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ABSTRACT

The paper describes a Monte Carlo study of simultaneous confidence interval procedures for £ > 2
proportions, under a model of two-stage cluster sampling. The procedures investigated include: (i) stan-
dard multinomial intervals; (ii) Scheffé intervals based on sample estimates of the variances of cell
proportions; (iii) Quesenberry-Hurst intervals adapted for clustered data using Rao and Scott’s first
and second order adjustments to X 2, (iv) simple Bonferroni intervals; (v) Bonferroni intervals based
on transformations of the estimated proportions; (vi) Bonferroni intervals computed using the critical
points of Student’s . In several realistic situations, actual coverage rates of the multinomial procedures
were found to be seriously depressed compared to the nominal rate. The best performing intervals,
from the point of view of coverage rates and coverage symmetry (an extension of an idea due to
Jennings), were the t-based Bonferroni intervals derived using log and logit transformations. Of the
Scheffé-like procedures, the best performance was provided by Quesenberry-Hurst intervals in com-
bination with first-order Rao-Scott adjustments.

KEY WORDS: Simultaneous inference; Complex surveys; Monte Carlo.

1. INTRODUCTION

Survey results are often presented as estimated proportions (or percentages) of popula-
tion units belonging to two or more distinct categories. Examples include many sociological
studies (see for example Black and Myles 1986), marketing studies and opinion polls. As
noted by Fitzpatrick and Scott (1987), inference on category proportions is often based on
single binomial confidence intervals, even when more than two category proportions are being
examined. This paper describes a study of several procedures for constructing simultaneous
confidence intervals for the proportions m;, i = 1, ..., k, of population units belonging to
each of k distinct categories, using data from a two-stage cluster sample. Standard
simultaneous confidence interval procedures for categorical data problems, reviewed by
Hochberg and Tamane (1987), are based on the assumption of multinomially distributed
sample counts, and are thus appropriate for data from simple random samples. When the
data have been collected using sample survey designs that involve clustering, standard pro-
cedures are likely to perform poorly, as is the case when standard multinomial based tests
are applied to data from complex sample surveys. In the latter case, it has been shown by
many workers that clustering can lead to unacceptably high Type I error rates (see, for
example, Fellegi 1980; Rao and Scott 1979, 1981; Holt, Scott and Ewing 1980). For
simultaneous confidence intervals, therefore, it is natural to expect that clustering will lead
to coverage probabilities that are lower than multinomial theory indicates.

Estimation of simultaneous confidence intervals (SCI’s) is an important adjunct to
hypothesis testing. The present study thus represents a natural follow-up to Thomas and
Rao’s (1987) investigation of test statistics for the simple goodness of fit problem, under
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simulated cluster sampling. In this paper, adaptations of the standard SCI procedures are
proposed, and their performance in small samples is evaluated using Monte Carlo techniques.

The cluster sampling model that is used in the Monte Carlo study is described in Section
2, and the SCI procedures to be examined are presented in Section 3. In Section 4, the design
of the Monte Carlo experiment is described, together with procedures for evaluating confidence
interval performance. The main results of the study are presented in Sections 5 through 7,
followed in Section 8 by some final conclusions and recommendations.

2. THE CLUSTER SAMPLING MODEL

This investigation will focus on two-stage sampling in which a k-category sample of m units
is drawn independently from each of » sampled clusters.

For a sample of sizen = mr,letm = (my, ..., m_;)’ represent the category counts for
the whole sample, where m, = n — ¥ ¥-! m;. In terms of proportions, let # = (44, ...,
%r_1) = m/n be the vector of category proportions for the full sample. Further, define
« = E(#), where E denotes expectation under a suitable model of cluster sampling, and let
V/nrepresent the (k — 1) X (k — 1) covariance matrix of #. Following Rao and Scott (1981),
the ordinary design effect for the linear combination ¢’ # of category proportionsisc’ Ve/c’ Pe,
where P is n times the covariance matrix of 4 under multinomial sampling, i.e., P = diag(=)
— wa’, and ¢is a vector of dimension k£ — 1. The largest design effect taken over all possible
linear combinations is given by the largest eigenvalue of the design effect matrix D = P~V
The eigenvalues of D, denoted in decreasing order by A;, Ay, ..., Ag_1, Were termed
generalized design effects by Rao and Scott (1981), and provide a quantitative summary of
the variance inflation associated with a particular design, relative to simple random sampling.
Under the multinomial distribution, corresponding to simple random sampling from large
populations, \; = 1V j. Designs involving clustering usually yield generalized design effects
greater than one on the average, i.e., A = ¥, ;‘;11 \;/(k — 1) > 1. Furthermore, studies of
real survey data (Hidiroglou and Rao 1987; Rao and Thomas 1988) reveal significant variation
among the A/’s. This is conveniently represented by their coefficient of variation, given by

k—1
a=(E N/ (k — 1)A?] —1)“2. )

Jj=1

A suitable model of cluster sampling must therefore be capable of generating generalized design
effects such that A > landa > 0.

