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Logistic Regression Under Complex
Survey Designs

JORGE G. MOREL!

ABSTRACT

Estimation procedures for obtaining consistent estimators of the parameters of a generalized logistic
function and of its asymptotic covariance matrix under complex survey designs are presented. A cor-
rection in the Taylor estimator of the covariance matrix is made to produce a positive definite covariance
matrix. The correction also reduces the small sample bias. The estimation procedure is first presented
for cluster sampling and then extended to more complex situations. A Monte Carlo study is conducted
to examine the small sample properties of F-tests constructed from alternative covariance matrices. The
maximum likelihood estimation method where the survey design is completely ignored is compared with
the usual Taylor’s series expansion method and with the modified Taylor procedure.

KEY WORDS: Pseudo-likelihood; CPLX procedure; Cluster sampling; Adjusted covariance matrix.

1. INTRODUCTION

In the last few years a lot of attention has been given to the problems that arise when chi-
square tests based on the multinomial distribution are applied to data obtained from complex
sample designs. It has been shown that the effects of stratification and clustering on the chi-
square tests may lead to a distortion of nominal significance levels. Holt, Scott and Ewings
(1980) proposed modified Pearson chi-square statistics tests of goodness-of-fit, homogeneity,
and independence in two-way contingency tables. Rao and Scott (1981) presented similar tests
for complex sample surveys. In all these cases, the correction factor requires only the knowl-
edge of variance estimates (or design effects) for individual cells. Bedrick (1983) derived a cor-
rection factor for testing the fit of hierarchical log linear models with closed form parameter
estimates. Rao and Scott (1984) presented more extensive methods of using design effects to
obtain chi-square tests for complex surveys. They generalized their previous results to multi-
way tables. Fay (1985) presented the adjustments to the Pearson and likelihood test statistics
through a jackknife approach.

The use of the conditional logistic model, Cox (1970), has become increasingly popular in
the context of complex survey designs. Under suitable conditions, Binder (1983), proved the
asymptotic normality of design-based sampling distribution for a family of parameter
estimators that cannot be defined explicitly as a function of other statistics from the sample.
His results are applied to binary logistic models. Further applications to the Canada Health
Survey are also found in Binder ef al. (1984).

Chambless and Boyle (1985) derived a general asymptotic distribution theory for stratified
random samples with a fixed number of strata and increasing stratum sample sizes. Their
theoretical results were illustrated with logistic regression and discrete proportional hazard-
smodels. Albert and Lesaffre (1986) discussed the logistic discrimination method for classi-
fying multivariate observations into one of several populations. They restrict their attention
to discrimination between qualitatively distinct groups.
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Extensions to the case where the response consists of a polychotomous variable have been
done by Bull and Pederson (1987) and Morel (1987). They show, by using Taylor’s series expan-
sion, that the large sample variance of the beta estimates has the form

H'GH™!

where H~! is the covariance matrix that wrongly results from assuming independence and
multinomial distribution in the response vector, and G is a matrix whose estimation is based
in the complex survey design.

More recently, Roberts, Rao and Kumar (1987) showed how to make adjustments that take
into account the survey design in computing the standard chi-square and the likelihood ratio
test statistics for logistic regression analysis involving a binary response variable. The
adjustments are based on certain generalized design effects. Their results can be applied to cases
where the whole population has been divided into I domains of study, a large sample is obtained
for each domain, and in each domain a proportion 7;, i = 1,2, ..., I, is to be estimated. It
is assumed

=1+ exp(x,-@o)]_1 exp(xi[jo),i =1,2,...,1,

where x; is a k-vector of known constants derived from the i-th domain and B0 is a k-vector
of unknown parameters. This procedure may be most useful when only the summary table
of counts and variance adjustment factors are available, instead of the complete data set.

In this paper an estimation procedure is presented for obtaining consistent estimators of
the parameter vector of a generalized logistic model and its asymptotic covariance matrix when
a complex sampling design is employed. The resulting estimated covariance matrix is always
positive definite and asymptotically equivalent to the one obtained from Taylor’s series expan-
sion. A correction for reducing the small sample bias in the estimated covariance matrix is also
introduced. It is shown, via a Monte Carlo study, that this correction levels off the inflated
Type 1error that arises from ignoring the complex survey, faster than the Taylor’s series expan-
sion. In this sense the correction proposed here produces, for small samples, results that are
superior to the usual delta-method.

The new procedure will be termed, henceforth, the CPLX procedure, or simply CPLX. The
maximum likelihood estimation method and the Taylor’s series expansion method will be
termed MLE and TAYLOR, respectively. The CPLX procedure has been incorporated into
PC CARP, a personal computer program for variance estimation with large scale surveys, see
Schnell et al. (1988).

2. LOGISTIC REGRESSION WITH CLUSTER SAMPLING

Consider first single-stage cluster sampling where n clusters or primary sampling units
are taken with known probabilities with replacement from a finite population or without
replacement from a very large population. Let m; represent the size of the j-th cluster, j = 1,
2,...,n,andlety}, £ =1,2,...,m; denote (d + 1) dimensional classification vectors. The
vector y} consists entirely of zeros except for position r which will contain a one if the £-th
unit selected from the j-th cluster falls in the r-th category. Let x;, be a k-dimensional row
vector of explanatory variables associated with the £th unit selected from the J-th cluster.
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Then, for each j =1, 2, ..., n, and each £ = 1, 2, ..., m;, the expectation of the r-th
element of y% is determined by a logistic relationship as

d
Ty = Efyje} = [1 + E exp(xﬂ@?)]_l exp(xjgg‘,’) r=12,...,d
s=1

d
1 - E Ttss r=d+ 1. 2.1
s=1

Because the expected value function is nonlinear in the parameter vector @0 = (é’?’,
@‘2”, ces [_32' )’, it is necessary to use nonlinear estimation methods. Define the pseudo log-
likelihood L,(8) as

n mj
L3 =Y, Y, wlog )’ ¥k, 2.2)

=1 t=1

where 7f; = (@, ..., Tjy, g4+1) ' and w; is the sampling weight for the jé-th sampling unit.
This function can be viewed as a weighted log likelihood function, where the weights are the
sampling weights and the y}’s are distributed as multinomial random variables. If the
sampling weights are all one, then (2.2) becomes the log-likelihood function under the assump-
tion that the y}’s are independently multinomially distributed.

