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During the past 10 years or so, rapid progress has been made in the development of statistical methods 
of analysing survey data that take account of the complexity of survey design. This progress has been 
particularly evident in the analysis of cross-classified count data. Developments in this area have included 
weighted least squares estimation of generalized linear models and associated Wald tests of goodness 
of fit and subhypotheses, corrections to standard chi-squared or likelihood ratio tests under loglinear 
models or logistic regression models involving a binary response variable, and jackknifed chisquared 
tests. This paper illustrates the use of various extensions of these methods on data from complex surveys. 
The method of Scott, Rao and Thomas (1989) for weighted regression involving singular covariance 
matrices is applied to data from the Canada Health Survey (1978-79). Methods for logistic regression 
models are extended to Box-Cox models involving power transformations of cell odds ratios, and their 
use is illustrated on data from the Canadian Labour Force Survey. Methods for testing equality of 
parameters in two logistic regression models, corresponding to two time points, are applied to data from 
the Canadian Labour Force Survey. Finally, a general class of polytomous response models is studied, 
and corrected chi-squared tests are applied to data from the Canada Health Survey (1978-79). Software 
to implement these methods using the SAS facilities on a main frame computer is briefly described. 

KEY WORDS: Corrections to chi-squared tests; Logistic regression; Power transformations; Wald tests; 
Weighted least squares. 

1. INTRODUCTION 

Standard statistical methods, based on the assumption of independent identically distributed 
observations, are being used extensively by researchers in the social and health sciences, and 
in other subject matter areas. These methods have also been implemented in standard statistical 
packages, including SPSSX, BMDP, SAS and GLIM. In practice, however, much data are 
obtained from complex sample surveys involving clustering and stratification, so that the 
application of standard methods to these data without some adjustment for survey design can 
lead to erroneous inferences. In particular, standard errors of parameter estimates and 
associated confidence intervals can be seriously understated if the complexity of the sample 
design is ignored in the analysis of data. Moreover, the actual type I error rates of tests of 
hypotheses can be much bigger than the nominal levels. Standard exploratory data analyses, 
e.g., residual analysis to detect model deviations, are also affected. Kish and Frankel (1974) 
and others drew attention to some of these problems with standard methods, and emphasized 
the need for new methods that take proper account of the complexity of survey design. During 
the past 10 years or so, rapid progress has been made in the development of such methods, 
particularly for analysing cross-classified count data. This paper will focus on the analysis of 
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count data, but it should be noted that important results on other types of analyses have also 
been obtained: Regression analysis (Fuller 1975; Nathan and Holt 1980; Pfefferman and 
Nathan 1981; Scott and Holt 1982), principal component analysis (Skinner, Holmes and 
Smith 1986), factor analysis (Fuller 1986), logistic regression involving continuous covariates 
(Binder 1983). 

Rao and Scott (1984) have made a systematic study of the impact of survey design on stan
dard Pearson chi-squared or likelihood ratio tests for multi way tables of counts, under hierar
chicallog-linear models. They have also obtained simple first order corrections to standard 
tests which can be computed from published tables that include "design effects" for cell 
estimates and marginal totals, thus facilitating secondary analyses from published reports (see 
also Gross 1984; Hedrick 1983; Rao and Scott 1987). These first order corrections take account 
of the design in the sense that the actual type I error rates of tests based on the corrected statistics 
are closer to nominal levels, compared to the standard tests which could have greatly inflated 
type I error rates. More accurate second order corrections, based on the Satterthwaite approx
imation to a weighted sum of independent x2 variables, were also developed by Rao and Scott 
(1984), but these tests require the knowledge of a full estimated covariance matrix of cell 
estimates. Alternative methods that take account of the survey design include the Wald statistics 
based on weighted least squares (Koch, Freeman and Freeman 1975), and the jackknifed chi
squared tests (Fay 1985), all requiring either the full estimated covariance matrix or access to 
cluster-level data. Fay (1985) and Thomas and Rao (1987) have shown that the Wald statistic, 
although asymptotically correct, can become highly unstable as the number of cells in the 
multi way table increases and the number of sample clusters decreases, leading to unacceptably 
high type I error rates compared to the nominal level. On the other hand, Fay's jackknife tests 
and the Rao-Scott corrections have performed well under quite general conditions. In some 
cases, the instability in the Wald statistic may be remedied by collapsing the table according 
to eigenvectors associated with the nonnegligible eigenvalues of the estimated covariance matrix 
adjusted for singularities caused by linear constraints on the probabilities, as proposed by Singh 
(1985); see also Singh and Kumar (1986). 

Roberts, Rao and Kumar (1987) assumed a logistic regression model for the cell (domain) 
proportions associated with a binary response variable, and obtained first order corrections 
to standard chi-squared and likelihood ratio tests of goodness-of-fit and nested hypotheses. 
Simple upper bounds to first order corrections, depending only on the design effects of cell 
response proportions, were also obtained to facilitate secondary analyses from published tables. 
Scott (1986) proposed an alternative method which uses standard tests on transformed data 
derived from the original data and the cell design effects. Roberts, Rao and Kumar (1987) also 
provided second order corrections to standard tests, but these require access to a full estimated 
covariance matrix of cell response proportions. Diagnostics for detecting outliers and influential 
points were developed as well, again taking the survey design into account. 

The primary purpose of this paper is to present various extensions of the previous methods 
and illustrate their use on data from large-scale surveys, including the Canada Health Survey 
(1978-1979) and the Canadian Labour Force Survey. It is assumed, throughout the paper, that 
the user has access to a full estimated covariance matrix of cell estimates. In Section 2, weighted 
least squares (WLS) estimators of the parameters of generalized linear models having singular 
covariance matrices, caused by linear constraints on the probabilities (or proportions}, are 
presented. Associated Wald tests of goodness-of-fit and of subhypotheses are also provided. 
A smoothed version of the WLS estimators, and associated Wald tests of subhypotheses are 
given as well. These methods should be used only when the number of cells in a table is small 
and/or the number of sample clusters in the survey design is relatively large. 
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The methods for logistic regression models are extended, in Section 3, to Box-Cox models 
involving power transformations of cell odds ratios. These models, which include the logistic 
regression model as a special case, could provide significantly better fits than the logistic regres
sion models, as demonstrated by Guerrero and Johnson (1982) in the context of binomial 
proportions. 

Methods for testing equality of parameters in two logit models, corresponding to two dif
ferent time periods, are given in Section 4. If the hypothesis of equality is accepted, one could 
obtain "smoothed" estimates of cell proportions for the current period that are more efficient 
than the corresponding smoothed estimates based only on the current period data. 

Section 5 gives an extension of the type of results obtained for logistic regression models 
to a general class of polytomous response models. The special case of McCullagh's (1980) 
ordered response model is studied in detail. 

Finally, an account of the software for implementing the above methodology is given in 
Section 6. 

2. WEIGHTED LEAST SQUARES ESTIMATORS 
AND WALD TESTS 

The approach of Koch, Freeman and Freeman (1975) is designed to estimate the parameters 
of generalized linear models of the form g* (p) = X* {3*, using a sample estimate, j), of the 
population cell probabilities denoted by a T-vector p, and a consistent estimate of cov (j)) = 
VP (say). In this method, the asymptotic covariance matrix of the u-vector g* (p) is assumed 
to be nonsingular ( u < T); however, many models, including the traditionalloglinear model, 
are of the form g (p) = X{3, where g (p) is a T-v ector with a singular asymptotic covariance 
matrix, and X is a T x r full rank matrix of known constants. It is possible to reduce the latter 
models to the nonsingular form g* (p) = X*{3*, as done by Grizzle and Williams (1972) for 
the loglinear model, but Scott, Rao and Thomas (1989) have developed the following unified 
approach for singular models, by appealing to the optimal theory for linear models having 
singular covariance matrices. 