Brier (1981) proposed a model of two-stage cluster sampling in which individual clusters
are represented by vectors of category probabilities, p; = (Do, Pezs -+ > Prx—1) €= 1, ...,
r, where for each cluster, py = 1 — ¥ *7! p;. Each p, was independently drawn from a
Dirichlet distribution with mean =, i.e. E(p;) = =, and second stage sampling of the m units
per cluster was multinomial, conditional on the realized value of p, for that cluster. Let the
vector of counts for each cluster be m, = (my, ... my_y), wWith my, = m — YA my.
Thus for the full sample, m = ¥ /_; m,, and in terms of proportions, # = Y 7—; #; where
7, = my/m. Brier (1981) showed that under this model, E(#) = = and V(%) = dP/n,i.e.,
the covariance matrix of # is proportional to the multinomial covariance matrix, with the
constant of proportionality ¢ > 1. Under this model, the design effect matrix is given by
D = dI,_,, where I, _, is the identity matrix of order k — 1. Thus \; = dvi,sothat \ = d
and ¢ = 0. Brier’s model can therefore represent variance inflation (N > 1), but cannot
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represent the unequal generalized design effects encountered in practice. Thomas and Rao
(1987) used an extension of Brier’s model in which the first stage p,’s are sampled
independently from a mixture of two Dirichlet distributions, representing a population com-
posed of two distinct classes of clusters. This model, which is a special case of that proposed
by Rao and Scott (1979), generates one distinct and &k — 2 equal eigenvalues, with Nand a
being explicit functions of the Dirichlet parameters. This greatly facilitates the design of the
Monte Carlo study by allowing for convenient control of the values of the clustering measures
\ and a. Since it satisfies the basic requirements outlined above (A > 1,a > 0), Thomas and
Rao’s (1987) model will be used in this study.

3. SIMULTANEOUS CONFIDENCE INTERVAL PROCEDURES

3.1 Scheffé Intervals

A standard Scheffé argument, based on the asymptotically exact probability statement
P(n(ir -—m)' PV l(x—-m =< xi_l(a)> =1-« )

leads to simultaneous confidence intervals for linear combinations, ¢’ «, of the category pro-
babilities, where fis a vector of dimension (kK — 1). Appropriate choices of £then yield SCI’s
on the individual cell probabilities given by

; € {ir,- + (92 (A/n)1/2},i =1, ...,k 3)

where A = x%_; («) is the upper « percent point of a chi-squared distribution on k¥ — 1
degrees of freedom, and ¥; is the i'™® diagonal element of a consistent estimator of ¥ (as
r — o) given by

p-_" )E(‘irg—ir)(irg—ir)’. @)
=1

r(r — 1

Note that when the endpoint of an interval lies outside [0, 1], definition (3) must be modified
by truncating the endpoint to 0 or 1 as appropriate. For multinomial sampling, #; can be
replaced by #; (1 — #;), in which case the Scheffé intervals reduce to those proposed by Gold
(1963). The latter will be referred to as Scheffé-Gold intervals. The Scheffé intervals of equation
(3) will be conservative, i.e., will have coverage exceeding (1 — «) asymptotically since they
make use of only a finite number of the available £ directions (see Miller 1981, page 63). In fact,
they will become very conservative as k increases, as can be shown using the following argu-
ment due to Goodman (1965). The coverage of the Scheffé intervals is equal to one minus the
probability of occurrence of at least one of the events { (#; — 7)) % ($y/n) > X%k—l) ()},
i =1, ..., k;since the random variables (#; — 7r,-)2/ (¥3/n) each have chi-squared distribu-
tions on one degree of freedom asymptotically, the probability of each individual event can
be evaluated. Using the Bonferroni inequality, lower bounds for the coverage can then be
obtained; for a nominal coverage of 95% with k = 3, 5, 8 and 12, these bounds are .9571,
.9896, .9986 and .9999 respectively.
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3.2 Modified Quesenberry-Hurst Intervals

Under the assumption of multinominal sampling, Quesenberry and Hurst (1964) solved the
large sample probability statement

) Ky — )t
PX=nE————sA =1—a &)
i=1

LY

for the cell probabilities =;, to get the SCI’s

(6)

e #+ A2n = (A/m)V? [7; (1 — &) + A/4n]12 .
! 1+ A/2n

Under multinomial sampling, these intervals are asymptotically equivalent to Scheffé and
Scheffé-Gold intervals, and will therefore exhibit similar asymptotic conservativeness.
Quesenberry-Hurst (Q-H) intervals can be adapted for use with clustered survey data using
the first and second order corrections to the distribution of X? proposed by Rao and Scott
(1981). Corresponding first and second order SCI’s are obtained by replacing A in equation

(3) by
AD = XAand A? = A1 + 6% % (@) (M

respectively, where v = (k — 1)/(1 + 4*) and i, an estimate of the mean of the generalized
design effects, is given by (Rao and Scott, 1981)

. k
A=(k-1n"! E (1 — &) dp (®)
i=1
where d;, i = ..., kis an estimated cell design effect given by d; = 9;/#; (1 — ;). The coef-
ficient of variation, a, is estimated by replacing A in equation (1) by A, and ¥ A? by the
estimate ¥ \?= ¥ ¥ 13,2,-/ #; #;. It turns out (see Thomas 1989) that the second order modified
intervals are unnecessarily conservative, so that only the first-order modified Q-H intervals
will be discussed in the remainder of the paper.

