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Estimation Using Double Sampling and
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ABSTRACT

The problem considered is that of estimation of the total of a finite population which is stratified at
two levels: a deeper level which has low intrastratum variability but is not known until the first phase
of sampling, and a known pre-stratification which is relatively effective, unit by unit, in predicting the
deeper post-stratification. As an important example, the post-stratification may define two groups cor-
responding to responders and non-responders in the situation of two-phase sampling for non-response.
The estimators of Vardeman and Meeden (1984) are employed in a variety of situations where different
types of prior information are assumed. In a general case, the standard error relative to that of the usual
methods is studied via simulation. In the situation where no prior information is available and where
proportional sampling is employed, the estimator is unbiased and its variance is approximated. Here,
the variance is always lower than that of the usual double sampling for stratification. Also, without prior
information, but with non-proportional sampling, using a slight modification of the second phase
sampling plan, an unbiased estimator is found along with its variance, an unbiased estimator of its
variance, and an optimal allocation scheme for the two phases of sampling. Finally, applications of these
methods are discussed.

KEY WORDS: Two-phase sampling; Prior information; Variance estimation; Optimal allocation;
Non-response.

1. INTRODUCTION

Various stratified sampling designs employ various types of prior information. For example,
the usual stratification model assumes full prior knowledge of individual stratum memberships.
Post-stratification is useful when there is global information on stratum sizes but no informa-
tion on individuals. Double sampling for stratification, on the other hand, assumes no prior
information on strata. Further, some knowledge of the population values is necessary, for
example, for the allocation of sampling resources among strata (see, for example, Cochran
1977, pp. 96-99 and 331-332).

‘I'he rigid assumptions inherent to these sampling designs and population models often are
not satisfied due to the discrepancy between the population under study and the (possibly dated)
prior information. Seeking to appropriately handle this discrepancy, Vardeman and Meeden
(1984) have introduced a pair of estimators which combine information on stratum member-
ships, stratum sizes, and stratum averages with analogous information gained from the cur-
rent sample. Their two estimators apply to two essentially different situations. The first is where
the prior information is global only, i.e., only on stratum sizes and averages. The second
estimator applies where there is also partial information on individual stratum memberships.
Here, the population is stratified according to various factors, some of which are known and
some of which, though not known, may be inexpensive to determine on a first phase of
sampling.
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As an example, consider the use of sampling to determine the spread of an infectious disease.
If detection of infection is expensive, then stratification, according to risk categories, is desirable
to reduce the second phase sample size. Factors determining risk categories may include gender,
age, place of residence, ethnicity, health habits, and contact with potential carriers. As some
of these factors are not known prior to sampling, the model of Vardeman and Meeden can
be employed since the true risk categories can be predicted by the known factors.

Another example is two-phase sampling for non-response. Extending the method of Hansen
and Hurwitz (1946), we have a population which is divided into two post-strata, i.e., responders
and non-responders. The methods discussed here apply when there is some prior information
which classifies units into pre-strata which are then used to predict whether or not the unit will
be in the group of responders.

The notion of employment of prior information in two-phase designs is not without prece-
dent in the sampling literature. As an example, Han (1973) has used prior information on an
auxiliary regression variable (to be measured in a first phase sample) to construct a simple
hypothesis (say H,) regarding the mean of that variable. The first phase sample measurements
are then used to test H,. If H, is accepted, the value specified by Hj is used in the estimator;
if it is rejected, the sample average is used.

A discussion of the use of the first estimator of Vardeman and Meeden (global informa-
tion only) can be found in White (1987). There, optimal choices of the weighting constants
for prior information relative to the information contained in the current sample were
determined. Here, the situation considered is where prior information is also available on
individual stratum memberships. After introducing the necessary notation in Section 2, we
explore a simulated example in Section 3. In Section 4, in two different sampling situations,
unbiased estimators are analyzed in terms of variance, unbiased estimation of the variance,
and optimal allocation of sampling resources. In Section 5, applications of these techniques
are discussed.

2. THE POPULATION MODEL AND SAMPLING SCHEME

We now present the population model and the proposed sampling design. We begin with
a finite population P of units labelled 1, 2, ..., N with associated unknown values y;, y,,
.., ¥n- Denote the population total by r = Y} N yi.For1 < i = N, unit i also possesses
an unknown post-stratum membership j;, 1 < j; < J, and a known pre-stratum membership
ki, 1 =k <K.