The cell probabilities p and j) are subject to linear constraints of the form K' p = 7f' and 
K' j) = 7f', where K is a T X L full rank matrix of known constants and 7f' is an L-vector of 
known constants 7C'i (L < T). As a result, the covariance matrix of j) will be singular. For 
example, in the case of stratified sampling with complex sample designs within strata, we can 
writeK = h ® 1m,7C'i = n/n (i = 1, ••• ,L)andp = (p11 ••• p 1m; ... ;pLI···PLm)'with 
pij = (n/n)pij, where Pij is thej-th category probability within the i-th stratum o:.jPij = 1; 
i = 1, ... , L; j = 1, ... , m), ni is the sample size from the i-th stratum, I;ni = n, lm is a 
m-vector of 1 's, h is the identity matrix of order L and ® denotes the Kronecker product. 

Assume that X{3 can be written as X 0 {30 + X 1{3" where X 0 is a T x L matrix such that 
K' n- 1x 0 is nonsingular and whereH = ((}gf(}p)' is the T x Tmatrix of partial derivatives 
of g (p). In particular, X 0 can be taken as K if the constraint matrix K is included in X, as 
frequently assumed. Since restrictions onp imply constraints on the parameters {3, {30 can be 
determined exactly from the constraints, for a given {31• 

Weighted least squares estimators 

The model may be written as 

g = g(j)) = X{3 + o (2.1) 
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where o is the error vector with P lim o = 0, and g has a singular asymptotic covariance matrix 
Vg = HVpH' which is consistently estimated as Pg = HYpH', assuming that Y'p is a consis
tent estimator of Vp. Here H = H(jj). Scott, Rao and Thomas (1989) derived an asymp
totically best linear unbiased estimator (ABLUE) of {j1 as 

(2.2) 

where 

M = (Yg + XoXo)- 1 (2.3) 

is a nonsingular generalized inverse of Yg, and 

(2.4) 

A consistent estimator of the asymptotic covariance matrix of S1 is given by 

(2.5) 

Wald tests 

Letting S = (X' MX) -tx' Mg = <S6,S{) ',a Wald test of goodness of fit of the model 
(2.1) is given by 

(2.6) 

which is distributed asymptotically as a x 2 variable with T - r degrees of freedom (d. f.). The 
model is considered tenable at the a-level if W > xLr(a), the upper a-point of x 2 with 
T- r d.f.. 

Given the model (2.1), tests of linear hypotheses on the model parameters {j1 can also be 
obtained. A Wald test of the linear hypothesis C1{j1 = c1 is given by 

(2.7) 

which is distributed asymptotically as a x 2 variable with h d.f., where C1 is a h x (r - L) 
full rank matrix of known constants (h < r - L), and c1 is a h-vector of known constants. 
The hypothesis is rejected at the a-level if W1 > x~ (a), the upper a-point of x 2 with h d.f. 
Note that {j0 should not be included in the linear hypothesis since it is fixed by the design 
constraintsK'p = K'g- 1(X{j) = 1r. 

Smoothed version of ABLUE and associated Wald tests 

We can also obtain a smoothed version of ABLUE of {j1 , say (jf, using iteration, as follows: 

(2.8) 

withstartingvaluesM0 = M,S0 = (X'MX)- 1X'Mg = S,H0 = H(S) andp0 =p(S). 
~ 1 ~ ~ v v 

Further, Mt = ( Vgt + X 0X 0)- with Vgt = HtVpHf, Ht = H({jt) andpt = PWt), t ~ 1. 
At convergence, we get (j* = ({jJ' ,{jt')' as the solution of the following equations: 

X' M([j)H([j) (jj - p({j)) = 0. (2.9) 
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Equations (2.9) reduce to quasilikelihood equations (McCullagh 1983) when Yp is proportional 
to V(p), a known function of p. Here, the dependence on {3 is made explicit by writing 
p = p({3), H = H({3) and M = Yg + X 0X 0 = M({3). The smoothed estimate {3* also 
satisfies the constraints K' p = K' g -I (X{3) = 1r, unlike S. The asymptotic covariance 
matrices of M and SI are identical, but M might perform better in small samples. 

Given the model (2.1), an alternate Wald test of the hypothesis CI{3I = ci is given by 

(2.10) 

which is distributed asymptotically as a x2 with h d.f., where 

estcov({3t) = (Xj' M*Xt) -I, (2.11) 

and Xj = [/- X 0X 0M*]XI>M* = ( v; + X 0X 0) -I with v; = H*fi;;H*' and H* = 
H({3*). 

Example 

The previous results were applied to a two-way table from the Canada Health Survey 
(1978-79). This survey was designed to provide reliable information on the health of Canadians. 
The information collected was made up of an interview component for the whole sample and 
a physical measures component for a subsample. A complex multistage design involving 
stratification and clustering was employed, and the estimates of cell totals or proportions were 
subjected to post-stratification on age-sex, to improve their efficiency. The reader is referred 
to Hidiroglou and Rao (1987) for a description of the survey and the procedures used for 
estimating cell counts, proportions, and their estimated variances and covariances. For the 
physical measures component, a collapsed stratum technique for variance estimation was 
employed since a single primary sampling unit was selected in some of the strata. 

Table 1 gives the estimated proportions, fiu, derived from the physical measures component 
in a cross-classification of fitness level (recommended = 1, minimal acceptable = 2, below 
acceptable or screened out = 3) and type of cigarette smoker (regular = 1, occasional = 2, 
never = 3). The estimated covariance matrix of the fiu, (!;;,can be obtained from the authors. 

Since both the variables in Table 1 are ordinal, we considered the following loglinear model 
with linear X linear interaction: 

logpiJ = a + uiU> + u2 u> + -y(vi - v) (w1 - w), i = 1,2,3 j = 1,2,3 

Table 1 
Estimated Cell Proportions in a 3 x 3 Table (Canada Level): 

Type of Cigarette Smoker X Fitness Level (Sample Size n = 2505) 
Ages 15-64 

Type of 
cigarette smokers 

2 

3 

0.22005 

0.02301 

0.20329 

Fitness Level 

2 

0.14951 

0.00962 

0.09933 

3 

0.16998 

0.01146 

0.11374 

(2.12) 
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subject to side constraints I;;u1 Ul = LjUzuJ = 0, where V; and Wj are known scores with 
means v and w respectively. For simplicity, equidistant scores were taken: u; = 1,2,3; 
vj = 1,2,3. The model (2.12) is of the form g(p) = X 0{10 + X 1{11 with gu(P) = logpij• 
X 0 = K = 19, a 9 x 1 vector of 1's, {10 = 11, {11 = (u10 l,ui(Zl•u20 l,u2<2l,-y) I, and 

1 1 0 0 0 -1 -1 -1 

0 0 0 1 -1 -1 -1 

X{= 1 0 -1 0 -1 0 -1 

0 1 -1 0 -1 0 -1 

0 -1 0 0 0 -1 0 

NotingthatB = diag(pij 1,i = 1,2,3;j = 1,2,3),theWaldtestofgoodness-of-fitofthe 
model (2.12) can be computed from (2.6), using the proportions fiu in Table 1 and the 
estimated covariance matrix, ~·We obtain 

w = 3.59 

which is not significant at the 50Jo level compared to xLr(0.05) = x~(0.05) = 7.81 (note that 
T = 9,r = 6). The Wald statistic Wis likely to be stable in this example since the number 
of cells T( = 9) is small relative to the number of sample clusters ( = 50). 