Let QPSEUDO be the estimator of QO that maximizes (2.2). This estimator is a solution to the
system of equations

3

w; G(8, x;7) [Diag(z})] ~' (v — 7%) =0, 2.3)

n
= 1

Jj=1 ¢

where

G(8, xj)) = [(laxa> Oax1) ®xf A(T]y,

A(z%) = Diag(7h) — 7i(wjy) >

and ® denotes the Kronecker product.

The asymptotic normality of QPSEUDO can be proved by defining the parameters of interest
implicity as in (2.2) and then by extending the results given in Binder (1983). An alternative
approach can be derived by making use of the pseudo-likelihood assumption and Proposition 1
in Dale (1986). Binder and Dale both provide the necessary regularity conditions.

As n increases,

Vn(Beseuno — 8°) = Vn[Ha(8%)] ™ Un(8")

LN (0, tim [H,(8%)]-1 Ga[Ha(8%)]-1) 2.4)

n—o
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where,

T
=
T
-
(NI

Wj A(’Lfﬂ) ®leg xﬂ y

j=1 f=1
n mj
Un(@0> = E Wj(yjt’ - ‘ijl) ®xfp,
Jj=1 =1
"

n
G, = E E w,z-Var(yﬂ) ®x} Xjp,
j=1

=1

yjp and wj,are the vectors y% and 7}, without their last elements, respectively and Ny
denotes a dk-multivariate normal distribution.

Nelder and Wedderburn (1972) have shown that under binomial assumption, the pseudo
log-likelihood function (2.2) can be solved by an iterative weighted least-squares procedure.
Haberman (1974, p.48) shows that under regularity conditions a modified Newton-Raphson
converges to the maximum likelihood estimator for the multinomial case. His proof does not
depend on the existence of any consistent estimator of @0 which allows the iterative algorithm
to be initialized at 5 = 0. Jennrich and Moore (1975) proved that when the multinomial
assumption holds, the common Gauss-Newton algorithm for finding the maximum likelihood
estimator of QO becomes the Newton-Raphson algorithm. Because of this equivalence of those
algorithms and because a modified Newton-Raphson procedure always converge, we have
adopted the modified Gauss-Newton algorithm described by Gallant (1987, p.318).

CPLX first finds QPSEUDO using an iterative procedure in which the estimate of QO at the
g-th step is

Big.ita1 = Blg-1,i(g-1)1

+ (0.5 P[H,(B1g-1,ita-11)] " Un(Bra-1,1ta-11) 2.5
where i(q) is a nonnegative integer such that
Lo(Biai@n) > La(Bia-1iq-n1)- 2.6)

The modification of the iteration algorithm provided by i(g) guarantees the convergence of
the procedure. The iteration is initiated by setting 89y = 0. The algorithm is declared to have
converged when the condition

Lo(Bigica1) = La(Bra-1,ia-11) <.

L @.7)
ILn(Bigi1)| + 10-3

is satisfied, where e can be 1078,
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Observe that a consistent estimator of H,(8°) is H,,(QPSEUDO) and a distribution free
estimator of G, is

G, = (n—1)"'n Y, @ -4a) 4 -a, (2.8)

j=1

where

mj
d; = E wi(Vje = Tjg) ® Xfp,
¢=1

andd=n"'Y 7=1 d;. If within each cluster, the y}%’s are independent and identically
distributed according to a multinomia}gl random vector with parameters (7}, 1), then it can be
easily shown that the expectation of G,, is precisely H,(3°). In practice the m;,’s in (2.8) are
replaced with 7, where 7, is defined as in (2.1) with Bpseupo Substituted by @0, and a small
correction is applied to obtain the estimator

-~

n
Gi= -k (m-Dr-D"nY) (d-D@-d, @9
j=1
where
mj
d; = E wi(¥e — ) ® Xy,
=1
R n n
d=n"'Y d and n* =Y m.
j=1 j=1
The factor

(n* —k)'(n*—1)(n—-1"'n

reduces to (n — k) ~!n if each cluster contains exactly one element. The factor (n — k) ~'n
is the degrees of freedom correction applied to the residual mean square for ordinary least
squares in which k parameters are estimated. The quantity in (2.9) is well defined for two or
more clusters and the factor (n* — k)~ (n* — 1) should reduce the small sample bias
associated with using the estimated function to calculate deviations. Therefore, a consistent
estimator of the asymptotic covariance matrix of BPSEUDO under the cluster sampling design is

A, = [HH(GPSEUDO)]~1 GAn[Hn(éPSEUDO)]_I (2.10)

which can be used to test any hypothesis of the form Hy: C QO = ¢*. Under the null
hypothesis, by Moore (1977)

(CBpspupo — %) [C 4, C"] ™" (CBpseupo — &%) 2.11)
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converges in law to a chi-square distribution with v = rank (C A, C’) degrees of freedom.
Here, [C A 2 C'] ~1 is any generalized inverse of C /f,, C’.