A variety of population quantities require a specialized notation. Such quantities include
sizes of groups, group averages and group variances. Subscripts will identify the group
involved: no subscript implies reference to the entire population, ‘k-’’ refers to pre-stratum
k,1 < k < K, ““-j” refers to post-stratum j, 1| < j < J, and the subscript ‘‘kj”’ refers to
the intersection of pre-stratum k with post-stratum j. The base symbols N, ¥ and S? refer
to number of elements, y-average, and finite population variance, respectively. Also, we let
P, Py., P ;and Py;denote the subsets of P corresponding to the four categories given above.
For example, we have

1 =
$t= —— ¥ 0~ %)t
Nk' - liGPk.
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Also, we can write
T = E N;Y,;. 1)
J

We finally let Wy; = Ni;/Ny., i.e., Wy;is the proportion of units in pre-stratum & which fall
into true stratum j.

We now discuss the sampling technique. In the first phase of sampling, a stratified simple
random sample without replacement s’ is selected, with n;. units (first phase sampling frac-
tion denoted by f¢. = nj./N;.) selected from pre-stratum k. Samples from different pre-
strata are independent. For these n’ = ¥ ;nj. units, post-strata, j;, are observed. Following
the notational pattern given above, we let ny; denote the number of units in s sampled from
pre-stratum k which happen to fall in post-stratum j. Also, n/; = Y ;ny;is the total number
of units in s’ which fall in post-stratum j. This set of units is denoted by s’;. These quantities
are observed, while quantities involving y-values, such as 7’ and s% (with all four types of
subscripts), remain unobserved. Here, and in the following, the average of any empty collec-
tion is taken as zero, and, if the size of a group is one or zero, we take its variance s% to be
zero. We note that for 1 < k < K, the random vectors (nj,, ..., nis) are independent with
each possessing a multivariate hypergeometric distribution.

For the second phase of sampling, we partition s” into U J!: 18/j, i.e., by post-stratification.
For each j, let v;(-) denote a known function on and into the non-negative integers with
v;(0) = 0and1 = v;(x) =< xifx = 1. The second phase sample s is also stratified, but now
is a subsample of 5’ and stratified according to the post-stratification. The sample from s;
is denoted s.; and is of size n.; = v;(n’;). Here, y-values are observed, yielding quantities such
asy.jand s?j , the y-average and finite population variance of the units in the phase two sample
and stratum j.

The estimates of 7 given by Vardeman and Meeden include the option of inclusion of prior
guesses for the relative stratum sizes within each pre-stratum and for the stratum averages.
Thus, we have prior guesses for the values W,; and Y. j which are given by II;; and p.;, respec-
tively. In the estimator introduced below, these guesses are given weighting constants which
reflect the confidence in the guess relative to the confidence in the corresponding information
yielded by the current sample. For each k, the confidence value allotted to the collection
(M, ..., I0.,) is denoted M,. € [0,o] and for each j, the confidence value given to p.; is
denoted M._; € [0,o0]. In the current sample, the collection ( Wy, ..., Wyy) is estimated by
(n{1/nf., ..., niy/n;.) and is based on a simple random sample of size ny. . Thus, the con-
fidence in II;, say, as opposed to ny;/ny., is reflected by the size of M. versus that of nj..
Similarly, in the current sample, Y ; is estimated by y.; and is based on a sample of size n.;;
thus, the relative confidence in the prior guess and the current estimate is reflected by the relative
sizes of M ; and n.;. Any confidence weight for prior information equal to zero corresponds
to no use of the prior information, and, as in the use of stratum sizes in the usual post stratifica-
tion model, a value of infinity implies no use of the corresponding information in the current
sample.

IAJsing the prior guesses, current estimates and confidence weights, we estimate W;;and Y ;
by Ily; = (Mk.Iij + n,éj)/(Mk. +mandp; = (Mju; +n;y;)/ (M + nj),respec-
tively. Finally, an estimate 7 of the population total 7 is constructed by replacing in the for-
mula (1) for 7 any unobserved quantity by its estimate given above. Thus, we employ

J K
P= ) {n.,-y_,- + (n—npp;+ Y (N — n,;.)nk,-,z.j}. 2
Jj=1 k=1
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Computation of the bias and variance of 7 in the general case is left open by Vardeman and
Meeden. Thecase K = landM,; = 0,1 < j < J, has been studied in White (1987). Before
proceeding to a result in a more complex situation, we first explore the results of a simulation
on a hypothetical population.