We can also conduct a test of independence, i.e. 1' = 0, given the model (2.12), using W1 

given by (2.7) or Wj, based on the smoothed estimates {1j, given by (2.10). Noting that 
C1 = (0, ... ,0,1), C1 = 0, we obtain 

W1 = 8.23, Wj = 8.75, 

both larger than xi (0.01) = 6.63, the upper 1% point of x2 with 1 d.f. The nested hypothesis 
of independence is therefore not tenable. 

Accepting the model (2.12), we obtain the following values of weighted least squares 
estimates, sl> and smoothed estimates, {1*: 

s~ = (0.912,- 1.sso,o.339,- o.2ss,- o.o86) I 

f1o = -2.665, M = (0.917,-1.568,o.344,-o.262,o.o87) 1
• 

The estimate (1* can also be used to produce smoothed estimates of the P;j, pij = Pu(f1* ), 
which satisfy the constraint I: I:Pu(f1*) = 1. 

3. BOX-COX TRANSFORMATION MODELS 

Logistic regression models are extensively used for the analysis of variation in the estimated 
proportions associated with a binary response variable. Suppose that the population of interest 
is partitioned into I cells according to the levels of one or more factors. Let P; be the popula
tion response proportion in the i-th cell. Then a logistic regression model for the proportions 
P; = F;({1) is given by 

log{F;/(1- F;)} = xf{1, i = 1, ... , I, (3.1) 
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where X; = (x1;, ... ,Xs;) 1 is an s-vector of known constants derived from the factor levels 
with xli = 1, and {3 is an s-vector of unknown parameters. 

Guerrero and Johnson (1982) extended the applicability of logistic regression models by 
introducing an additional parameter, "A, through a Box-Cox power transformation of the odds 
ratios F; I ( 1 - F;). Their model is given by 

v;("A) = {F;I(l - F;)} {A) = xf{3, i = 1, ... ,I, 

where {3 and x; are as in (3 .1) and 

{F;I(l _ F;)} [A) = [ log
1
{F;I(l - F;)} A 

ft.-[{F;I(l-F;)} -1] 

if "A= 0 

if "A ,c. 0. 

(3.2) 

The model (3 .2) includes as a special case ("A = 0) the logistic regression model (3 .1). Guerrero 
and Johnson (1982) applied this model to data from the National Survey of Household Income 
and Expenditures in Mexico to explain the variation in female participation in the Mexican 
labour force. They found that a value of "A = -6.63 provided a significantly better fit than 
the logit model ("A = 0), the values of the standard chi-squared statistic being 4.8 (7 d.f.) and 
12.8 (8 d.f.) respectively. However, they applied standard methods for binomial proportions, 
ignoring the survey design. 

Pseudo MLE 

In this section, the methods of Roberts, Rao and Kumar (1987) for the logistic regression 
model are extended to the power transformation model (3.2). Due to difficulties in obtaining 
appropriate likelihood functions for general sample designs, we use "pseudo" maximum 
likelihood estimates, S and ~. obtained from the product binomial likelihood equations for 
{3 and "A by replacing the simple response proportion r;ln; with the corresponding survey 
estimate P; of P;, and n; In with the corresponding survey estimate W; of the domain propor
tion W;. Here r; is the number of "successes" in a sample of size n; from the i-th cell, and 
n = L n;. See Guerrero and Johnson (1982), for the product binomial likelihood equations. 
The pseudo maximum likelihood estimates (m.l.e.), (j~ = <S: ~),can be obtained iteratively 
by a quasi-Newton procedure, as in Guerrero and Johnson (1982). The fitted response pro
portions are given by F = F; ({f) . 

Let Vp be the estimated covariance matrix of the survey estimates P = (P1 , ••• ,P1) 
1

, and 
let 

(3.3) 

Here D(F) = diag(F;,i = 1, ... ,!), D(l -F) = diag(l - F;,i = 1, ... ,J) and 
(an a{f) I is the I X (s + 1) matrix of partial derivatives aF; I a{3j and aF;I aft. evaluated at (j: 

(3.4) 

where Q; = 1 + "A I 1x1;{31. The estimated asymptotic covariance matrix of (f, taking account 
of the survey design, is then given by (see Roberts 1985) 

(3.5) 
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where..& = diag( W;F;(l - F;);i = 1, ... ,J) and D( W) = diag( W;,i = 1, ... ,1). 

It is also of interest to find the standard errors of the residuals R; = P; - F; since the 
standardized residuals R;/s.e.(R;) can be used to detect any outlying cell proportions. The 
estimated asymptotic covariance matrix of the vector of residuals R = ( R 1 , ... , R I) ' is given 
by 

estcov(R) = Aestcov(O)A' = VR, (3.6) 

where 

A = I- D(F)D(l - F)B(B' ..:iB) - 1B' D( W). 

The square root of the diagonal elements, V;; R, of (3 .6) provide the estimated standard errors 
oftheR;,i = 1, ... ,I. 

Corrections to Standard Tests 

The standard chi-squared and likelihood ratio tests of goodness-of-fit of the model (3.2) 
are given by 

I 

X 2 = n E (P;- F;) 2W;![F;(l - F;) J (3.7) 

i=l 

and 

I 

G2 = 2n E W;[P;log(P;!F;) + (1 - P;)log[ (1 - P;)/(1 - F;) J], (3.8) 
i=l 

respectively, where the term in [] of (3.8) equals - log (1 - F;) at P; = 0 and - logF; 
at P; = 1. 

Under product binomial sampling, it is well-known that both X 2 and G2 are asymptotically 
identically distributed as a x2 variable with I - s - 1 d.f., but for general sample designs 
this result is no longer valid. In fact, X 2 (or G2 ) is asymptotically distributed as a weighted 
sum, LokWk> of independent x2 variables, Wk> each with 1 d.f., where the weights ok 
(k = 1, ... ,I-s- 1) can be interpreted as "generalized design effects" (see Roberts 
1985). Under product binomial sampling, ok = 1 for all k, and LokWk reduces to x2 with 
I-s- 1 d.f. 

A first-order correction to X 2 (or G2
) is obtained by treating X~ = X 2 /b. or G~ = G2 /b. 

as x2 with I - s - 1 d.f., where 

I 

(I-s - 1)b. = E gk = n E Vu,RWfi[F;(l - F;)] (3.9) 
i=l 

and vii,R is the estimated variance of the i-th residual R;. 
A more accurate, second order correction to X 2 (or G 2

), based on the Satterthwaite 
approximation to LokWk> is obtained by treating 

2 X~ 2 G~ 2 • 2 Xs = --2 or Gs = --2 as X With (I-s - 1)/(1 + a ) d.f. 
1+0 1+0 

(3.10) 
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Here ii2 = E ( §k - 5.) 21 ( (I - s - 1) &~} is the squared coefficient of variation of the &; 
which can be computed, without evaluating the individual weights&;, from (3.9) and from 

I I 

E g~ = E E VTt,R(nW;)(nWt)l(];ft(l - ];)(1 - ft>}, (3.11) 
i=l 1=1 

where Va,R is the (i,/)-th element of VR given by (3.6). 

Nested hypotheses, given the model (3.2), can also be tested by correcting the standard tests 
for nested hypotheses, but we omit this topic for simplicity (see Roberts 1985 and Kumar and 
Rao 1985 for details). It is simpler, however, to use Wald tests based on the estimates Sand 
the associated estimated asymptotic covariance matrix. 

Example 

The previous method was applied to data from the monthly Canadian Labour Force Survey 
(October, 1980). The Labour Force Survey design employs multi-stage cluster sampling with 
two stages in the self-representing urban areas and three or four stages in the non-self
representing areas in each province. A detailed description of the sample design and associated 
estimation procedures for the Labour Force Survey is given in Statistics Canada (1977). 