The sums of squares and products matrix used in the construction of G,, is based on n
observations, where # is the number of clusters. By analogy to the Hotelling T 2 statistic, it is
natural to adjust for degrees of freedom by multiplying (2.11) by the ratio

n-v (2.12)

v(in — 1)
to obtain an approximate F statistic with v and n — v degrees of freedom. In our case, this
adjustment has the disadvantage that v may exceed # in a sample with a small number of clusters
but a large number of individual elements.

The covariance matrix constructed as if the elemental observations are a simple random
sample is biased, but it can be used to make a small sample adjustment in the estimated
covariance matrix. One might view the usual small sample degrees-of-freedom adjustment
as the operation of adding to an initial estimator of the covariance matrix the quantity
(n—=v)"tv ¥V, where ¥ is also an estimator of the covariance matrix. In the usual case, 14
is also the initial estimator. In our case, we make the adjustment using the covariance matrix
based on the elements as the second V. In our case, the use of the elemental covariance matrix
has the advantage that the resulting sum is always positive definite. The adjustment is a func-
tion of the number of parameter estimated, dk. The adjustment is

()ifn > 3dk — 2

A, = A, + (n— dk) ™" (dk — 1) v*[Hu(Bpseuo)] ", 2.13)
Q) ifn < 3dk — 2

A, = A, + 0.5 v* [H,(Brseupo)] s (2.14)

where v* = max(1,tr{ [H, (QPSEUDO)] ~1G,}/dk). The upper bound of 0.5 for correction in
(2.14) is arbitrary. Then, an approximate F-test with v and n — v degrees of freedom is obtained
by substituting A, for A, in (2.11) and dividing the resulting quadratic form by v. In practice,
the approximate degrees of freedom can be taken to be v and infinity.

3. A MONTE CARLO STUDY

In this section a Monte Carlo study is conducted to examine properties of F-Tests (2.11)
involving model parameters. Data are generated under two different sampling schemes that
correspond to single-stage cluster sampling where the primary units all have the same sampling
weight and are taken from an infinite population. In the first sampling scheme all the elements
within the cluster have the same explanatory vector x and therefore, the same conditional mean
(2.1). This is the case where the logistic regression becomes weighted in the sense of several
responses J’s with the same covariate vector x. Different degrees of intra-class correlation are
induced among the y’s belonging to the same cluster.
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The second sampling scheme, unlike the first, places different vectors of covariates for dif-
ferent subjects within the cluster. The conditional mean (2.1) is also satisfied and different
degrees of intra-class correlation are controlled. The effect of the intra-class correlation is
studied for both sampling schemes under three different estimation procedures: MLE where
the clustering effect is completely ignored, TAYLOR where the large sample covariance matrix
(2.10) is used, and CPLX where the adjusted covariance matrix (2.13-2.14) is employed. These
last two procedures, for large samples, are asymptotically equivalent. For small samples CPLX
performs better than TAYLOR.

3.1 Sampling Scheme I

Suppose that x;, X, ..., X, are k-dimensional independent and identically distributed
normal random vectors with vector mean p and covariance matrix I. For each j,
j =1,2, ..., n, suppose that given x;, the random vectors y{o, ¥}1, - . ., y?,mj are indepen-
dent and identically distributed multinomial random vectors, with parameters (7}; 1), where
x} satisfies the logistic function (2.1) evaluated at the true parameter vector @0 andatx = x;.
Let Uy, U, ..., Ujn, be a set of independent and identically distributed uniform (0,1)
random variables. For a known and fixed ¢, 0 < ¢ < 1, define

yh=yh if Ups¢ G.1.1)
and

vh=y} if Up> ¢, (3.1.2)

= 1,2,mj

It can be shown that within the j-th cluster,

E(f) = =}, (3.1.3)
Cov(yh, ¥}) = A(x}) if £=1, (3.1.4)

and
Cov(yh ¥h) = S A(x) if L1 (3.1.5)

Therefore, given x;, the random vector ; = ¥ ;”:jl y}; does not have a multinomial distribu-
tion. Instead

E(m't) = nf (3.1.6)
and

Var(mi ' ) = [1 + £ (m; — 1)] mj™' A(z}), (3.1.7)
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where {2 represents the intra-cluster correlation. Furthermore, if the m;’s are constant, i.e.,
m; = m, the factor¢ = [1 + E(m - 1)] corresponds to the design effect defined by Kish
(1965, p.258). An estimate of the design effect ¢ is

dk
¢ = ()Y k)W, (3.1.8)

=1

where d(;;) and A" represent the (i,i)-th elements of A, in (2.13)-(2.14) and
[H,, (@PSEUDO)] -1, respectively, and w is the average of the sampling weights for the entire
sample.

Under this sampling scheme, data (x;, y%),/j=1,2, ..., n,¢=1,2, ..., m, were
generated with k = 4, d = 3, m = 21, and parameters

g= (1, -2 15), (3.1.9)

L = Diag(0, 25, 25, 25), (3.1.10)

8 = (0.3, =0.1,0.1, 0.2), (3.1.11)

83 = (0.2, —0.2, -0.2, 0.1), (3.1.12)
and

83 = (-0.1,0.3, —0.3, 0.1). (3.1.13)

Based on (3.1.9)-(3.1.13), 1000 sets of samples with n clusters of size m, were generated
according to (3.1.1)-(3.1.2) for different values of n, {?, and ¢. The estimated Type I errors
obtained from comparing the F-tests of Hy: § = @0 against F (12, o0; 0.05) = 1.753 were
computed under the three different estimation procedures: MLE, CPLX and TAYLOR. A
measure of the distortion of the estimated Type I errors relative to the nominal 0.05 is the
relative bias which is defined as

(0.05)7! | Estimated Type I error - 0.05 |. (3.1.14)

Relative biases of the estimated Type I errors are reported in Table 3.1. For data gener-
ated with no intra-class correlation, (> = 0) the MLE procedure, as it is expected, provides
small relative bias of the estimated nominal 5% level. CPLX produces in this case relative
biases slightly greater than MLE.This is the penalty of estimating extra parameters in
(2.13-2.14).