3. A MONTE CARLO STUDY

Here we present a specific population and sampling scheme which is modelled after the
introductory example regarding estimation of the spread of an infectious disease. For a popula-
tion of 10,000 individuals who are susceptible, the disease is assumed to be more prevalent
among the 5,000 who live in the western section of the area considered. Since this is a known
characteristic, the population is partitioned according to the east-west boundary into K = 2
pre-strata. Next, we assume that certain easily obtained additional information enables the
sampler to categorize the individual as low, medium, or high risk for becoming infected. See
Table 1 for the details of the construction of the population.

For estimation of the total number infected (r = 2302), we assume no prior knowledge of
the stratum proportions Y.;, ¥.,, and ¥Y.; and thus take M., = M., = M3 = 0. There
remain four major ingredients to the estimation process: 1) the prior guesses {II;;: £ = 1,2,
j =1, 2, 3} for the distribution of individuals from pre-strata to post-strata, 2) the
weighting constants M; and M, given to these prior guesses, 3) the first phase sample design
and outcome, and 4) the second phase sample design and outcome. These are detailed in the
following.

First, in White (1987) it was found for the X = 1 case that an effective choice of weighting
constants was to select M equal to the sample size on which the previous information was based.
Following that notion, we allowed, for each simulation, the collection {II;;} to select itself
through a preliminary sample of size m (either 500 or 2500) from each pre-stratum. That is,
II,; is taken to be the proportion of the m individuals from pre-stratum k& falling in post-
stratum j.

Second, for each run, the weighting constants were taken as M, =M, = MforalM
€ {0, 100, 200, 300, ..., 10,000, = }. Recall that M = oo corresponds to the situation of the
usual post-stratification where no use is made of the current sample to estimate group sizes.

Third, the first phase sample is stratified according to pre-strata with sampling fractions
fi. taken to be f{. = f3. = f, f € {.10, .20, .30, .40, .50}. Recall that in this phase of
sampling, only post-stratification is observed. This information is, presumably, inexpensive
to obtain.

Table 1
Number Infected/Group Size for the Pre-strata and Post-strata Combinations
Risk
Group Low Medium High Total

Location of J 1 2 3

Residence

East (k = 1) 40/4000 80/800 100/200 220/5000
West (kK = 2) 2/200 80/800 2000/4000 2082/5000
Total 42/4200 160/1600 2100/4200 2302/10000
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On the other hand, sampling a unit in phase 2, where the presence of infection is determined,
is assumed to be rather expensive. The individuals selected are a subsample of the phase one
sample, stratified according to post-strata. The sampling fractions in various strata are again
taken as equal (v;(n);) = [¢nl] for n); large enough, and ¢, = ¢; = ¢; = ¢) and so that
different simulations can be compared, c is selected so that the fraction of the entire popula-
tion which appears in the phase 2 sample remains constant at .10.

Now, the following process is repeated R = 50,000 times: obtain a preliminary sample of
size m from which prior guesses II,; for W;; are constructed. Next, a sample, stratified
according to pre-strata with sampling fractions f, is obtained. Only post-stratification is
observed. Then, a subsample, stratified according to post-strata with sampling fractions c, is
obtained and units in this sample are classified as infected or not infected. Finally, on each
run, 7 is obtained for each value of M considered. The standard error of 7 is estimated using
the R simulated values of 7. Recall, however, that in a real-life application, the standard error
of an estimate will depend on the particular values of IT;; used; here, these values are different
on each run and thus the estimated standard error should be viewed as a long run average for
a mixture of distributions of #, mixed according to the distribution of the IIy; based on the
preliminary sample.

The simulations were performed on an IBM3031 computer. For this example, where y;
¢ {0,1} for all #, all random quantities are functions of independent hypergeometric or multi-
variate hypergeometric variables. Using the fact that the conditional distribution of a univariate
marginal of a multivariate hypergeometric distribution given any subcollection of the other
coordinates is itself hypergeometric, all random quantities were simulated using the IMSL 92DP
hypergeometric simulation subroutine GGHPR. For the first combination of m and f (500 and
.10), the simulation process was repeated five times to check internal consistency.