The sample from the Labour Force Survey, for the present example, consisted of males aged 
15-64 who were in the labour force and not full-time students. Two factors, age and educa
tion, were chosen to explain the unemployment rates via a Box-Cox transformation model. 
Age-group levels were formed by dividing the interval [ 15,64] into ten groups with the j-th 
age group being the interval [ 10 + 5j, 14 + 5j] for j = 1, ... , 10 and then using the mid
point of each interval, Aj = 12 + 5j, as the value of age for all persons in that age group. 
Similarly, the levels of education, Ek> were formed by assigning to each person a value based 
on the median years of school resulting in the following six levels: 7, 10, 12, 13, 14 and 16. 
The resultant age by education cross-classification provides a two-way table of I = 60 survey 
estimates, ~k> of employment rates ~k· The estimated covariance matrix Vp was based on 
more than 450 sample clusters. 

We considered the following transformation model for ~k = Fjk(O) involving linear and 
quadratic age effects and linear education effect: 

VjdA) = (Fjkl(l - Fjk} (A) 

= (30 + (31Aj + (32Aj + (3~k> j = 1, ... ,10, k = 1, ... ,6. (3.12) 

Table 2 contains the pseudo m.l.e. of() = ((30 , (31> (32, (33 , A)' and associated standard errors, 
and the test statistics X 2

, 0 2
, X~ and G~ for testing the goodness-of-fit of the model (3.12). 

The corresponding values under the logistic regression model (A = 0) are also given for 
comparison. 

It is clear from Table 2 that the value of X 2 (or G2 ) is essentially equal to the correspon
ding value under the logistic regression model. Thus in the present example the transforma
tion model provides no improvement in the fit over the logistic regression model. This is also 
clear from the value of i-. ( = 0.016) which is not significantly different from A = 0 when 
compared to its standard error ( = 0. 085). The estimates of regression coefficients are essen
tially equal under the two models, but the standard errors of the S; under the Box-Cox model 
are much larger than the corresponding standard errors under the logistic regression model, 
due to the large standard error associated with }.. and the fact that the si depend on i-.. 
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Table 2 

Pseudo MLE of the Parameters ( S' ,A), their Standard Errors and 
Test Statistics Under the Transformation Model and under 

the Corresponding Logistic Regression Model (A = 0) 

Transformation Model Logistic Regression Model 

estimate s.e. estimate s.e. 

So -3.28 0.975 -3.10 0.247 

s~ 0.219 0.0468 0.211 0.013 

s2 -0.00227 0.00049 -0.00218 0.00017 

s3 0.1579 0.0385 0.1509 0.0115 

}. 0.016 0.085 

Test Statistics 

value d.f. value d.f. 

x2 99.6 55 99.8 56 

G2 102.6 56 102.5 56 

X~ 40.7 39.2 23.4 24.2 

G~ 42.0 39.2 23.9 24.2 

X~(0.05) 54.6 55 47.7 56 

G~(0.05) 56.4 55 48.9 56 

If the survey design is ignored and the value of X 2 (or G2
) is referred to x5.o5 (55) = 73.3, 

the upper 50Jo point of x2 with I - s - 1 = 55 d. f., we would reject the model (3.12). On 
the other hand, the value of X~ (or G~) when adjusted to refer to x5.05 (55), denoted as 
X~ (0.05) (or G~(0.05)) in Table 2, is not significant at the 5% level, indicating that the model 
provides a good fit to the data, ~ k. 

Box and Cox (1982) and Hinkley and Runger (1984) argued that statistical inference about 
{J should proceed with the scale determined by the estimate ~ regarded as fixed. Thus, the 
estimated covariance matrix of Sis determined from (3.5) by replacing aF;arJby aF;aS in the 
expression forB (equation (3.3)). For our example, this argument would suggest that we can 
take~ = 0 and use the estimates of {J and associated standard errors (or estimated covariance 
matrix) under the logistic regression model, given in Table 2. 

4. TESTING EQUALITY OF LOGISTIC REGRESSION MODELS 

Structural changes between two time periods may be detected through tests of equality of 
parameters in the corresponding models. Such tests for standard linear regression models have 
been developed extensively in the econometric literature (see e.g., Amemiya 1985, Sec. 1. 5. 3). 

In this section, corrected chi-squared and likelihood ratio tests of equality of parameters 
in two logistic regression models, corresponding to two specified time periods, are obtained. 
If the hypothesis of equality is tenable, then "smoothed" (i.e., fitted) estimates of cell pro
portions for the current period can be obtained by combining the data for the two periods. 
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These estimates are more efficient than the corresponding smoothed estimate based only on 
the current period data. The methodology is applied to data from the October 1980 and October 
1981 Canadian Labour Force Survey, to study year-to-year structural changes. Note that the 
data for October 1980 has already been used, in Section 3, to illustrate the fitting of Box-Cox 
power transformation models, and it was found that a logistic regression model involving linear 
and quadratic age effects and linear education effect provides a good fit to the data. 

Let Pti be the population response proportion in the i-th cell for the period t ( = 1, 2). Then 
a logistic regression model for the proportions Pti = F;(f3t) = F(; is given by 

(4.1) 

where X; is an s-vector of known constants derived from the factor levels, as in (3.1), and 
f3t is an s-vector of unknown parameters for period t. We are interested in testing the com
posite hypothesis {3 1 = {32 ( = {3) to study structural changes between the two time periods. 
If the hypothesis is accepted, "smoothed~' estimatei' of the proportions P2 ; for the current 
period (t = 2) can be obtained as F;(S) where S is the pseudo m.l.e. of the common 
parameter {3 • 

Pseudo MLE 

Let fili and P2; (i = 1, ... ,/) be the survey estimates based on sample sizes n1 and n2 

respectively. Extending the notation in Section 3, "pseudo" maximum likelihood estimates, 
St. are obtained from the product binomial likelihood equations for f3t by replacing the simple 
response proportions rti/nti with the corresponding survey estimates Pti of Pti and ntJnt with 
the corresponding survey estimates Wr; of the domain proportions Jt(; , thus yielding 

(4.2) 

where Ft = F(St> is the vector of fitted response proportions for period t, D( Wr) = 
diag ( Wr;, i = 1, ... ,I), and X' = (x~o ... ,x1 ). The estimates Stare obtained iteratively 
by a quasi-Newton procedure. 

Under the hypothesis {3 1 = {32 ( = {3), the pseudo maximum likelihood estimates, ~ , are 
obtained by iteration from the following pseudo likelihood equations: 

whereD(Wc) (n 1/n)D(Jfl) + (n2 /n)D(J.Vi)} = F(~) isthevectoroffittedresponse 
proportions or smoothed estimates of cell proportions for the current period, and 
n1 + n2 = n. 

Let Vp be the estimated covariance matrix of (P{ ,P2)' partitioned as 

Then the estimated covariance matrix of smoothed estimates F is given by 

estcov{F) = BVpB', (4.4) 
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where 

and 

1 = diag( J¥cfi;o - F;> >.i = 1, ... ,1. 

A If the residuals are defined as k = F1 - F, then the estimated covariance matrix of 
(R { ,R2) ' is given by 

(4.6) 

Here 

with 

and 

where 

11 = diag( W;;fi;(l - F;),i = 1, ... ,/). 