The MLE procedure shows a strong distortion of the estimated Type I error when a positive
intra-class correlation is present. This distortion increases as the intra-class correlation {2 gets
bigger. In the case where {2 = 0.15 (¢ = 4) the relative bias of the estimated Type I error is
about 18 indicating an inflated Type I error of about 95%. For the CPLX procedure, the
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Relative Bias of the Estimated Type I Error for the F-test of Hy: § = §0

Table 3.1

with nominal 0.05 Level under Sampling Scheme I

211

Procedure
n < ¢ MLE CPLX TAYLOR
20 0.00 1 0.24 0.60 16.42
20 0.05 2 9.66 3.68 17.06
20 0.10 3 15.24 3.98 17.44
20 0.15 4 17.74 4.00 17.70
30 0.00 1 0.08 0.06 12.82
30 0.05 2 9.84 1.20 13.74
30 0.10 3 15.52 1.76 14.22
30 0.15 4 17.74 1.86 14.68
40 0.00 1 0.04 0.32 9.66
40 0.05 2 9,98 0.82 9.62
40 0.10 3 16.20 1.02 11.66
40 0.15 4 17.74 1.80 11.66
50 0.00 1 0.06 0.50 7.40
50 0.05 2 9.76 1.44 8.38
50 0.10 3 16.00 1.96 9.32
50 0.15 4 17.80 2.20 9.70
100 0.00 1 0.06 0.90 2.68
100 0.05 2 10.02 1.66 3.90
100 0.10 3 16.26 2.06 4.70
100 0.15 4 17.78 2.24 5.10
200 0.00 1 0.02 0.74 1.28
200 0.05 2 10.46 1.00 1.64
200 0.10 3 16.30 0.88 1.88
200 0.15 4 18.00 1.52 2.12
400 0.00 1 0.02 0.44 0.70
400 0.05 2 10.14 0.66 0.90
400 0.10 3 16.56 0.64 1.00
400 0.15 4 17.86 0.56 0.84
800 0.00 1 0.08 0.32 0.40
800 0.05 2 10.36 0.22 0.36
800 0.10 3 16.04 0.68 0.80
800 0.15 4 18.12 0.50 0.54
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relative bias decreases as the sample size increases from n = 20 to the cutting point of correc-
tion (2.14) which is 34 in this case. Then it slightly increases as the sample size approaches
n = 100 and then decreases as the sample size keeps getting bigger. This pattern will be observed
throughout the whole simulation. It represents the effect of the correction (2.13-2.14) in small
samples.

The Taylor procedure has large relative biases when the sample sizes are small. It varies from
17 to 7 for sample sizes between n = 20and n = 50. For large samples both methods CPLX
and TAYLOR, provide as expected, similar results. In general, the CPLX shows relative biases
smaller than the TAYLOR method.

If the F statistics used for testing Hy: 8 = ,(_5’0 are multiplied by the number of parameters
being tested, the resulting statistic is distributed as a chi-square random variable with 12 degrees
of freedom. The Monte Carlo means and variances for these chi-square statistics are presented
in Table 3.2.

As expected, the MLE method produces means and variances around 12 and 24, respec-
tively, when the design effect ¢ is one. CPLX has in this case means around 12 with greater
variances that decrease when the sample size gets bigger. However, in the presence of any intra-
class correlation, the means and variances under MLE are too large, while CPLX shows con-
sistency with the asymptotic theory and the correction introduced in (2.13-2.14). The TAYLOR
method has extremely high variances when the sample size is small. A possible explanation
for this is that in some replications of the simulation the covariance matrix (2.10) was ill- con-
ditioned producing very large quadratic forms for (2.11). This problem attenuates when the
sample size is bigger. Both methods, CPLX and TAYLOR, become asymptotic equivalent for
large samples.

Monte Carlo properties for the estimator (3.1.8) of the design effect are presented in Table
3.3 for both CPLX and TAYLOR methods. The CPLX procedure shows smaller biases and
slightly large standard errors. Both methods perform fairly well.

For each category r, r = 1, 2, 3 and each covariate s, s = 1, 2, 3, 4, “‘¢’’ statistics for the
individual coefficient estimates were also computed as

“pr — [Var (5rs>] —0.5<5rs - g?s) (3.1.15)

The twelve ““#*’statistics provided by the CPLX estimation procedure were grouped together
and the simulated percentiles were computed. Similar computations were performed for the
MLE “‘#’ statistics. Consequently, for each run the percentiles are based on 12,000 “‘#” values.
Once these percentiles were calculated, the relative biases were estimated as

(Standard Normal Percentile) ~!| Estimated Percentile — Standard Normal Percentile |.
(3.1.16)

The results of the relative bias for the estimated 5th and 95th percentiles for the ‘‘#** statistics
are presented in Table 3.4 for both MLE and CPLX procedures. Under the MLE it is expected
that these relative biases be close to %3 — 1. This is true because the “‘#”’ statistics under
MLE are inflated by the factor ¢ . This is clearly seen in Table 3.4 under the two columns
for the MLE percentiles. The CPLX procedure has satisfactory relative biases for small sample.
These biases become negligible, as expected, when the sample sizes get bigger.
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Table 3.2