Tables 2 and 3 summarize pertinent characteristics of the variation of the simulated SE(7)
as a function of M for the five repeated simulations (Table 2), and the simulations for various
values of f and m (Table 3). Table 2 gives only highlights which demonstrate internal con-
sistency and confirm that the number of repetitions is chosen large enough. Note that M,
denotes the value of M for which SE(#) is minimized. In Table 3, also given is a comparison
with the better of the possible usual techniques (regular two-phase or stratified according to
pre-strata) relative to the ideal where the true strata are regarded as known. The standard
error of an estimator based on stratified sampling using pre-strata only is 113.27, and for
stratified according to true strata, it is 105.47. Thus, letting the estimator in regular two-phase
sampling be denoted by 7, and realizing that SE(#,) depends upon f and ¢, the values
appearing in the columns headed Percent Relative Reduction in SE(%) are 100 [min(SE(7),
113.27)] — SE(¥)/[min(SE(#,), 113.27) — 105.47].

Table 2
Key Features of the Repeated Runs with m = 500, f = .10 andc = 1.0
SE(%)
Run # M,

M=0 M=m M= M, M=o
1 600 113.55 109.67 109.62 112.00
2 700 113.42 109.50 109.45 111.80
3 700 113.92 109.86 109.78 112.00
4 600 113.61 109.71 109.66 112.07
5 600 113.56 109.74 109.70 112.17
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Table 3
Key Features of SE(7) as a Function of M

N Percent Relative
SE(7) Reduction in SE(7)

m f' ¢ |SE(fp) Mog|M=My M=0 M=m M=wo|M=0 M=m M= o

500 .10 1.00 |126.29 600 109.62 113.55 109.67 112.00 [ —3.6 46.2 16.3
500 .20 .50 (115.19 600 107.95 109.02 107.97 110.72 54.5 67.9 32.7
500 .30 .33 |111.80 600 107.87 108.25 107.87 110.38 56.1 62.1 22.4
500 .40 .25109.22 750 106.51 106.76 106.52 108.29 65.6 72.0 24.8
500 .50 .20(107.98 700 106.17 106.28 106.18  107.55 67.7 71.7 17.1

2500 .10 1.00 | 126.29 * 106.20 113.33 106.42 106.20 | —0.8 87.8 90.6
2500 .20 .50 (115.19 * 105.76 108.67 106.02 105.76 59.0 92.9 96.3
2500 .30 .33 |111.80 * 108.18 106.87 106.63 57.2 77.9 81.7
2500 .40 .25]109.22 * 105.77 106.59 105.94 105.77 70.1 87.5 92.0
2500 .50 .20 107.98 * 105.81 106.34 105.96 105.81 65.3 80.5 86.5

AN A A A
S
A
(=]
w

* -~ > 10,000

A variety of important results can be discerned from Table 3. First is that for m = 500,
M, is very close to, although always slightly larger than, m. This is the result predicted by the
K = 1situation from White (1987). For m = 2500, though in every case M, > 10,000, one
discovers that SE(7) at M = m is very close to the minimum at M = M,,.

Second is that at M = m, the percent relative reduction in SE(7) ranges from a minimum
of 46% to over 90%. Also, at M = 0, corresponding to the situation of dual stratification
with no prior information on any population characteristic, the percent relative reduction in
SE(7) is always over 50% except in the case of the smallest first phase sampling fraction,
f = .10. In that case, when prior information is not available and the first phase sample size
is small, one is better off to use the pre-strata and ignore the true stratification. On the other
hand, if one does have a set of prior guesses available for the collection of W,;, but is uncer-
tain of what weights to attach to these values, one could use the usual post-stratification notion
of using weight M = oo. If the prior information is good, as in our case m = 2500, then the
percent relative reduction in SE(7) is always over 80%. Even if the prior information is only
moderately accurate, as in the case m = 500, the reduction in standard error is between 16%
and 33%.