3.3 Simple Bonferroni Intervals

Since (loosely speaking) each #; is asymptotically N (=, v;/n), the intervals
LIRS {‘ﬁ'i + (Vp/m)'? Za'/z} ; ®

will have large sample coverage at least (1 — o) by the Bonferroni inequality, wherea’ = a/k
and z,, is the upper a’ /2 percent point of the standard normal distribution. Intervals (9) are
equivalent to Scheffé intervals with A in equation (3) replaced by A® = x%(«’). As noted
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by Goodman (1965), they will be shorter than Scheffé intervals for the usual values of o and
k;e.g.,a = 1%, 5%, or 10%. Goodman’s (1965) multinomial Bonferroni intervals are given
by equation (9) with #; replaced by #; (1 — #;). All endpoints of simple Bonferroni intervals
that lie outside [0, 1] will be truncated to 0 or 1 as appropriate.

3.4 Transformed Bonferroni Intervals

For suitably smooth g, g (#;) will be asymptotically N(g(m;), [ &/( 7r,-)]2 vy/n), where g/(m;)
denotes the partial derivative dg(m;)/dx; evaluated at ;. Bonferroni intervals can then be
obtained by inverting corresponding intervals on the g (=;)’s, giving

T € {g‘l(g(fri) * g/ () (ﬂi/n)l/zza'/z)}- (10)

Three g functions will be investigated: the square root g,(m;) = w}/? (previously investigated
by Bailey 1980, for the case of multinomial sampling); the natural logarithm g, (7;) = In(m;);
and the logit g;(7;) = In(m;/ (1 — m;)). Interval endpoints that lie outside [0, 1] will again
be truncated to 0 or 1 as necessary.

Transformed Bonferroni intervals based on a jackknifed estimator of the variance of g( )
have also been examined (see Thomas 1989). It was found that there is little advantage to using
jackknifed variance estimates; Taylor series variance estimates are therefore recommended for
their simplicity. Intervals based on jackknife variance estimates will not be considered further
in this paper.

3.5 Variants of the Above Intervals

Scheffé Intervals: Following Thomas and Rao (1987), Scheffé intervals can be modified by
replacing the critical constant A in equation 3) by A™® = (k = 1) (r = 1) (r — k + 1) 7!
F (k—1y, (r—k+1) (@), where F(x_y) (,—k+1y (@) is the upper o percent point of an F distribu-
tionon (k — 1) and (r — k + 1) degrees of freedom.

Quesenberry-Hurst Intervals: Variants of the modified Quesenberry-Hurst (Q-H) intervals
can also be defined, corresponding to the F forms of the first and second order corrected test
statistic proposed by Thomas and Rao (1987). These again turn out to be conservative, and
will not be considered further.

Bonferroni Intervals: Heuristic arguments (see the appendix to Thomas and Rao 1987)
suggest that the simple Bonferroni intervals can be improved by replacing z,:,, in (9) by
t,_,(a’/2), the upper ’ /2 percentage point of Student’s ¢ distribution on r — 1 degrees of
freedom. This strategy will also be applied to the transformed Bonferroni intervals.

4. THE DESIGN OF THE MONTE CARLO STUDY

4.1 Parameters and Random Numbers

The parameters to be controlled are: (i) the nominal coverage level (1 — a) of the SCI;
(ii) =, the model probability vector; (iii) k, the number of categories; (iv) r, the number of sample
clusters; (v) m, the number of units drawn from each sampled cluster; (vi) )\, the mean of the
generalized design effects (eigenvalues); (vii) a, the coefficient of variation of the generalized
design effects. The nature and degree of clustering is represented by the pair ( \, a) as follows:
(a) multinomial sampling (A = 1, a = 0); (b) constant design effect clustering ( >,
a = 0); (c) non-constant design effect clustering (A > 1, @ > 0).
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Individual Monte Carlo experiments were run for particular combinations of k, N, @ and
'maxs the latter being the maximum number of clusters generated in one computer run. Most
experiments were run at two values of A\, namely 1.5 and 2.0, two values of g, namelya = 0
(constant design effects) and ¢ > 0 (one level of non-constant design effects), for equiprobable
categories (w; = 1/k,i = 1, ..., k). Three values of k (k = 3, 5, 8) were initially selected
to cover the range of numbers of categories commonly encountered in goodness-of-fit tests.
An additional run was subsequently done for thecase k = 12, A = 2and @ > 0to check on
the range of applicability of the results. The number of units per cluster was set at m = 10
fork = 3,5and 8, and at m = 20 for k = 12. Preliminary investigations showed coverage
rates to be insensitive to the value of this parameter. For comparability of results over k, the
non-zero settings of a were selected to make a/a,,,, the same for each selected value of k,
where @ 0 = (kK — 2)'/?is the maximum possible value of a. For k = 5, the non-zero value
of @ was set at 0.5, which is typical of the values encountered in practice, e.g., @ = 0.43 for
k = 5, as reported by Rao and Thomas (1988).