Corrections to Standard Tests 

The standard chi-squared and likelihood ratio tests of the nested hypothesis t31 = t32 , given 
the model (4.1), are given by 

(4.8) 

and 

(4.9) 

where 
I 

Xl = n1 I; (Fti- F;) 2Wr;f [F;(l - F;)J, t = 1,2 (4.10) 

i=l 

and 

Gl = 2nt E Wr{Ftilog(Fti!F;) + (1- Fti)log[(l- Fti)/(1- F;)J], t = 1,2. 

i=l (4.11) 



Survey Methodology, December 1989 173 

A first order correction to X 2 (or G2 ) is obtained by treating X'/: = X 2 ;&. or G'/: = G2 ;&. 
as x2 with s d.f., where 

I I 

s&. = n, E VnRUi)Jfl;j(F;(l -F;)] + n2 E v22R(ii)W2;j(F;(l -F;)] (4.12) 
i=l i=l 

and VrtR (ij) is the (i,j)th element of VrtR. A more accurate, second order correction to X 2 

(or G2), based on the Satterthwaite approximation, is obtained by treating 

2 X'/: 
Xs = --- or 

1 + a2 

G2 
G& = __ c_ as x2 with S/ ( 1 + fz 2 ) 

1 + [J2 
d.f. (4.13) 

Here a 2 = ( Li= 1&~ - sh.2)/sh.2 which can be computed from (4.12) and the following for
mula for Eh~: 

(4.14) 

where V12R (ij) is the (i,j)-th element Of V12R. 

Example 

The previous method was applied to data from the October 1980 and October 1981 Cana
dian Labour Survey, to study year-to-year structural changes. 

The logistic regression model involving linear and quadratic age effects and linear educa
tion effect provided a good fit to data from both periods with the following estimates of {31 : 

S,: l -3.08, o.211, -o.oo218, o.1505J 

S2: l -3.o5, o.179, -o.oo169, o.1707J. 

A A A A A 2 A 
0 

wherelog{F1jk/(1- Ftjk)l = {310 + {311Aj + {312Aj + f3t~k>l = 1, ... ,10;k = 1, ... ,6 
and Ftjk is the fitted employment rate in the (j,k)-th cell for period t. One cell was omitted 
in the fitting since the domain sample size n2; is zero for the current period. 

Turning to the test of the hypothesis {31 = {32, given the logistic regression models, we 
obtained the following values of X 2

, G2
, X'/:, G'/: and X~, G~: 

x 2 = 42.1 

G2 = 42.2 

x;: = 24.6 

G'/: = 24.6 

X~= 24.4 

G~ = 24.4. 
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Alsos/(1 + &2
) = 4/(1.0089) = 3.965 = 4.ByreferringX~orG~tox6.05 (4) = 9.49,the 

upper 50Jo point of x2 with 4 d.f., we reject the hypothesis {31 = (32 at the 5% level, indicating 
significant year-to-year structural changes for the month of October. The data for the two time 
periogs, therefore, should not be pooled to get smoothed estimates of unemployment rates, 
1 - Fjk> for the current period. 

5. POLYTOMOUS RESPONSE MODELS 

A variety of models has been suggested in the literature when the response variable is 
polytomous. The variety of models reflects, in part, the different scales of measurement possible 
for polytomous response variables, unlike binary response variables. In the main, there are 
nominal responses where any permutation of the response categories is equally valid, and 
ordinal responses where there is a natural ordering of the response categories. 

Suppose that the population of interest is partitioned into I cells (or domains) according 
to the levels of one or more factors. Let Pj Ul be the population proportion in the ith cell having 
the/hresponseU = 1, ... ,J+ 1)sothat}:j~lPj(i) = 1 (i = 1, ... ,l).Thenageneral 
polytomous response model for the proportions Pj ( i) is given by 

Pj(i) = Fu(O), i = 1, ... ,I; j = 1, ... ,J, (5.1) 

where fJ is an r-vector of unknown parameters (r ::5 /J) and Fu (fJ) is a function of known 
form. In the nominal case, Haberman (1982) and others proposed the following model: the 
"multinomiallogits" logPj(i) - }:j;;,\logPj'(i)(J + 1) -I are assumed to be unknown 
linear functions of X;, the s-vector of known constants derived from the factor levels, i.e., 

I 
J+! 

Fu(fJ) = exp(x((3j) E exp(xf(3k), i = 1, ... ,I; j = 1, ... ,J + 1 
k=l 

with }: (3k = 0. Because of the latter constraint on the (3k> (5.2) may be expressed as 

i= 1, ... ,l;j= 1, ... ,J. 

(5.2) 

(5.3) 

Note that (5.3) reduces to the usual logistic regression model in the special case of binary 
response. 

In the ordinal case, a simple model which also has the feature of being invariant under the 
grouping of response categories is given by (McCullagh 1980) 

log{Cj(ij/(1 - cj(i)> J = Vj- xf{3, j = 1, ... ,J; i = 1, ... ,I (5.4) 

where Cj(il = }: {= 1 PkUl denotes the fh cumulative probability in the ith domain, and fJ I = 
( v1 , •.. , v J>f3 1

). To express (5.4) in the form (5.1), we note that P; = L -'c;, where P; = 
(P1 Ul, ... , PJ(i)) 1

, C; = ( C1 (il , ... , C J(i)) 1 and L -! is a J x J nonsingular matrix with 1 
in the diagonal, -1 in the (i + 1, i) th position (i < J) and 0 elsewhere. 
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Pseudo MLE 

As before, we use pseudo m.l.e., 8 obtained from the product multinomial likelihood equa
tions for() by replacing the simple response proportions nu In; with the corresponding survey 
estimates Pj Ul, and n; In with the corresponding survey estimate W; of the domain propor
tion W;. Here nu is the number of units with the j th response in a sample of size n; from the 
i1h domain and n = L n;. The fitted response proportions are then given by F = F( 0) = 
(F{, ... ,Fj) 1 , where F; = (Fit, ... ,ftiJ) I and Fu = Fu( 0). 

Let Vp be the estimated covariance matrix of the survey estimates P = (P1o>• ... ,P1 o>• 
... ,P1 Ul• ... ,P1 Ul) 1

, and M = ( iJFiaO) 1
, the IJ x r matrix of partial derivatives iJFu liJ()k 

calculated at 8. Also, let Q; = diag(F;) - F;Ff and Q = diag(Q;,i = 1, ... ,/). The 
expressions for the partial derivatives iJFuliJ()k for the models (5.3) and (5.4) are given in 
Roberts (1985). The estimated asymptotic covariance matrix of 8, taking account of the survey 
design, is then given by (see Roberts 1985). 

(5.5) 

where V = (D( W) ® /)Q- 1 and D( W) = diag( W;,i = 1, ... ,/).In the special case of 
product multinomial sampling, Vp = v- 11n and (5.5) reduces to (M1 VM) - 11n. 

The vector of residuals, R = P - F, is also of interest, since it may be useful in detecting 
model deviations. The estimated asymptotic covariance matrix of R is given by 

(5.6) 

where 6 = I- M(M 1 VM) -IM 1 V. 

Corrections to standard tests 

For simplicity, we consider only the Pearson chi-squared test of goodness-of-fit of the model 
(5.1). It is given by 

I 1+1 
2 ~~~~ ~2~ 

X = n 1..J W; 1..J (PjUJ - Fu) IFu. (5.7) 

i=l j=l 

Under independent multinomial sampling in each of the domains, it is well-known that X 2 is 
asymptotically distributed as a x2 variable with IJ - rd. f. 

To t~st the nested hypothesis 82 = 0, given the model (5.1), let 01 be the pseudo m.l.e. of 
81 and P be the corresponding vector of fitted response proportions, where () 1 = ( 8{, 82), 81 

is q x 1 and 82 is u x 1 ( q + u = r). The Pearson chi-squared test of the nested hypothesis 
is then given by 

I 1+1 

X 2 (211) = n E W; E (Fu- Fu) 21Fu (5.8) 
i=l j=l 

which is asymptotically distributed as x2 with u d. f. under independent multinomial sampling 
in each of the domains. However, for a general sample design, X 2 and X 2 (211) are both 
asymptotically distributed as weighted sums of independent x2 variables, each with 1 d.f., 
where the weights can be interpreted as "generalized design effects" of particular linear 
transformations of P (Roberts 1985). 
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A first-order correction to X 2 (211) is obtained by treating 

(5.9) 

where &. (211) is obtained by replacing ()' by ( 0{ ,0 ') and Vp by Vp in the following definition 
foro. (211): 

u 

uo.(211) E o; ( 211 ) = tr D ( 211 ) . (5.10) 
i=1 

Here, tr denotes the trace operator and D ( 211) is a generalized design effects matrix given by 

(5.11) 

where Vp is the covariance matrix of P, V = (D(W) ® I)Q- 1, Q is the block 
diagonal matrix with Q; = diag(F;) - F;F[, i = 1, ... ,I, F; = F;(O), and H 2 = 
[I- M 1 (M{VMJ) - 1 M{\l]M2 , where M 1 = ((JF;aOJ)' and M2 = (aF!a02 ) '. 

