a training within mathematics
and physical science. Although all experimental scientists deal with samples very few seem to
recognise this explicitly and those that do, such as geologists and biologists, have developed
their own theory of sampling and estimation. In my view it is time to bring together sampling
experts from all areas of scientific enquiry to share ideas and experiences and hopefully to estab-
lish a global theory of sample surveys.

A second reason is that sample surveys starts with a population which is a real fixed finite
population of units. Samples are then drawn from this population according to specific rules.
In most scientific enquiries the position is reversed; the population is not well defined and the
scientist starts with a sample. One view of the role of the statistician, as enunciated, for example,
R.A. Fisher, is to define the hypothetical population from which the sample data can be viewed
as a random sample. This approach begs the question whether this hypothetical population
has any scientific value. Arguably the sample survey approach of starting with the population
has much to commend it.

A third reason is that since the finite population units can take arbitrary values the popula-
tion cannot be summarized by a few parameters. Notions like sufficiency have little value in
sample survey theory, and sample data are usually summarized by a mass of cross-tabulations.
The estimation of a large number of cell proportions is the primary aim of sample surveys and
the object of inference is usually descriptive rather than explanatory.

A final reason for the separation of sample surveys from mainstream statistics is that the
randomisation theory of sample surveys is so complete. It is a closed theory which if accepted

! T.M.F. Smith, Department of Mathematics, The University, Southampton, S09 SNH, U K.



Survey Methodology, June 1980 27

has few remaining problems to be solved. The chief concerns of randomisation researchers
since Horvitz and Thompson (1952) provided the general theoretical framework have been the
construction of wps sampling schemes with non-zero joint inclusion probabilities, the produc-
tion of methods and programs for variance estimation and the construction of estimators which
employ auxiliary information but can never be generally efficient because of Godambe’s result.
All of these problems are important, but they are not exciting, they lack the philosophical and
mathematical depth to capture the imaginations of young mathematical statisticians.

These reasons are my explanation why sample surveys have been seen in the past as an
activity on the fringe of mainstream statistics. The position is changing now and I detect
a coming together of the branches of statistics. Much recent work in sample surveys has
attempted to integrate surveys into mainstream statistics and many areas of statistics now
recognise the importance of selection effects. Has the sample survey Cinderella been invited
to the Statisticians’s Ball?

In addition to his non-existence theorem Godambe has also shown that within the randomisa-
tion framework the likelihood is proportional to the probability of selection, p(s | z), where
zis the prior information on which the design was based, which for fixed s is a constant, Thus
the likelihood is completely uninformative. In the same set-up Basu (1971) showed that the
sufficient statistic is { (i,;):/€s}, namely the complete data tape including the labels. Although
these results are also negative, highlighting the distinction between randomisation inference
and other forms of inference, they did stimulate interest amongst a wider group of statistician
and so had a positive value. My own interest in the theory of sample surveys was stimulated
by Ericson (1969), in particular by the way he incorporated the uninformative likelihood into
a positive framework via Bayes theorem and exchangeable priors. Ericson’s use of
exchangeability deserves consideration by all statisticians, not just Bayesians. Is it reasonable,
is it even possible, to have a valid theory of predictive inference without some form of
exchangeability? If there is no function of the unit values which is exchangeable how can you
predict the unobserved values from the sample values? My opinion is that Ericson’s work was
a milestone in the development of sample survey theory.

The uninformative nature of the randomisation likelihood led some statisticians to ques-
tion the role of randomisation. Godambe himself refers to ‘‘the problem of randomisation’’
and developed alternative theoretical approaches which required randomisation. Ericson also
found a role for randomisation within his exchangeable set-up. He argued that if you employ
your prior information, z, to form groups of units which are approximately exchangeable a
priori then the use of simple random sampling will guarantee exchangeability. Royall (1970,
1973), however, made the mistake of advocating purposive sampling within his model-based
framework. He touched a raw nerve and brought down upon his head the wrath of the ran-
domisation establishment. I thought that Royall had asked some serious questions which
deserved an answer and the strength of the reaction surprised me. Why did academic survey
samplers and those from government agencies in North America feel so strongly about ran-
domisation? Their colleagues in market research seemed happy with quota samples which could
be viewed as a special case of balanced sampling. In Europe many official surveys are based
on quota samples. What is so special about official statistics in North America?

I think the answer lies deep in the American political psyche. Thoughtful Americans are
democratic in the true sense of that term. They believe in individual freedom and the right to
information, they are also deeply suspicious of governments. They recognise the need within
a democracy for reliable statistical information. To the official statisticians randomisation is
the guarantee of the objective reliability of their data. It is a key source of their professional
integrity and any attack on randomisation was seen as potentially dangerous however well
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intentioned. I admire this position and it has helped to convince me that randomisation is one
of the great contributions of statistics to science.