Monte Carlo Properties of the Chi-square Statistic of Hy: § = 3°
under Sampling Scheme I
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Procedure
MLE CPLX TAYLOR
n & ¢ Mean Variance Mean Variance Mean Variance
20 0.00 1 11.5 22.2 12.0 32.7 81.9 12x103
20 0.05 2 23.9 134.3 16.5 81.2 116.6 8x10*
20 0.10 3 34.2 239.9 16.6 77.8 94.5 12x10%
20 0.15 4 43.8 403.2 17.3 89.3 140.3 19x104
30 0.00 1 11.8 25.1 11.2 28.5 35.1 702.3
30 0.05 2 23.8 121.4 13.2 41.2 34.1 691.6
30 0.10 3 35.8 268.1 13.8 46.3 41.2 12x10?
30 0.15 4 46.7 450.1 14.1 51.1 44.5 16x10?
40 0.00 1 12.2 24.3 11.9 30.3 25.8 268.3
40 0.05 2 23.2 96.5 12.6 33.6 25.4 201.4
40 0.10 3 354 247.7 13.5 43.3 29.1 340.4
40 0.15 4 46.2 428.9 13.8 44.4 30.2 3314
50 0.00 1 11.9 25.5 12.4 34.6 21.0 140.8
50 0.05 2 239 112.5 13.7 43.8 22.7 153.6
50 0.10 3 35.8 231.0 14.3 46.0 24.6 195.8
50 0.15 4 46.7 424.0 14.5 55.4 25.2 234.6
100 0.00 1 12.1 23.6 13.2 35.0 15.8 55.0
100 0.05 2 23.9 102.6 13.8 39.2 16.5 62.1
100 0.10 3 36.5 233.9 14.6 47.0 17.6 75.8
100 0.15 4 47.5 350.4 14.6 43.0 17.9 70.6
200 0.00 1 11.7 24.1 12.6 324 13.6 38.2
200 0.05 2 23.9 93.9 13.1 33.1 14.1 39.1
200 0.10 3 35.7 194.1 13.3 31.5 14.3 374
200 0.15 4 48.0 399.6 13.5 35.7 14.6 42.7
400 0.00 1 11.9 24.9 12.3 29.3 12.7 31.3
400 0.05 2 24.1 96.6 12.7 29.2 13.1 31.3
400 0.10 3 36.9 208.5 13.1 29.2 13.6 314
400 0.15 4 47.3 390.7 12.7 31.6 13.1 34.0
800 0.00 1 11.9 24.0 12.1 26.4 12.3 27.2
800 0.05 2 24.0 99.3 12.3 27.3 12.5 28.2
800 0.10 3 36.4 239.3 12.6 30.1 12.8 31.1
800 0.15 4 48.7 396.3 12.6 26.7 12.7 27.5
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Table 3.3
Monte Carlo Properties of ¢ under Sampling Scheme I
Procedure
CPLX TAYLOR
Rel. Rel.
n I ¢ Bias S.E. Bias S.E.
20 0.00 1 0.28 0.23 0.23 0.22
20 0.05 2 0.01 0.63 0.35 0.48
20 0.10 3 0.07 0.93 0.40 0.70
20 0.15 4 0.15 1.15 0.46 0.85
30 0.00 1 0.33 0.22 0.17 0.20
30 0.05 2 0.14 0.62 0.25 0.47
30 0.10 3 0.08 0.88 0.30 0.66
30 0.15 4 0.04 1.18 0.33 0.90
40 0.00 1 0.26 0.18 0.14 0.18
40 0.05 2 0.14 0.53 0.19 0.42
40 0.10 3 0.10 0.83 0.22 0.67
40 0.15 4 0.07 1.13 0.25 0.91
50 0.00 1 0.18 0.18 0.11 0.17
50 0.05 2 0.09 0.48 0.16 0.41
50 0.10 3 0.07 0.75 0.18 0.64
50 0.15 4 0.04 0.97 0.21 0.83
100 0.00 1 0.07 0.13 0.06 0.13
100 0.05 2 0.04 0.34 0.08 0.32
100 0.10 3 0.01 0.54 0.10 0.51
100 0.15 4 0.01 0.69 0.11 0.65
200 0.00 1 0.03 0.10 0.03 0.09
200 0.05 2 0.02 0.25 0.04 0.24
200 0.10 3 0.01 0.38 0.05 0.36
200 0.15 4 0.01 0.49 0.05 0.48
400 0.00 1 0.01 0.07 0.01 0.07
400 0.05 2 0.01 0.19 0.02 0.19
400 0.10 3 0.00 0.27 0.02 0.27
400 0.15 4 0.00 0.37 0.02 0.37
800 0.00 1 0.01 0.05 0.01 0.05
800 0.05 2 0.00 0.13 0.01 0.13
800 0.10 3 0.00 0.19 0.01 0.18
800 0.15 4 0.00 0.24 0.01 0.24
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Table 3.4