The initial focus on equiprobable categories allowed for a cost effective assessment of the
influence of k, A and a on coverage rates, and eliminated many of the possible SCI variants
from further consideration. Additional experiments reported in Section 7 show that the
procedures that passed this initial screening can in fact be applied when the cell probabilities
are markedly unequal. Vectors of unequal probabilities were confined to the class
w(k, q, ¢), defined by the elements =; = ¢,i =1, ..., qand n; = (1 — g¢)/(k — q),
i=qg+1,...,k.

For details of the generation of the random clusters from the mixture Dirichlet multinomial
distribution, the reader is referred to Thomas and Rao (1987). Each Monte Carlo experiment
consisted of 1000 sets of up to 100 independent clusters, grouped into nested subsets. All SCI
procedures were applied in turn to each subset, using two nominal coverage levels (95% and
90%), thus improving the precision of comparisons between procedures at the same param-
eter settings, and between the same SCI procedures for different numbers of clusters. Most
of the results presented will be for 95% nominal coverage; trends for 90% coverage were found
to be qualitatively similar.

4.2 Evaluation Procedures

The percentage of Monte Carlo trials for which at least one of the k confidence intervals
fails to cover the true parameter value is reported, and used for a preliminary screening of the
main SCI procedures. This is a measure of the family error rate, which is equivalent to the
actual significance level of the SCI when the latter is viewed as a test of goodness-of-fit. The
family error rate, which will be referred to in this paper as the total error rate ERy, is used
in place of the more commonly reported actual coverage rate (equal to one hundred percent
minus the total error rate) because it can be conveniently split into two one-sided rates which
will provide information on the symmetry or ‘unbiasedness’ of each SCI procedure. Jennings
(1987) argued that coverage rates alone can provide a misleading assessment of single param-
eter confidence interval procedures, and recommended that the number of times that an interval
falls above and below the true parameter value should be separately reported. In this paper,
Jennings’ suggestion has been adapted to simultaneous confidence intervals on 7, i €I, where
Iis the index set {1, ..., k}, by counting the number of Monte Carlo trials for which:

(a) more intervals fall above their corresponding w;, i € /, than fall below;
(b) more intervals fall below their corresponding m;, { € I, than fall above;
(c) the same number (> 0) of intervals fall above their corresponding =;, i € I, as fail below.
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Upper and lower error rates are then defined as ERy = [n, + (n./2)]/N;and ER; =
[n, + (n./2)1/N,, respectively, where N, represents the number of Monte Carlo trials, and
n,, n, and n, denote the counts (a) through (c), respectively. The sum of ERy and ER; is
clearly equal to the total error rate, ER . These one-sided error rates will be used to compare
SCI procedures whose overall error rates are acceptably close to the nominal rate «, over a
range of parameter settings and cluster strengths. Average interval lengths and corresponding
standard errors have also been computed, and will be used as final discriminators in the selec-
tion of the recommended procedures.

5. A SUMMARY OF RESULTS FOR TOTAL ERROR RATES

All results in this section are given in terms of the total error rate ER7, defined in Sec-
tion 4. For lack of space, tables are presented only for the case of unequal design effects,
(a > 0), with X\ = 2. More detailed results are given in Thomas (1989). In interpreting the
tabulated results, it should be noted that for 1000 Monte Carlo trials, binomial standard
errors of point estimates of true ER;’s having magnitudes 5%, 10% and 20% are 0.7%,
0.9% and 1.3% respectively. As a general rule deviations from nominal rates, and differences
between the error rates of different SCI procedures will be noted only when they are large
enough to have practical significance, and exceed their Monte Carlo standard errors by a
factor of at least two.

5.1 Multinomial Procedures

Results for multinomial intervals will only be summarized here; for details see Thomas
(1989). Under cluster sampling, error rates for Goodman’s Bonferroni intervals (see equation
(9) with #; replaced by #;(1 — #)) are unacceptably high except for values of Acloseto 1, i.e.,
unless the effect of clustering is small. The Scheffé-Gold and multinomial Quesenberry-Hurst
intervals, on the other hand, can yield error rates that are close to the nominal value in certain
cases, whenever their inherent conservativeness balances the error inflating effects of clustering
(see also Andrews and Birdsall 1988). Unfortunately, this is not always the case; both procedures
can display inflated error rates (ER; = 2«) for realistic combinations of category numbers
and clustering strengths.

Multinominal procedures should therefore not be used with complex survey data. Procedures
are clearly required that directly account for the clustering, and provide good coverage for the
required number of categories, over a wide range of clustering conditions.

5.2 The Scheffé Procedures

Total error rates for the x>-based Scheffé procedure of equation (3) and its F-based variant
are summarized in Table 1 as functions of r, for the case @ = 5%, A = 2and @ > 0. More
detailed graphs are given in Thomas (1989).