A more accurate, second order correction to X 2 ( 211), based on the Satterthwaite approx
imation, is obtained by treating 

(5.12) 

Here a(211 ) 2 is obtained by replacing() by (8{ ,0') in the following definition of a(211 ) 2 : 

where 
u 

E o;(211) 2 = trD(211) 2
• 

i=1 

(5.13) 

(5.14) 

The corrections to goodness-of-fit test X 2 are obtained as special cases of (5.9) and (5.12) 
by treating the model as nested within a saturated model (i.e., a model where the unknown 
parameter () is of length JJ). 

Example 

The previous methods were applied to data from the Canada Health Survey (1978-79). A 
brief description of the survey is provided in Section 2. 

The data set examined consisted of the estimated counts of females aged 20-64 cross-classified 
by frequency of breast self-examination (with the 3 categories: monthly, quarterly, less often 
or never), education (with the 3 categories: secondary or less, some post-secondary, post
secondary) and age (with the 3 categories: 20-24, 25-44, 45-64). 

The frequency of breast self -examination was considered to be the response variable, while 
education and age were taken as explanatory variables, so that the number of responses, J + 1, 
equalled 3 and the number of domains, I, was 9. Both response and explanatory variables are 
ordered. 
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Table 3 

Survey Estimates of Cumulated Probabilities 

Age Education c,uk> c2Uk> 

i = 1, k = 1 20-24 :5 Secondary .25 .49 
k = 2 < Post-Secondary .25 .41 
k = 3 ~ Post-Secondary .23 .47 

i = 2, k = 1 25-44 :5 Secondary .25 .50 
k = 2 < Post-Secondary .27 .44 
k = 3 ~ Post-Secondary .26 .44 

i = 3, k = 1 45-64 :5 Secondary .28 .51 
k = 2 < Post-Secondary .24 .62 
k=3 ~ Post-Secondary .29 .56 

Table 4 

Statistics for Testing Goodness of Fit and Nested Hypotheses 

Goodness of Fit 
(Age & Education) 

Nested Hypothesis 
(Age only) 

37.7 

21.6 

18.5* 

1.75 

0.83 

7.1 

3.8 

3.7* 

1.9 

0.1 

* The Satterthwaite statistic has been adjusted to refer to the same x2 value as X~. 
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The following model for the cumulated probabilities of the type described in equation (5 .4), 
was considered: 

log(Cj(ik)/(1- Cj(ik))} = vj + {3ai + ek (j = 1,2;i = 1,2,3;k = 1,2,3) (5.15) 

where Cj(ik) is the/h cumulated probability for the ;th age group and eh education group. 
As well, ai = Ai - A, where Ai is the midpoint of the ;th age interval, and ek is the effect of 
the kth education group ( L ek = 0), ignoring the order of the education categories. Table 3 
contains the survey estimates of the cumulated proportions. Table 4 contains the test statistics 
X 2 , x; and X~ for testing the goodness of fit of (5.15) and also for testing the nested 
hypothesis of no education effect, ek = 0 for k = 1 ,2. 

First, considering the goodness of fit of (5 .15), if the survey design is ignored and the value 
of X 2 is referred to x5.os ( 13) = 22.4, the upper 50Jo point of x2 with IJ - 5 = 13 d.f., we 
would reject the model. On the other hand, the value of x; or the value of X~ when adjusted 
to refer to x5.os ( 13), is not significant at the 5 OJo level, indicating that the model provides a 
good fit to the data. 

For testing of the nested hypothesis, the value of x;, or the value of X~ when adjusted to 
refer to x5.os (2) = 5.99 is not significant at the 5% level, indicating that the nested hypothesis 
of no education effect is tenable. 
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6. SOFTWARE 

Implementation of the methodology of the previous sections requires two stages of com
putation - calculation of a vector of proportions, along with its estimated covariance matrix, 
and then calculation of model estimates, test statistics and their adjustments. 

Surveys like the Canada Health Survey and the Labour Force Survey, from which examples 
have been presented, have complex designs and large data bases. Because of these two factors, 
calculation of covariance matrices was done on a mainframe computer. Custom SAS and 
Fortran programs were used for this purpose. 

Computations required for the fitting and testing of goodness-of-fit models and sub
hypotheses were done either on the mainframe computer using SAS (and the MATRIX 
procedure in particular), or on a microcomputer using the GAUSS programming package. 

These programs are available to other analysts at Statistics Canada. 
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COMMENT 

ROBERT E. FAY1 

The authors have made an excellent contribution to the literature on the analysis of data from 
complex samples. By examining in turn four different models for categorical data: i) a log-linear 
model for a cross-classification; ii) a modification of the approach of Box and Cox to the trans
formation of binary data; iii) a problem of inference about parameters of a logistic regression 
model; and iv) a polytomous response model, the authors present solutions to important indi
vidual problems and illustrate the ways in which these flexible approaches to inference can be 
extended to other models for categorical data from complex samples. The applications are con
nected by an underlying theory, much of it previously appearing in Rao and Scott ( 1984), but this 
paper usefully presents in greater detail the implications of the general theory for specific models. 

An omission from the paper is understandable but worth noting: for each model illustrated 
in the paper, replication provides an alternative strategy that, at times, may also be more con
venient. In particular, the replication theory is complete for each of the applications, i), ii), 
and iv), to cross-classified data. In each case, tests of overall fit and comparisons of nested 
models can be assessed with the jackknifed chi-square test (Fay 1985) and standard errors for 
the parameters obtained through replication. 

Replication also can provide standard errors and covariances for parameters of logistic 
regression models, as in iii), enabling in some cases a W aid-type test for equality of sets of regres
sion parameters. It also appears likely that the jackknifing approach extends to the likelihood
ratio chi-square test in such situations involving continuous variables, although a firm proof 
of this conjecture is clearly required before application can be recommended. My point in calling 
attention to replication as a competing strategy for the problems presented in the paper is not 
to imply that it represents a methodologically superior approach to the methods of Rao and 
Scott (1984); instead, the availability of this methodology provides an additional choice to solve 
these and similar problems of inference. For example, the focus on replication for the estima
tion of variances from the current demographic surveys at the U.S. Census Bureau provides 
the potential to carry out analyses such as those presented in the paper. 

I also want to point out that the methods presented and the analogues from replication theory 
have a potential importance beyond the realm of design-based inference from complex sample 
surveys, which is the focus of the paper. One of these involves the use of multiple imputation 
or related approaches intended to represent the uncertainty due to missing data. The implied 
interpretation of variance within the domain of design-based inference can be extended to 
include uncertainty from missing data without requiring changes to the methodology presented 
in the paper. The general methodology may also be applicable to some problems of inference 
from complex designed experiments, in which the design poses problems of clustering or 
stratification similar to complex sample surveys. 

Of the four models discussed, however, I suggest that the Box and Cox transformation not be 
applied without consideration of alternative strategies, such as transformation of the x-variables 
instead. My own inclination would be to favor an analysis on a logistic scale, with possibly 
transformed predictors, unless the adaptation of the Box and Cox transformation obtains some 
distinct advantage, such as offering an additive model on the transformed scale in an instance 
where the logistic model does not provide as successful a fit without interaction terms. 