Relative Bias of the Estimated 5th and 95th Percentiles for the ‘#** Statistics
for the Coefficient Estimates under Sampling Scheme 1
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Procedure
MLE CPLX
Percentile Percentile
n e %% — 1 5th 95th 5th 95th
20 0.00 0.00 0.02 0.00 0.10 0.09
20 0.05 0.41 0.40 0.38 0.04 0.02
20 0.10 0.73 0.68 0.65 0.07 0.04
20 0.15 1.00 0.84 0.79 0.07 0.04
30 0.00 0.00 0.00 0.02 0.10 0.09
30 0.05 0.41 0.43 0.38 0.01 0.02
30 0.10 0.73 0.73 0.70 0.02 0.01
30 0.15 1.00 0.97 0.91 0.01 0.01
40 0.00 0.00 0.01 0.01 0.07 0.08
40 0.05 0.41 0.38 0.41 0.03 0.02
40 0.10 0.73 0.70 0.72 0.03 0.01
40 0.15 1.00 0.96 0.93 0.01 0.03
S0 0.00 0.00 0.01 0.01 0.05 0.07
50 0.05 0.41 0.43 0.40 0.00 0.01
50 0.10 0.73 0.71 0.70 0.01 0.00
50 0.15 1.00 0.97 0.96 0.02 0.01
100 0.00 0.00 0.00 0.02 0.01 0.00
100 0.05 0.41 0.42 0.42 0.02 0.01
100 0.10 0.73 0.71 0.74 0.01 0.03
100 0.15 1.00 1.03 0.99 0.04 0.04
200 0.00 0.00 0.01 0.01 0.00 0.00
200 0.05 0.41 0.42 0.43 0.01 0.01
200 0.10 0.73 0.71 0.72 0.01 0.01
200 0.15 1.00 1.00 1.00 0.02 0.02
400 0.00 0.00 0.01 0.01 0.01 0.01
400 0.05 0.41 0.39 0.40 0.01 0.00
400 0.10 0.73 0.76 0.77 0.03 0.04
400 0.15 1.00 1.02 0.89 0.02 0.00
800 0.00 0.00 0.00 0.01 0.00 0.01
800 0.05 0.41 0.43 0.44 0.01 0.02
800 0.10 0.73 0.76 0.70 0.02 0.01
800 0.15 1.00 1.07 1.04 0.04 0.02




216 Morel: Logistic Regression in Complex Surveys

3.2 Sampling Scheme II

Let x;, x,, . . ., X, be a set of k-dimensional independent and identically distributed normal
random vectors with vector mean y and covariance matrix L. These vectors x represent
cluster means for the explanatory varlables in the logistic function (2.1). Suppose that for the
Jjthcluster,j = 1,2, ..., n, x5 705 x9 Py« es x9 Jmj are independent and 1dent1cally distributed
normal random vectors with vector mean x; and covarlance matrix Ly. Given x9 i l=0,1,

.., m;, the (d + 1)-dimensional random vector yﬂ has a multinomial distribution with
parameters (y}’g, 1), where the elements of 7~r}’g satisfy the logistic function (2.1) evaluated at
the true parameter vector go and at x = x})g. Furthermore, suppose that given the x}’g’s, the
»%’s are independent.

Let Uy, Up, ..., U;,, be m;independent and identically distributed uniform (0,1) random
variables that are also jointly independent from the x}’,’ s and from the y}),’ s . Let {be a fixed

and known number, 0 < { < 1. Then define (x;, %), { = 1, 2, , m; in the following
way:

(xje, yj*e) = (x;)o, J’})o) ifUp=< ¢ 3.2.1)
and

(%o ) = (%06 ¥0) if Uje > ¢ (3.2.2)

Observe that within each cluster, the x;;’s all have the same vector of conditional means x;
and that the covariance matrix between x;;and x;; is Ly if £ = ¢ and &2 Ly otherwise. Also,
note that the conditional mean of each y} is the logistic function (2.1) evaluated at B° and
X = Xxj;, and that the vectors (x;, y}), £ = 1, 2, ..., m;, exhibit an intra-class correlation of
¢2 and an approximate design effect of ¢ = [1 + ¢2 (m — 1)] when all the m;’s are
constant.

Data (xj, ¥f), /= 1,2, ..., n, £ = 1,2, ..., m, were generated under this cluster
sampling scheme with k=4, d=3, and parameters

p = (1, —6,4,8), (3.2.3)
£, = Diag(0, 25, 25, 49), (3.2.4)
Ty = Diag(0, 25, 36,36), (3.2.5)
8Y = (0.30, —0.05, —0.06, 0.08), (3.2.6)
89 = (0.06, —0.08, —0.10, 0.07), (3.2.7)

and

83 (0.70, —0.08, —0.10, 0.11), (3.2.8)

w
]
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Based on (3.2.3)-(3.2.8), 1000 sets of samples with n clusters of size m; = m = 6, were
generated according to (3.2.1)-(3.2.2) for different values of n, {2 and ¢. The relative biases
defined in (3.1.14) of the estimated Type I errors from comparing the F-tests of Hy: 8 = ﬂj’o
against F(12, o; 0.05) = 1.753 are presented in Table 3.5 under three different estimation
techniques: MLE, CPLX and TAYLOR.

In the presence of intra-class correlation, there is a strong distortion of the Type I error for
MLE even in the case where {? is relatively small (¢% = 0.2) for cluster size m = 6 . This
distortion is reflected in the relative bias which ranges from approximately 7 to 18. These values
indicate inflated Type I errors between 40% and 95%. The CPLX procedure provides satisfac-
tory relative biases even for the case of small samples. The TAYLOR procedure has too high
values for small samples. It becomes equivalent to CPLX for large samples. One more time
CPLX seems to be superior to TAYLOR when the sample size is small.