In summary, if one is able to identify a weighting constant applicable to prior information
on the distributions of units among strata, then a substantial reduction in standard error can
be obtained using these methods. Even if one cannot identify such a constant or does not have
applicable prior information, one can still decrease standard error using dual stratification by
taking M = 0if the prior information on W, is either poor or non-existent, or M = oo with
accurate prior information. In particular, it thus turns out that the case M = 0is important.
This case is examined in detail in the next section.

4. BIAS, STANDARD ERROR, AND OPTIMAL ALLOCATION
WITH NO PRIOR INFORMATION

When no prior information is available, we set M; = 0 and M, = 0Oforeachl < j < J
and 1 = k < K. In this section, we at first also assume that sampling in both phases is
proportional to the size of the group from which the sample is drawn, that is, for each
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k,nj. = fNg. (i.e., fi. = f, all k) and for each j, n.; = cn; (i.e., v;j(x) = cx, all j). This,
of course, immediately introduces an approximation (referred to in what follows as approx-
imation A1), since the resulting sample sizes are not necessarily integers. However, in reasonably
large populations, and for reasonably large sampling fractions f'and c, this approximation has
little impact on the derivations that follow.

In this situation, f.; reduces to y.; and 11, ; reduces to ng;/ng. and, thus, we have
+=1/f% f=1 n!;y.;. The derivations of the expectation and variance of # are summarized
in the appendix. The key features are two conditioning arguments: first, we condition on s’
since the second phase sample is a function of s’ and, second, because of the multivariate
hypergeometric nature of the phase one sample, we condition on the values n;, the sizes of
the various pre-stratum and post-stratum combinations in the first phase sample.

In the appendix, we show first that 7 in this case is unbiased (aside from approximation Al)
and that an approximation of its variance is given by

1

a 1 _f 2
=~ —— N;.S%. +
var(7) I; Zk: K-Sk I

— YN, Sy )
4 -
J

As discussed in the appendix in more detail, formula (3) 1) gives answers close to the simulated
values, 2) is based on approximations whose error is small for large populations and reasonably
large samples, and 3) reduces to the exact formula in all three of the standard situations. In
addition, it is easy to show that the variance given by (3) is always smaller than that of the situa-
tion of regular two phase sampling.

Now as in any stratification model, there is a question of optimal design. The problem
addressed here is that of minimum variance given a fixed cost. To this end, we let T} =
YiN.St and T, = ¥ N S?j . We assume, for the design question at hand, that these are
known. In reality, of course, only guesses are available. Next, we let D denote the total budget,
d,, the start-up cost, d;, the cost per unit in the phase one sample, and d;, the cost per unit
in the phase two sample. Letting D, denote the number of dollars available for sampling per
population unit, we have

D - d
D, = — =f(d, + cdy). C)

With f and c¢ subject to constraint (4), we seek to minimize (3), var(f), now given by

1 - f 1 —-c¢

Var(‘;’) ad Tl + T2. (5)
Jfe
The solution is easily found to be given by
a,T.
c= [___‘ 2 ] v ©
d(T) — T,

with f found using (4). If T; < T,, we automatically take ¢ = 1 since then the pre-
stratification is more effective than the post-stratification.
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In the case of non-proportional sampling, the estimator given is biased and calculations of
the bias and standard error in this more general situation are prohibitive. However, a slight
modification of the second phase sampling design along with the associated change in the
estimator 7 yields an estimator which is unbiased. Following a description of the required
modification, we compute the variance and an unbiased estimator of the variance and we find
an optimal method of allocating sampling resources to the various pre- and post-strata.

The modification to the sampling plan is to leave the second phase sample within pre-strata
rather than pooling within post-strata across pre-strata. Thus, given n; units appearing in
s’ N Py;, we have a function vy; (-) (like v.; (-) in Section 2) which defines a sample size
ng = v (ng;) = cing;to be taken by simple random sampling from s’ N Py; . Based upon
this sample, we obtain the quantities y;; and s%j which were defined in Section 2. The estimator
isnow 7 = Y, 1/f¢. XL ngj Puj -

Now, since samples (and thus estimators) are independent between pre-strata, 7 is the sum
of independent estimators of the K pre-stratum totals, where each estimator is based on a regular
double sampling scheme. Thus, the results of Rao (1973) apply to each pre-stratum and we
first observe that 7 is unbiased because its summands are unbiased estimators of their respec-
tive pre-stratum totals. Second, using Rao’s results, we have