For the values of & studied, ERy for the x>-based Scheffé procedure of equation (3) increases
rapidly as the number of clusters decreases, so that it should never be used for small numbers
of clusters. The F-based variant, on the other hand, keeps ER 7 reasonably close to or below
a = 5% for all r. As r increases, ERy for F-based Scheffé remains fairly constant for the
case k = 3, but becomes increasingly conservative for ¥ = 5, as does the x? version. These
empirical trends with varying r can be explained in terms of two competing effects. As r
increases, error rates for both procedures approach their asymptotic levels which are bounded
above by 4.29%, 1.04% and 0.14%, for kK = 3, 5 and 8 respectively (see Section 3.1).
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Table 1

Total Error Rates for Scheffé and Modified Q-H Intervals;
a=5%, A=2,m=10

Total Error Rate (ERp)

Scheffé Scheffé Modified Q-H
k a r (x? based) (F based) (first order)
3 ..29 15 9.2 5.9 5.0
3 .29 30 5.7 4.7 5.1
3 .29 50 5.4 5.0 5.4
5 .5 15 8.8 5.2 4.3
5 .5 30 4.0 3.0 2.7
5 .5 50 2.5 2.0 2.0
8 .71 15 12.7 7.4 2.4
8 .71 30 4.2 3.0 2.7
8 .71 50 2.7 1.6 2.5
8 .71 100 0.8 0.7 2.3

As r decreases, however, the conservativeness of the Scheffé procedures (for £ = 5) will be
increasingly swamped by the effects of increasing non-normality of the estimated proportions,
#. For the F-based version, the inflation in error rate due to non-normality is less than for the
chi-squared version of equation (3), with the result that ER; for the F-based version never
seriously exceeds the nominal 5% rate. For moderate levels of clustering (A = 1.5), the
behaviour of the F-based procedure is qualitatively similar to that described above for the case
M\ = 2. From the point of view of total error rate, therefore, the F-based Scheffé procedure
is useable over a wide range of clustering situations, though its possible conservativeness is
a disadvantage.

5.3 Modified Quesenberry-Hurst Intervals

Total error rates for the first order modified Quesenberry-Hurst (Q-H) procedure of Sec-
tion 3.2 are also shown in Table 1 for« = 5%, A = 2anda > 0.

Total error rates are close to or below the nominal 5% for all combinations of r and k shown.
For moderate to large numbers of clusters (r = 30), error rates for k = 5, and 8§ are very
similar, being approximately one half of the nominal rate (true also when &k = 12). For the
case of constant design effects (see Thomas 1989), error rates for first order modified Q-H
intervals are conservative for k = 3, particularly for large 7. The absence of this Scheffé-like
conservativeness for the more realistic case of unequal design effects shown in Table 1 can again
be explained using the argument of Section 3.1. From equation (6), it is easily seen that the
asymptotic coverage of the first-order modified Q-H intervals is given by one minus the pro-
bability that at least one of the random variables (#; — m;)%/ (A (1 — m)/n),i =1, ...,
k, will exceed the critical value x3_;(c) asymptotically. When a > 0, these individual
random variables will not all be asymptotically distributed as chi-squared on one degree of
freedom, so that the bound of Section 3.1 does not apply. The true bound on the error rate
will be inflated since at least one of the random variables (#; — m;) %/ (Ax;(1 — ;) /n) will
be stochastically larger than (#; — m;)%/ (vy/n), whenever a > 0.
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Trends for the case A = 1.5 are similar (Thomas 1989). Overall, the results show that from
the point of view of total error rates, first-order modified Q-H intervals provide a safe but
somewhat conservative SCI procedure under realistic clustering conditions.

5.4 Simple Bonferroni Intervals

Total error rates for the simple Bonferroni intervals given by equation (9) are summarized
in Table2 forthecase o = 5%, A = 2,a > 0,and k = 3, 5and 8. Also shown are correspon-
ding error rates for the t-based variants described in Section 3.5.

From Table 2, it is evident that the error performance of both sets of SCI’s is poor, both
showing a strong tendency to high error rates for small to medium numbers of clusters when
k, the number of categories, is five or more. Using critical values of Student’s # distribution
to compensate for the variability in the estimated variances of the category proportions clearly
has the effect of generally lowering error rates. As can be seen from Table 2, however, this
strategy is unable to prevent significant error rate inflation in the #-based intervals as the number
of clusters decreases, except when k = 3. The trend to inflated error rates for small numbers
of clusters (for both z and f-based intervals), is due to the increasing non-normality of the #;’s
with decreasing r. This trend gets progressively more severe as k increases, which is to be
expected since non-normality will become more pronounced, for a given value of r, as the values
of the ;s get smaller. This is precisely what happens with increasing & in the case under study,
for which #; = 1/k v i.