Table 3.5

Relative Bias of the Estimated Type I Error for the F-test of Hy: 8 = {_30
with Nominal 0.05 Level under Sampling Scheme II

Procedure
n I ¢ MLE CPLX TAYLOR
20 0.0 1 0.54 0.46 13.52
20 0.2 2 7.30 0.46 12.96
20 0.4 3 13.70 0.68 13.96
20 0.6 4 17.08 0.60 14.72
30 0.0 1 0.28 0.78 7.78
30 0.2 2 8.72 0.72 8.16
30 0.4 3 14.84 0.72 9.32
30 0.6 4 17.50 0.82 9.23
40 0.0 1 0.36 0.56 5.16
40 0.2 2 9.28 0.56 5.76
40 0.4 3 15.38 0.64 5.84
40 0.6 4 17.76 0.70 5.80
50 0.0 1 0.44 0.56 3.44
50 0.2 2 9.34 0.08 4.86
50 0.4 3 15.48 0.38 4.36
50 0.6 4 17.56 0.46 4.16
100 0.0 1 0.16 0.04 1.26
100 0.2 2 9.46 0.26 1.46
100 0.4 3 15.94 0.44 2.00
100 0.6 4 18.16 0.14 1.46
200 0.0 1 0.10 0.26 0.76
200 0.2 2 10.20 0.34 0.82
200 0.4 3 16.22 0.02 0.48
200 0.6 4 18.06 0.06 0.52
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Table 3.6

Monte Carlo Properties of the Chi-square Statistic of Hy: § = @0
under Sampling Scheme II

Procedure
MLE CPLX TAYLOR
n §‘2 f Mean Variance Mean Variance Mean Variance
20 0.0 1 11.3 18.9 10.2 19.7 40.5 15x102
20 0.2 2 20.3 62.8 10.5 21.4 39.2 11x102
20 0.4 3 28.3 106.4 10.5 18.4 111.3 42x105
20 0.6 4 35.2 152.6 10.3 18.2 11x103 50x10°
30 0.0 1 11.6 21.6 9.4 16.3 22.0 147.3
30 0.2 2 21.8 75.2 9.9 17.5 22.7 161.2
30 0.4 3 30.4 117.6 9.8 16.5 24.3 224.6
30 0.6 4 39.3 191.0 9.5 14.5 24x10? 60x108
40 0.0 1 11.6 21.3 9.9 19.4 18.1 86.7
40 0.2 2 22.4 76.5 10.4 18.3 18.9 80.8
40 0.4 3 31.8 153.2 10.2 17.8 19.2 90.4
40 0.6 4 41.4 223.1 10.1 16.9 19.3 104.4
50 0.0 1 11.5 19.9 10.6 20.0 16.1 56.9
50 0.2 2 22.7 80.6 114 23.9 17.5 70.9
50 0.4 3 32.3 160.1 11.1 229 17.4 73.7
50 0.6 4 41.7 262.3 10.7 19.7 17.0 63.8
100 0.0 1 11.8 21.5 11.8 25.2 13.9 36.2
100 0.2 2 22.9 87.3 11.9 27.0 14.0 38.5
100 0.4 3 34.7 191.8 12.3 27.9 14.4 40.7
100 0.6 4 45.1 297.7 12.0 25.0 14.1 37.2
200 0.0 1 12.0 23.8 12.1 26.3 13.0 30.3
200 0.2 2 24.0 88.6 12.4 25.9 13.3 30.0
200 0.4 3 345 175.2 12.0 23.3 12.8 27.0
200 0.6 4 46.8 320.0 12.2 24.0 13.0 27.9

Monte Carlo properties of the chi-square statistics of Hy: § = §° (chi-square = 12 X F)
are presented in Table 3.6 for the three estimation procedures under study. CPLX shows means
and variances slightly below 12 and 24, respectively, when the sample sizes are small. This
underestimation vanishes when the sample size increases. The TAYLOR procedure has too
large means and variances when the sample size is small. For instance, for {Z = 0.6, the
variance is in the order of billions when n is 30 or less. For large samples, both CPLX and
TAYLOR, seem to provide similar results. The MLE method has acceptable results only when
¢* = 0.00. Otherwise the estimated mean and variances are too large.
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Table 3.7
Monte Carlo Properties of ¢ under Sampling Scheme 11
Procedure
CPLX TAYLOR
Rel. Rel.
n 2 ¢ Bias S.E. Bias S.E.
20 0.0 1 0.48 0.22 0.04 0.20
20 0.2 2 0.16 0.53 0.26 0.42
20 0.4 3 0.05 0.87 0.34 0.72
20 0.6 4 0.01 1.24 0.39 1.03
30 0.0 1 0.49 0.18 0.02 0.16
30 0.2 2 0.25 0.48 0.19 0.40
30 0.4 3 0.19 0.84 0.24 0.69
30 0.6 4 0.16 1.12 0.27 0.94
40 0.0 1 0.38 0.16 0.02 0.14
40 0.2 2 0.22 0.45 0.14 0.38
40 0.4 3 0.16 0.70 0.20 0.60
40 0.6 4 0.16 0.98 0.19 0.86
50 0.0 1 0.27 0.14 0.02 0.13
50 0.2 2 0.15 0.42 0.12 0.37
50 0.4 3 0.12 0.67 0.15 0.60
50 0.6 4 0.11 0.89 0.16 0.81
100 0.0 1 0.12 0.10 0.01 0.10
100 0.2 2 0.06 0.32 0.07 0.31
100 0.4 3 0.05 0.50 0.07 0.48
100 0.6 4 0.06 0.59 0.07 0.57
200 0.0 1 0.05 0.07 0.01 0.07
200 0.2 2 0.03 0.24 0.03 0.23
200 0.4 3 0.02 0.34 0.04 0.33
200 0.6 4 0.02 0.40 0.03 0.40