I am delighted to have the opportunity to commend the authors on a useful and instructive 
paper. 

1 Robert E. Fay, U.S. Bureau of the Census, Washington, D.C. 20233. 
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COMMENT 

C.J. SKINNER1 

This paper provides an excellent discussion of a variety of applications of weighted least 
squares (WLS) and pseudo maximum likelihood (PML) procedures to categorical data. Its clear 
presentation and use of real survey examples will, I hope, help to encourage survey analysts 
to take account of complex designs in their analyses. As the authors indicate, analytical 
statistical procedures which take account of complex designs have been developed extensively 
in recent years (see e.g. Skinner, Holt and Smith 1989) and are even beginning to be referred 
to in standard computer software (e.g. SAS 1985, pp 61-67). 

Commenting first on some specific aspects of the paper, I found Section 5 on polytomous 
variables to be especially valuable, given the wide occurrence of such data in surveys. A prop
erty of ordinal variables is that they may often be expected to possess monotonic relationships 
and so, for example, lack ofmonotonicity between the fitted values of cl(ik) (or c2(ik)) and 
the education variable kin Table 3 makes the result of the corrected tests, that there is no 
evidence of an education effect, more plausible than the result of the uncorrected test. 

The discussion of testing equality of two logistic regression models in Section 4 also seemed 
to me to be practically useful, although it would still seem to be possible theoretically to for
mulate this test as one of a nested hypothesis within the framework of Roberts, Rao and Kumar 
(1987). 

Section 3 provides a useful illustration of how PML may be applied to general parametric 
models for categorical data. It is, however, gratifying that the more complex transformation 
model provides no significant improvement in fit over the logistic regression model, since the 
interpretation of the parameters of the transformation model is more difficult. For example, 
for the logistic model the coefficient for education may be interpreted as implying that the odds 
of being employed are increased by 160Jo for each additional year of education for males of 
a given age (exp (.1509) = 1.16), whereas this interpretation is not generally available for the 
transformation model when "A ~ 0. 

On a more general note I would be interested in the authors' views on the relative merits 
of WLS and PML. In the paper, these methods are presented quite separately, although both 
procedures would seem to be potentially applicable to a very wide class of models for categorical 
data under complex designs. Indeed both procedures are also applicable to models with con
tinuous variables (Skinner, Holt and Smith 1989, Chapter 3); WLS requires just a statistic 
consistent for a known function of the parameters together with a consistent estimate of the 
covariance matrix of the statistic (Fuller 1984, Corollary 2), whereas PML is applicable very 
widely as described in Binder (1983). As a basis for discussion I list below a number of criteria 
on which WLS and PML might be compared; M1-M3 are relevant even under multinominal 
sampling, C1-C3 are specific to complex designs. 

M1 Flexibility WLS may be more adaptable than PML for complex problems e.g. involving 
structural zeros. 

M2 Computation WLS computation tends to have a more standard form. 

M3 Small cell counts WLS is more sensitive to small counts, especially zeros. 

C 1 Adaptability of multinomial methods to complex designs WLS seems more easily 
adaptable. 

1 C.J. Skinner, University of Southampton, United Kingdom. 
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C2 Efficiency Under multinominal sampling WLS is usually asymptotically equivalent to 
PML (which is then just standard ML). It might be conjectured that WLS will always 
be at least as efficient as PML under complex designs, although this presupposes a 1-1 
correspondence between WLS and PML estimation problems. IfWLS is more efficient, 
is the gain usually negligible (cf. Scott and Holt 1982)? Are there general results here? 

C3 Degrees of freedom WLS estimators and associated W aid tests may be unstable if the 
degrees of freedom used to estimate Yp are low. 
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COMMENT 

E.A. MOLINA! 

I would like to congratulate the authors on bringing together some recent methods devel
oped for analyzing categorical data arising from sample surveys. The paper should be extremely 
useful for survey analysts who wish to take into account the impact of survey designs on the 
practical aspects of the analysis of survey data. In particular, it is important to emphasize that 
the methods discussed cover two different situations arising in practice: so called primary 
analyses, in which the researcher has all the relevant information at hand, and secondary 
analyses, in which the data provided do not include enough information about the popula
tion units to enable the calculation of full covariance matrices of the sample estimators. 

The methods covered require the existence of a structural model for the data. There are situa
tions, however, in which it is difficult to specify a single structural model that adequately 
describes categorical data. In large scale surveys there is often need to screen out many cross 
classifications at minimal cost. In such cases the use of measures of association is a common 
alternative. These non parametric methods were extended to sample survey data by Molina 
and Smith (1986, 1988). 

For the primary analysis of survey data the paper concentrates on weighted least squares 
and Wald tests. The results in Scott, Rao and Thomas (1989) are summarized and the rela
tionship with quasi-likelihood is mentioned. I think that an important conclusion from that 
paper should be included in this section, namely the need to take into account the survey con
straints K'p(X(3) = 1r when using quasi-likelihood methods. The reader may not be aware 
of the importance of the careful choice of the g-inverse in equation (2.9). Quasi-likelihood 
methods are now widely used and the relationship with weighted least squares methods is a 
relevant one. In fact, quasi-likelihood functions represent an interesting alternative for the 
analysis of survey data. However, there are practical problems since the method requires that 
we specify the covariance matrix as a function of p, the variance function. Quasi-likelihoods 
are largely determined by these variance functions (see, e.g., Morris 1982, and 1 0rgensen 1987). 
If a matrix of estimates is given instead of a function, the method would be equivalent to the 
use of a normal distribution. 

Most of the paper is devoted to methods involving pseudo likelihoods. Since secondary 
analyses constitute the most common situation in practice, the methods presented are likely 
to be extensively used by survey analysts. I would like, however, to discuss some alternatives. 

The study of the impact of survey design on Guerrero and Johnson's (1982) transforma
tion models is an important addition to the literature. However, Neider and Pregibon (1987) 
have proposed a family of functions, the extended quasi-likelihoods, that avoid some impor
tant disadvantages of transformation models and can be fitted with GLIM. If design effects 
are available, their methods can be adapted to survey data by incorporating them either in the 
variance functions or in the form of weights. Alternatively, design variables may be used to 
adjust the dispersion parameter in the models. In both cases, one advantage is that we can use 
the goodness of fit statistics and standard errors produced by GLIM under these models to 
examine the data without the introduction of further corrections. 

These comments apply in general to the use of pseudo-likelihoods. The effect of ignoring 
the survey design may be treated as an increase or decrease in the expected variability that may 
be modelled as overdispersion or underdispersion by means of quasi-likelihoods or extended 
quasi-likelihoods. See, e.g., Pocock eta/. (1981), Breslow (1984), Williams (1982), among 

1 E.A. Molina, Universidad Simon Bolivar, Caracas and University of Southampton, United Kingdom. 
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others. As an example, I reanalyzed the data in Table 1. The analysis given in the paper is the 
correct one, since it incorporates the true covariance matrix. Suppose, however, that this matrix 
is not available and that only the cell design effects are at hand. Using GLIM I fitted model 
(2.12) with a Poisson error ignoring the sampling scheme. This gives X 2 = 5.68, G2 = 5.67. 
The Rao and Scott (1987) approximation for the chi square statistic gives X 2 (o) = 5.68/ 
2.25 = 2.52. For the independence model the uncorrected values are X 2 = 18.22, G2 = 
18.22, and the correction gives X 2 (o) = 18.22/1.65 = 11.04. What can be done if the deffs 
are not available?. A simple quasi-likelihood approach to overdispersion is to estimate the mean 
deviance for the larger model, D = 5.68/3 = 1.89, and to use the inverse of this value as a 
weight (or as a new scale parameter). This give X 2 = 3.01 for model (2.12) and X 2 = 9.65 
for the independence model. The correct approach here is to use the excess in deviance (the 
difference between the log-likelihood ratio statistics) to test 'Y = 0, since G2 will equate the 
degrees of freedom for the larger model. The value is 6.65, which is just significant at the 1 OJo 
level. Both analyses are in agreement with the correct analysis given in the paper, but in other 
situations it may not be so. The quasi-likelihood model presented here is equivalent to assuming 
that the actual covariance matrix is a multiple of the one obtained under multinomial sampling, 
a model that may perform badly in several situations. The advantage is that it can be used when 
the only information available is that given by the variability inherent in the data, and the 
analysis performed in a standard statistical package like GLIM. If the deffs are available, other 
models involving them may be proposed, and a paper is in preparation. 