When k = 3, error rates for the #-based procedure are essentially constant, and close to
the nominal level. For k = 8, on the other hand, ERvaries from close to 20% atr = 15 to
approximately 8% at r = 100. From Table 2, and other results not shown, it appears that for
k = 8, simple ¢-based intervals approach their Bonferroni limits very slowly as r — . Also,
for k <35, error rates are close to the nominal level for moderate to large numbers of clusters
(r = 40). Results for constant design effects, and for the case A = 1.5 are consistent with
the above. From the point of view of total error rates (or equivalently of coverage rates), it
is clear that simple #-based Bonferroni intervals are useable in practice over a range of realistic
clustering situations only if £ < 5 and r = 40.

Table 2

Total Error Rates for z and #-Based Simple Bonferroni Intervals;
a=50b, A=2,m=10

Total Error Rate (ER7)

k a r z-based t-based
3 .29 15 10.0 5.6
3.29 30 6.3 4.9
3.29 50 6.5 5.5
5 .50 15 15.0 9.7
5 .50 30 8.8 7.2
5 .50 50 7.2 5.5
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5.5 Transformed Bonferroni Intervals

The more detailed results given in Thomas (1989) demonstrate that the problem of error
rate inflation exhibited by simple z-based Bonferroni intervals is not solved by the use of
transformations alone. All three transformed z-based intervals again display severely inflated
error rates for small to medium numbers of clusters. Fortunately, the effect of transforma-
tions on the #-based Bonferroni intervals is very different, as can be seen from the results
summarized in Table 3.

For k = 3, 5 and 8, error rates for the log and logit intervals are close to the nominal 5%
for all r values shown, with the logit intervals yielding slightly lower rates than the log intervals
(see the footnote to Table 3). The t-based square root intervals, on the other hand, exhibit the
undesirable characteristic of error rate inflation for small r, when k& = 8; they will not be
considered further. For large numbers of categories (k = 12), both log and logit intervals
do exhibit some error rate inflation for intermediate numbers of clusters (» = 30). This is not
a serious drawback, however, as this number of categories is rarely encountered in practice.
Results for constant design effects, and for the case A = 1.5 are generally similar to those
described above.

It thus appears that for the ranges of k, 7, A and a that are likely to be encountered in
practice, log and logit transformations (which reduce the non-normality in #) used in com-
bination with z-based critical values (which compensate for the variability in the estimated
variances) do yield intervals that provide the desired degree of control. These intervals will be
explored further in Section 6 in terms of the symmetry of their error rates.

Table 3

Total Error Rz}tes1 for t-based Transformed Bonferroni Intervals;
a=50, A\=2,m=10fork < 8, m = 20fork = 12

Total Error Rate (ERy)

t-based Transformed Bonferroni

k a r Square Root Log Logit
3 .29 15 4.5 4.6 3.3
3 .29 30 3.6 4.0 3.5
3 .29 50 4.6 5.6 4.1
5 5 15 6.4 4.7 4.6
s 5 30 4.6 4.2 3.5
S 5 50 4.3 4.5 4.0
8§ .71 15 12.0 5.9 5.2
8 .71 30 6.2 6.6 5.2
8§ .71 50 5.9 5.4 5.2
8 .71 100 4.9 3.9 4.2
12 91 15 17.0 6.7 6.5
12 91 30 12.9 10.1 10.2
12 .91 50 8.2 6.5 6.3

1For k = 8 and r = 50, the correlation between ER restimates for log and logit intervals is 0.92.
Assuming this is typical for all 7 and k, the Monte Carlo standard error of the difference in log and
logit error rates is approximately 0.3%.
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Table 4

Percentage Asymmetry (PER )" in the Total Error Rate for the Viable Procedures;
a>0%r=50,m=10fork < 8, m = 20fork =12

PERy = (ERy/ERy) X 100%

Scheffé Modified Q-H t-based Bonferroni
o kA (F-based) (first order) (log) (logit)
5% 5 1.5 19.2 58.7 61.0 48.9
5% 5 2.0 0.0 45.0 61.1 48.8
5% 8 1.5 0.0 63.2 67.5 56.8
5% 8 2.0 0.0 65.2 64.9 49.0
5% 12 2.0 0.0 46.9 53.8 51.6
10% S5 1.5 16.3 49.4 59.2 48.4
10% S5 2.0 6.1 50.0 61.8 48.6
10% 8 1.5 0.0 60.7 67.3 55.8
10% 8 2.0 0.0 65.6 60.7 50.0
10% 12 2.0 0.0 47.5 56.0 51.4

IFork = 8, A = 2and a = 5%, the correlation between PER ; estimates for log and logit intervals
is 0.82. Assuming this is typical, Monte Carlo standard errors for differences in log and logit PER s
are approximately 4% and 3% for « = 5% and 10%, respectively.

2 For values of a for specific k, see Table 3.

6. ERROR RATE SYMMETRIES FOR THE VIABLE PROCEDURES

This section presents results on error rate symmetry based on the decomposition of the total
error rate ERrinto its two additive components ER and ER;, as described in Section 4. The
measure used in the tables is (ERy/ER7) X 100%, i.e., the upper error rate expressed as a
percentage of the total error rate. It will be denoted PERy. A symmetric SCI will have an
empirical PER, that is close to 50%; a PERy, that is greater (less) than 50% will indicate an
increased probability of non-coverage due to intervals lying above (below) their respective ;’s.
For values of percentage symmetry between 50% and 80%, 95% confidence intervals on the
true PER,, are approximately (PERy +14)% and (PERy + 10)% for total error rates of
5% and 10% respectively.