Monte Carlo properties for the estimator of the design effect proposed in (3.1.8) are
presented in Table 3.7 under the CPLX and TAYLOR procedures. The TAYLOR procedure
seems to perform slightly better than CPLX for small samples. Both procedures, in general,
provide reasonable values. They seem to be equivalent for large samples.
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Table 3.8
Relative Bias of the Estimated Sth and 95th Percentiles for the ““#’’ Statistics
for the Coefficient Estimates under Sampling Scheme 11
Procedure
MLE CPLX
Percentile Percentile
n 1% $% — 1 5th 95th 5th 95th
20 0.0 0.00 0.01 0.00 0.15 0.18
20 0.2 0.41 0.37 0.32 0.06 0.09
20 0.4 0.73 0.63 0.57 0.02 0.05
20 0.6 1.00 0.79 0.74 0.05 0.05
30 0.0 0.00 0.02 0.00 0.15 0.16
30 0.2 0.41 0.39 0.38 0.10 0.10
30 0.4 0.73 0.68 0.63 0.07 0.08
30 0.6 1.00 0.91 0.86 0.05 0.07
40 0.0 0.00 0.01 0.00 0.12 0.15
40 0.2 0.41 0.39 0.40 0.10 0.06
40 0.4 0.73 0.65 0.60 0.07 0.09
40 0.6 1.00 0.99 0.89 0.04 0.05
50 0.0 0.00 0.01 0.01 0.10 0.10
50 0.2 0.41 0.39 0.40 0.05 0.04
50 0.4 0.73 0.73 0.72 0.02 0.01
50 0.6 1.00 1.00 0.95 0.00 0.01
100 0.0 0.00 0.01 0.01 0.04 0.05
100 0.2 0.41 0.40 0.37 0.02 0.02
100 0.4 0.73 0.72 0.73 0.00 0.00
100 0.6 1.00 1.00 1.02 0.01 0.02
200 0.0 0.00 0.02 0.01 0.00 0.01
200 0.2 0.41 0.40 0.45 0.01 0.02
200 0.4 0.73 0.71 0.68 0.01 0.01
200 0.6 1.00 1.03 0.95 0.02 0.02

The relative biases (3.1.16) of the 5th and 95th percentiles of the ‘“#’* statistics (3.1.15) are
presented in Table 3.8 under the MLE and CPLX procedures. MLE has a relative bias, as
expected, close to zero in the absence of intra-class correlation. This bias increases when the
{2 gets bigger. On the other hand, CPLX has small relative bias in general and for large sample
this bias becomes negligible.
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4. EXTENSION TO STRATIFIED SAMPLING AND
MORE COMPLEX DESIGNS

A generalization of CPLX procedure to stratified sampling can be done as follows. Sup-
pose that the population has been divided into i = 1, 2, ..., L strata. Let m;; represent the
size of the j-th cluster in the i-th stratum, #; the number of clusters selected in the i-th stratum,
and y}, the multinomial response of the f-th element in the j-th cluster in the i-th stratum,
0=1,2,...,myj=12,...,mi=12.. ., L. It is assumed that 5, the expected value
of y},, satisfies the logistic relationship (2.1) for a given explanatory vector X;j;.

A consistent estimator of QO, say 5PSEUDO, can be found by maximizing the function

L ni mjj
L,(8) = ), Y wi(log 78" Vhe- 4.1)
i=1

i j=1 =1

Algorithm (2.5) is performed with three indexes i, /, £. The adjustment given by (2.13) and (2.14)
is applied with

n = E n;, 4.2)
i=1
X L moomj R
Hn(@PSEUDo) = E Wi A(Zﬁ*je) ® Xje Xijes 4.3)
i=1 j=1 f=1
L " - R
G =i — B - )] E - )7 =) L - -8y, @
i=1 Jj=1
dj = Y, wi(Vie — Tie) ® X 4.5)
=1
d =n' E d;j, 4.6)
j=1
fi = sampling rate of i-th stratum, and 4.7)

L ni
n* = E E m;. (4.8)
i=1 j=1

The estimation procedure can be extended in a stepwise manner to multi-stage sampling
designs by maximizing (4.1) up to elemental units. The summation of (4.3) should be extended
in order to include all the final sampling units. The key part is (4.4). The construction of G
must be based on the complex survey. This could be a difficult task for multi-stage sampling.
Results for stratified two-stage sampling are presented in Fuller, et al. (1986, p. 82).
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5. SUMMARY

In this paper, we have outlined a methodology for obtaining asymptotic normal estimators
of the parameters of a generalized logistic function involving a multinomial response variable
under complex survey designs. A consistent estimator of the asymptotic covariance matrix under
the complex sampling design is (2.10), which results from the usual Taylor’s series expansion.
This covariance matrix produces for large samples correct Type I errors for the F-tests involving
model parameters. More important, it is shown that correction (2.13-2.14) provides a covariance
matrix that reduces the small sample bias. This adjusted covariance matrix has some important
characteristics:

1. It levels off the inflated Type I error, originated from ignoring the complex survey,
faster than the usual delta-method.

2. It is positive definite when H,,(@FSEUDO) is positive definite regardless if (2.9) is
singular or not.

3. It is asymptotic equivalent to (2.10).

The results of a Monte Carlo study were reported in Section 3. Data satisfying the logistic
conditional mean (2.1) were generated under two different single-stage cluster sampling
schemes. It was studied, among other things, the effect of the intra-class correlation and the
design effect on the relative biases of the estimated Type I errors for the F-tests of Hy: 8 = 8°.
The simulation showed, as expected, a strong relative bias when the naive maximum likelihood
method is employed. For small samples, the Monte Carlo results favor the use of the adjusted
covariance matrix over the one that arises from the usual delta-method.
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