1
var() = Ef_ [(Nk. — ni)SE + Y, Ny S(1/cy — 1)]. @)
k Ik J

Also, an unbiased estimator of var(7) is given by

n,éj - 1) n]éjSij

~ ng — 1
var(f) = N | (N, — 1 -
G) ; k[(k );(n,;.—l w =1

n,é. Ry

Nk~ - ng. nléj nléj’ P
+ oV — (55— ) P : 8
Ni(ni. —1) & n (y"’ ni y"’) ®

J’

£

We note at this point that in the case of proportional sampling considered earlier in this
section, we have proposed two different estimators for r, one based on a pooled second phase
sample, the other unpooled. In both cases, the estimator was found to be unbiased, and, also,
reduction of formula (7) to the case where f;. = f for all k and where ¢;; = ¢ for all k and
all j yields formula (3), i.e., the approximate variance for the pooled second phase sampling
estimator.

Finally, again following the results in Rao, we derive an optimal allocation of sampling
resources. Say that D dollars are available for the two phases of sampling, where sampling
a unit in phase 1 from Py. costs d. dollars and sampling a unit in phase 2 from P, costs d_;
dollars. Given these costs, we wish to find the values of f. and c;; which minimize the variance
of #. Using the Cauchy inequality for the phase 2 sample in each pre-stratum, we observe that
no matter what the value of f;., the sampling fraction from post-stratum j is given by

dy. y
Crj = Sk'( ) 2. &)
T \a (82 =Y W, 8%
J J ]
J
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Now, the effective expected cost (over both phases of sampling) for each unit sampled in
phase 1 and in pre-stratum £k is given by

dk(e} = dj; + E ij Cj 05. . (10)
J
When viewed in this way, for cost considerations, the first phase of sampling can be seen as

a regular stratified sample with (effective) cost of a unit sampled in P. given by (10). Thus,
Cochran (1977,p.97) provides the required formulation of the first phase allocation:

mi.  Ne Se/JdP i
n Y Nee. S/ JaR
iy
where
Ni. S.7Jdf®
il 12)

n = ng. =D .
? t g Y, Nee. S/l
e

Following the modifications suggested by Rao, one can handle the situation where one or
more of the c;; turn out to be greater than one. One can also modify the results in the usual
way to minimize sampling cost in the case of pre-determined variance.

5. APPLICATIONS

One can employ the method of dual stratification presented here at two levels. At one level,
double sampling with pre-strata can be employed with no use of prior information on stratum
sizes or stratum averages. At a more complex level, if one has in hand prior information on
the number of units in each stratum coming from each pre-stratum, and if the sampler has
a level of confidence for this information, then a further reduction in standard error can be
obtained by employing this prior information.

This two phase sampling and estimation technique could be used in the proposed nation-
wide survey to determine the extent of spread of the HTLV-III (Acquired Immune Deficiency
Syndrome) virus. The extended incubation period, estimated to be on the average 4.5 years
(Lui ef al. 1986), makes the survey approach imperative, yet there are psychosocial and finan-
cial ractors which make such a survey extremely difficult to carry out. Thus, methods which
assist in reducing sample size while maintaining accuracy must be pursued.

Allen (1984) provides data which suggests a partition of the American population according
to a variety of factors which can be used to define risk categories. Known factors, which could
be used to define pre-strata, include age, gender, presence of certain diseases, nationality,
immigration status, and geographical location. Unknown factors, which could be determined
via interview, include sexual preference and drug use. Data on the prevalence of HTLV-III
within various subgroups can be both 1) incorporated into the overall estimate of prevalence
and 2) used to determine sampling allocations. Such data is available, for example, for blood
donors (Kuritsky ef al. 1986), military results (Redfield and Burke 1987), intravenous drug
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abusers in Queens, New York (Robert-Guroff ef al. 1986) and male homosexuals in Greenwich
Village (Casareale ef al. 1984/5). Though this prior information can be used to reduce cost
and increase accuracy, confidentiality and sensitivity/specificity of the HTLV-III test remain
as significant obstacles which must be addressed carefully before such a study will provide mean-
ingful results.
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APPENDIX

Derivation of Expectation and Variance With No Prior Information and Proportional
Sampling

Using the notation given in Section 2, we proceed first with the derivation of E (7). The con-
ditional expectation givens’ is E(# | s’) = 1/f ¥; n!;3!;. Then, writing n/; 3.;as Y ni; Vij »
we find E(7) = E(E(|s")) = 1/f ¥; ¥k E(ni; EGY | ng)) = VS I Le E(ngy)
¥,; = 7since ny; is hypergeometric with sampling fraction f and Nj; units in pre-stratum k
and post-stratum j. Thus, 7 is, in this case, unbiased (ignoring approximation Al).