6.1 Modified Scheffé and Quesenberry-Hurst Intervals

Percentage symmetry results for the F-based Scheffé and the first order Quesenberry-Hurst
(Q-H) intervals are given in Table 4 for a selection of parameter values. It can be seen that
the Scheffé procedure displays extreme asymmetry, making it an unattractive SCI. The first
order modified Q-H procedure displays only moderate asymmetry, and is therefore the better
of the two in practice.

The source of the asymmetry in the Scheffé intervals is again the non-normality of the un-
transformed #;s. In particular, the fact that ‘‘small”’ #;’s generate ‘‘small’’ estimates of the
variances »; and hence shorter intervals (¢f. the multinomial case where 5; = #;(1 — #;)/n,
i = 1, ..., k) increases the probability that non-covering intervals with lie below their respec-
tive «;’s. This tendency to asymmetry will increase as the total error rate decreases, making
the F-based Sheffé procedure particularly vulnerable to this effect. Since Scheffé intervals differ
from simple Bonferroni intervals only through the critical constant used, asymmetry is also
to be expected in the latter though it should not be as severe given that error rates for simple
Bonferroni intervals are liberal. This is confirmed by study results, e.g., PER, = 4.9% for
simple z-based Bonferroni intervals when r = 50, k = 8 and @ = 0.71.



198 Thomas: Simultaneous Confidence Intervals for Proportions

6.2 t-Based Transformed Bonferroni Intervals

Table 4 also gives percentage symmetry results for z-based Bonferroni intervals based on
the log and logit transformations. The results of the table suggest that logit intervals do pro-
vide more symmetric coverage than the log intervals, when k is in the range 5 to 8. Thus logit
intervals might be considered preferable in practice to log intervals from the point of view of
error rate symmetry.

7. UNEQUAL CELL PROBABILITIES

Table 5 presents results on total error rates and error rate symmetry under unequal cell pro-
babilities for the #-based log and logit transformed Bonferroni procedures, together with results
for the first order modified Q-H procedure. Results are tabulated for six sets of unequal pro-
babilities, three for thecase k = 5, A = 2,a = 0.5, namely x(5, 3, .3), =(5, 2, .425) and =(5,
1, .8), (see Section 4.1), and three for the case k = 8, N = 2,a = 0.71, namely =(8, 3, .25),
(8, 2, .35) and =(8, 1,. 65). For each = vector, the remaining k& — g elements all equal 0.05.
Results for equiprobable cells are also displayed in Table 5 for comparison.

It can be seen that deviations from equiprobability do affect total error rates for the
modified Q-H procedure, particularly when k& = 8. With the first element #; = 0.65 the total
error rate of modified Q-H is close to its error rate under equiprobability. For the other two
cases studied (w; = m, = .35,and 7, = 7, = w3 = 0.25), total error rates are considerably
lower, closer in fact to the modified Q-H results obtained for the constant design effect case
(see Thomas 1989). This difference in total error rates occurs because the pattern of cell design
effects is different for each set of unequal probabilities, though the pattern of generalized
design effects (the \’s) remains the same (\; = 2 + 2 V3, N=2 - v3/3,j =2, ..., 7for
A = 2,a =V2/2 = .707). When 7; = 0.65, the cell design effects are d; = 5.7, d; = 1.82,
i=2,...,8.

Table 5

The Effect of Unequal Cell Probabilities on the Total Error Rates (ER;)
and Percentage Asymmetries (PER) of the Modified Q-H
and Transformed Bonferroni Procedures;

r=5,A=2,a=5%,m=10

Procedures
Modified Q-H t-based Bonferroni
(first order) (log) (logit)
k w(k,q,9) ER; PER;; ER PER,, ER;, PER,,
5 =(5,1,0.8) 3.2 7.3 5.6 75.9 4.4 62.5
5 w(5,2,0.425) i.4 82.1 4.8 57.2 4.6 47.8
5 =(5,3,0.3) 1.5 76.7 4.2 51.2 3.9 38.5
5 equi-prob. 2.0 45.0 4.5 61.1 4.0 48.8
8 =(8,1,0.65) 2.7 63.0 6.3 68.3 5.4 55.6
8 7(8,2,0.35) 0.6 83.3 4.9 58.2 4.4 51.2
8 =(8,3,0.25) 0.7 100 5.2 68.2 4.6 63.1
8 equi-prob. 2.5 66.5 6.0 64.0 5.2 49.0
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Use of a uniform adjustment factor ( \) will thus seriously underestimate the variance of the
first estimated cell probability, leading to inflation of the error rate of the modified Q-H pro-
cedure. That the nominal error rate « = 5% is not exceeded is due to the inherent conser-
vativeness of modified Q-H intervals in the constant design effect case (see Section 5.3). When
m = m, = 0.35, corresponding design effects ared, = d, = 2.36,d; = 1.97, i=3,...,8
These are much closer to constant design effects (d; = 2.0,i = 1, ..., 8) hence the conser-
vative behaviour of the intervals in this case. It can also be seen from Table 5 that conservative
ER7’s are associated with highly asymmetric error rates.