There is, however, no completely satisfactory substitute for an analysis involving the actual 
covariance matrix. The objective of this contribution is to highlight other possibilities when 
the full covariance matrix is not known. Quasi-likelihoods offer a fertile ground for further 
exploration, particularly in relation to survey data. The paper under discussion presents several 
alternatives and is an important contribution to the field. 

ADDITIONAL REFERENCES 

J0RGENSEN, B. (1987). Exponential dispersion models. Journal of the Royal Statistical Society B 
127-162. 

MOLINA, E.A., and SMITH, T .M.F. (1986). The effect of sample design on the comparison of associa
tions. Biometrika 73, 23-33. 

MOLINA, E.A., and SMITH, T.M.F. (1988). The effect of sampling on operative measures of asso
ciation. International Statistical Review 56, 235-242. 

MORRIS, C.N. (1982). Natural exponential families with quadratic variance functions. Annals of Statistics 
10, 65-80. 

NELDER, J.A., and PREGIBON, D. (1987). An extended quasi-likelihood function. Biometrika 74, 
221-232. 

POCOCK, S.J., COOK, D.G., and BERESFORD, S.A.A. (1981). Regression of area mortality rates 
on explanatory variables: What weighting is appropriate? Applied Statistics 31, 286-295. 

WILLIAMS, D.A. (1982). Extra binomial variation in logistic-linear models. Applied Statistics 31, 
144-148. 



Survey Methodology, December 1989 185 

RESPONSE FROM THE AUTHORS 

We thank the three discussants, Fay, Molina and Skinner, for their useful comments and 
for suggesting additional methods useful in the analysis of cross-classified data from complex 
sample surveys. 

(i) Response to comments of R.E. Fay 

We agree with Fay that replication methodology and associated jackknife chi-squared 
tests provide viable alternatives to the methods presented here, provided the survey design 
permits the use of a replication method such as the jackknife or the balanced half-sample repli
cation. His CPLX program indeed offers a comprehensive analysis option whenever estimates 
are available at the individual replicate level. Also, as noted in the Introduction, Fay's jack
knife tests and Rao-Scott corrections have performed well under quite general conditions in 
simulation studies, unlike the Wald tests based on weighted least squares. Rao-Scott correc
tions are, however, also applicable to survey designs not permitting the use of a replication 
method. 

The software systems for the Canada Health Survey and the Canadian Labour Force Survey 
were set up to readily provide the estimated covariance matrix of cell estimates but not the 
replicate level estimates. As a result, the implementation of jackknife tests would have required 
some changes in the software systems. 

We are also thankful to Fay for pointing out that the methods presented here, and the 
analogues from replication theory, can also handle some problems of inference from complex 
designed experiments involving clustering and stratification. Indeed, one of us (J .N .K. Rao) 
recently used Rao-Scott type methods to fit dose-response models and to test hypotheses in 
teratological studies involving animal litters as experimental units (Rao and Colin 1989). These 
methods do not assume specific models for the intra-litter correlations, unlike other methods 
proposed in this area. 

We considered Box-Cox transformation models since Guerrero and Johnson (1982) obtained 
significantly better fits on some Mexican data compared to the logit model. We agree with Fay, 
however, that the Box-Cox models should not be applied without consideration of alternative 
strategies, such as transforming the predictors. As noted by Fay, the Box-Cox approach would 
be useful in these cases where it would lead to additive models on the transformed scale while 
the logit model would require interaction terms. 

(ii) Response to comments of E.A. Molina 

Molina is correct in saying that measures of association can be used to screen out many cross 
classifications at minimal cost. His joint work with T.M.F. Smith on extending the classical 
theory for measures of association to sample survey data involving clustering and stratifica
tion is an important contribution. 

As noted in the Introduction, we assumed throughout the paper that the user has access 
to a full estimated covariance matrix of cell estimates. However, such detailed information 
is often not available for secondary analyses, and in fact even cell deffs may not be available, 
as pointed out by Molina. In the latter case, Rao and Scott (1987) showed that anFstatistic 
used in GLIM for testing a nested hypothesis, such as 'Y = 0 given the model (2.12), is asymp
totically valid whenever the covariance matrix of cell estimates, V, is proportional to the 
multinominal covariance matrix, P. The F-test, however, is less powerful than the Rao-Scott 
tests, unless the denominator degrees of freedom are high. In the latter case, the Ftest might 
work well even if the condition V oc Pis not satisfied (see Rao and Scott 1987, p. 392). 
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For the data in Table 1, F = 6.63 for testing 'Y = 0 given the model (2.12), which is not 
significant at the 50Jo level compared to F1,3 ( 0.05) = 10.01, the upper 1% of the F distribu
tion with 1 and 3 degrees of freedom (d.f.). On the other hand, the Wald test W1 and the 
Rao-Scott test, both requiring detailed information on the estimated covariance matrix, are 
significant at the 1% level compared to Xf ( 0. 01) = 6. 63. The F-test, therefore, appears to 
be less powerful here since the denominator d. f. is only 3. Molina's proposed test is, in fact, 
equal to F, but he was treating F as a x2 variable with 1 d.f. which may not be valid due to 
small denominator d.f. 

The GLIM method does not provide a statistic for testing the goodness-of-fit of a model. 
Some information on the design effects is necessary for getting a valid test of goodness-of-fit. 

(iii) Response to comments of C.J. Skinner 

Skinner noted that the test of equality of two logistic regression models in Section 4 might 
be formulated as a test of a nested hypothesis within the framework of Roberts, Rao and 
Kumar (1987), using dummy x-variables. The framework of Roberts, Rao and Kumar, how
ever, assumes one fixed sample size n whereas in Section 4 we have two fixed sample sizes n1 

and n2 for the two time periods. As a result, their results would need careful modification in 
order to be applicable to the present case of test of equality of two logistic regression models. 
Moreover, the dummy variable approach would involve the determination of estimates of 2s 
parameters iteratively, whereas the approach in Section 4 requires two iterative solutions, each 
involving only s parameters. Thus, the dummy variable approach could lead to convergence 
problems if s is not small. 

We treated WLS with singular covariance matrices separately in Section 2 since the logit
type models in the remaining sections do not involve singular covariance matrices. WLS can 
also be applied to logit-type models but the resulting estimators and associated Wald tests 
may be unstable if the degrees of freedom associated with the estimated covariance matrix, 
Vp, are low (criterion C3 of Skinner). The six criteria proposed by Skinner for comparing 
WLS and PML are very useful. We prefer PML mainly on the basis of criterion C3. Regarding 
the relative efficiency of WLS and PML estimators under complex designs, no general results 
are available, but WLS estimators are not likely to be significantly more efficient (and in 
fact, may be less efficient) if the degrees of freedom associated with the estimated covariance 
matrix are low. Clearly, further research on the relative efficiency of WLS and PML estimators 
would be useful. 
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