Computation of the variance is along the same lines, yet much more technically detailed.
Only certain elements of the computation will be presented and particular emphasis will be
placed on the points in the derivation where approximations are made. First, some computa-
tion using the two phases of conditioning discussed above, yields

1 —
var(E(% | s')) = 1-7 E N,.S%.. 13)
f k
We next obtain
(2 ’ — 1 —c n'lj ’ 2 L 57\ 2
var{( | s') = 5 E - . E (ng; — D)syy + E ng (P — ¥ (14)
f (ol ; n;— 1 % k

Our second and third approximations are to approximate n’; /(n!; — 1) by one (A2) and
(ni; — 1) by ng; (A3) in equation (14). We now require the expectation of the first term in
(14) and find

J

1 -c¢ , 2| 1 —¢
E[ fZC ; ? l’lkjSka:I == fc E ;Nkjs%. (15)

In (15), one further approximation (A4) is necessary; we ignore the possibility of ng; < 1 for
any k,j. We also require the expectation of the second term in (14). The exact formula turns
out to be
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1 _c): [EN,O.(?H— ¥;)* + a, Esi,-—az] (16)
fc J k k -

where @, = 1 — f — E[ng(1 — ngi/Ny;)/nlj] and a; = E[( Lgng (Yi — Y’.j))zln_’j].
We note first that | @, | < 1 and thus when combined with N}, in (15), it can be ignored
(approximation A5). Also, if in @, n’; is approximated (A6) by its expectation, fN.;, since
E[ Tk nii (Y — Y;)] = 0, we have

ay

N,.:
~ (=) Y F - WPy = P,y
Kk

where we have finally approximated (N,. — 1) by N;. (A7) in computing the variance of the
hypergeometric variable ni; . When compared to the similar term with coefficient Ny; in (16),
we discover that a, itself is approximately negligible. Finally, once again ignoring differences
between Nj; and (NVy; — 1) or between N.; and (N.; — 1) (approximation A8), (15) and (16)
can be combined to yield

, {1 =g N
E(var(# | ")) = 7 I

i 8

Y [Ny = DS} + Ny (T = ¥,)7]
k

=l_cENjS?,-. a7

Combining (13) and (17), we finally obtain

(18)

3 = 1
var(#) = —fE Ni.S: +
f k

The validity of this approximation rests on three facts. First, when (18) is evaluated in the
five examples for which simulated data exists, the results compare very favorably. The approx-
imated standard error given by (12) is 113.25, 108.97, 108.09, 106.77, and 106.32 for f* = .10
.20, .30, .40, and .50, respectively. These values are nearly equal to those in Table 3 and the
column giving SE(7) and M = 0 with m equal to 500 or 2500. Second, the error introduced
by each approximation made was analyzed and found, with the possible exception of approx-
imation A6, to be negligible in the case of relatively large population and sample sizes. Even
in the case of A6, the law of large numbers indicates that n’ '; will be well approximated by its
expectation if the sample sizes are reasonably large. Finally, as described in the following, this
approximation formula reduces to the exact formula in all three standard situations. First, this
situation reduces to the usual stratified sampling according to pre-strata when we take J = X,

P'ii = Py forj = k,and ¢ = 1. Here, formula (18) reduces to var () = (1 — f)/f L« Ni.
Sk. which is well known to be the exact formula. Also, the estimation scheme described

reduces to the usual two phase sampling for stratification when we take K = 1 and (18) again
reduces to the exact formula (see Cochran 1977, p. 329). Similarly, we obtain the situation of
regular stratified sampling by post-strata if we take f = 1 (here, X and the pre-stratification
become irrelevant), and formula (18) again reduces to the exact value.
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