Despite the variation in cell design effects implied by the different probability vectors of
Table 5, it can be seen that the transformed Bonferroni procedures exhibit very stable perfor-
mance. Total error rates (for 50 clusters) are close to the nominal rate (« = 5%) for both
log and logit intervals, and neither exhibits serious asymmetry. Total error rates correspon-
ding to unequal probabilities do decrease with decreasing r over the range r = 50tor = 15
when k = 8 (results not shown). Variations in ERr are not severe, however; when r = 15
clusters the minimum rate for the cases examined is approximately 2%.

8. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

In the search for procedures that take direct account of the survey design and that provide
adequate control of error rates and error rate symmetry over a wide range of problem and
clustering situations, Scheffé intervals based on estimated cell variances must be rejected: the
chi-squared version of equation (3) on the grounds of poor error control, and the F-based
version on the grounds of extreme asymmetry. Modifications to Quesenberry-Hurst intervals
are somewhat conservative, though the version based on the first order Rao-Scott correction
does provide a viable procedure. For Bonferroni intervals, the benefits of using critical points
of the z-distribution instead of the standard normal are substantial. Even so, intervals based
on # and its square root provide inadequate control of total error rates, particularly for small
numbers of clusters when the distribution of # becomes increasingly non-normal. On the other
hand, ¢-based Bonferroni intervals using both the log and logit transformations provide good
control of total error rates and error rate symmetry, and are clearly superior to all other com-
peting intervals. Both log and logit transformed intervals (¢-based) also appear to provide good
control of error rates and error rate symmetry when the cell probabilities are unequal, differing
in the cases studied by a ratio (maximum to minimum) of up to sixteen. From the point of view
of total error rates there is little to choose between the log and logit intervals, though error
rates for the latter are consistently a little lower. Logit intervals are superior from the point
of view of symmetry, however. Estimates of confidence interval lengths (detailed results not
shown) also favour the logit intervals, despite their slightly lower error rates. For example,
for the equiprobable case with o = 5%, k = 5, A=2,a=05andr = 50, the average
length of the confidence interval on m (expressed as a 95% confidence interval) was .1915
.0014 for the log-based interval, and .1850 + .0014 for the logit-based interval. For the case
of unequal probabilities, with « = 5%, k = 8, A = 2,a = 0.71, r = 50, =, = 0.65 and
7, = 0.05 (see Table 5), 95% confidence intervals for the average lengths of log and logit
intervals were: for 7, .2865 + .0012 and .2776 + .0011, respectively; for 3, .0806 + .0010
and .0789 = .0011, respectively.

Before final recommendations are made, it is necessary to consider possible limitations
imposed by the design of the Monte Carlo study. A potentially limiting feature is the use of
a single specific sampling design, namely two-stage cluster sampling with SRS at the second
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stage, given that practitioners will encounter data collected using a range of survey designs that
might include stratification and multiple levels of unit selection. For large samples, the rele-
vant distribution theory requires knowledge only of first and second moments, assuming that
a suitable central limit theorem applies (see for example Rao and Scott 1981). This study will
therefore yield valid recommendations for large numbers of clusters, or more generally for
large numbers of degrees of freedom for variance estimation (Rao and Thomas 1988), as long
as the covariance matrix V/n and hence the generalized design effects can be appropriately
modelled. Since the Dirichlet mixture model used in this study yields generalized design effects
having means and coefficients of variation that are typical of those found in practice, recom-
mendations based on a large number of clusters or degrees of freedom (fifty or more) can be
made with confidence. For small to moderate numbers of clusters, quantitative results may
differ from design to design. Since the basic mechanisms underlying the results exhibited in
this study, namely increasing non-normality of # for decreasing r plus the inherent conser-
vativeness of Scheffé-like procedures, will apply in general, it is expected that the qualitative
trends for the different statistics examined will be generalizable across a wide variety of designs,
even when the number of clusters is not large. The basic aim of the study has been to identify
procedures whose control of error rates is robust to variations in the study parameters, namely
the number of categories, the number of clusters, the strength of clustering, and the skewness
of the vector of category probabilities. The combination of parameters examined has covered
much of the range likely to be encountered in practice, so it is reasonable to suggest that the
robustness exhibited by the log and logit transformed Bonferroni intervals might extend to
variations in survey design, for moderate numbers of clusters (or degrees of freedom). Further
research on this question is clearly required.

Subject to these caveats, f-based Bonferroni simultaneous confidence intervals based
on the logit transformation are recommended for assessing up to k¥ = 12 proportions of
varying magnitude, under realistic clustering conditions. If conservativeness is deemed to be
an asset, the first-order modified Quesenberry-Hurst procedure can be safely used. Both pro-
cedures require only a knowledge of the variances (or design effects) of the estimated cell
proportions.
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