I have expressed myself with some feeling because I am so unhappy about the present posi-
tion of official statistics in the U.K.. The tradition in the U.K. is not naturally democratic,
we are still a monarchy, we respect authority rather than the individual. This tendency is being
exploited and there is now a serious erosion of public confidence in the Government’s use of
statistics. It has been argued that official statistics in the U.K. are collected to aid the deci-
sions of government, not to help parliament or to inform the electorate. Key series have been
stopped, definitions have been changed, information is presented by ministers in ways which
are patently false, yet no government statistician can complain publically because of the Official
Secrets Act. There is a dangerous public cynicism about statistics and George Orwell’s predic-
tions in his novel 1984 may be closer to the truth than we realise. I apologise to the authors
for this digression, but I said I would ride some hobby horses, and the issue of the integrity
of official statistics is of great importance.

Before leaving randomisation theory I would like to make some comments about repeated
surveys and rotation sampling. Again this is an area which the authors have excluded although
they did note Patterson (1950) as a milestone paper. Randomisation theory has been devel-
oped within the framework of the one-off cross section survey. The extension to repeated
surveys is non-trivial for it is difficult to retain the probability structure over time under rota-
tion sampling when the population changes, Fellegi (1963). For the measurement of gross flows,
or transition probabilities, the role of the randomisation inclusion probabilities is not clear.
The beautiful simplicity of randomisation theory for one-off surveys is destroyed when they
are repeated over time, But most important surveys are repeated surveys, especially in the
government sector, so what are the implications?

As always the answer is that it depends. If the primary purpose is to produce descriptive
statistics of the state of the system at each time period then the surveys can be considered as
repetitions of a cross-section survey and each one can be analysed independently. Although
composite estimators or time series estimators may be more efficient they should be viewed
as secondary estimators rather than primary estimators. If I wanted to use repeated survey data
within an econometric model I would prefer to input the cross-section estimates with their
known correlation structure rather than complex composite estimates. On the other hand if
I wanted the best estimate of the current value of, say, unemployment, for a particular pur-
pose, not for public consumption, then I would use the most efficient procedure available.
Similarly if I wanted to explain the change in value of some estimates over time then I would
need to go beyond simple randomisation analysis. Thus the problems with randomisation
inference for repeated surveys occur mainly for secondary analyses. However, there remains
the important issue of which estimates should be reported to the public.

Section 2 of the paper is devoted to work on the theoretical foundations of inference from
survey data carried out during the last 30-40 years. The authors have chosen to distinguish three
approaches, design-based, model-dependent and model-assisted, the latter being an attempt
to find a compromise solution between the other two. Personally I prefer to go for a GUT
(Grand Universal Theory) approach integrating both design and models into one framework.
The important influences on my thinking in this area, in addition to Ericson, have been Scott
(1977) and Rubin (1976). In the GUT approach the survey variables, the sampling mechanism,
and any other selection and measurement mechanisms are all introduced explicitly into an
overall model. If Yis the n X p matrix of measured survey variables, z is the prior information,
s denotes the sample, s* C s denotes the respondents, then the joint distribution of all these
variables is
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S(Y | z;0)g(z;8)p(s | z)q(s* | 5,2, Ysin),

where the survey design, represented by p(s | z), is of the so-called uninformative type such
as random sampling. The design is uninformative because z is assumed known and includes
all the usual information on stratification, clustering and measures of size. This general for-
mulation forces statisticians to face up to all their assumptions. Non-response must be modelled
explicitly. Measurement errors must be included in the structure of f (Y | z;0)g(z;¢). The
decision to use randomisation inference is then an explicit statement that given z the values
of Y can be treated as unknown constants; they are arbitrary values about which we have no
additional information. A modeller, on the other hand must specify the model to the level
needed for inference, for example, by an exchangeable model. Both design-based and model-
dependent approaches condition on the same prior information, z, and so both should employ
similar, possibly identical, structures. In fact I would rarely expect the point estimators using
the different approaches to differ very much in practice. The issue thus becomes that iden-
tified by the authors as the choice of a measure of uncertainty. Model-dependent procedures
employ conditional variances, strict design-based procedures are unconditional. How to
construct conditional design-based inferences is still an open question, but the approach of
Robinson (1987) looks promising. The GUT model shows the design-based versus model-based
controversy to be what it is, namely a relatively small philosophical dispute within the much
bigger framework of total survey analysis.

The failure of both theoretical and practical statisticians to integrate sampling and non-
sampling errors into measures of total survey error even after 50 years of intensive research
must be noted as one of the failures of this important branch of statistics. But again things
are changing and the mood now is no longer merely to report sampling errors and in addition
to give vague warnings about the potential size of non-sampling errors but it is to attempt to
measure total survey error recognising that some non-sampling biases can far exceed sampling
€ITorS.

Section 4 of the paper is devoted to the analysis of survey data, to the analytic rather than
descriptive uses of surveys. Here the design-based, model-based dispute pales into
insignificance. Analysts must face up to all the classical problems of model choice, estimation
and testing, residual analysis and so on, which make up mainstream statistics. Cinderella is
at last dancing with the Prince.

My final comments are again personal. If you look at the references at the end of the paper,
and if you consider the additional areas which I have discussed, then you will see that Jon Rao
has contributed important papers in every area. I think that it was particularly appropriate
that he was invited to write this paper. I congratulate both authors on their fine paper.
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