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Robust Small Domain Estimation Using
Random Effects Modeling
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ABSTRACT

This paper develops a design consistent small domain estimator using a random effects model. The mean
squared error of this estimator is then evaluated without assuming the random effect component of the
model is correct. Data from a complex sample survey shows how this approach to mean squared error esti-
mation, while perhaps too instable to be used directly, can be employed to determine whether the design
consistent small domain estimator proposed here is better than the conventional design-based estimator.
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1. INTRODUCTION

Suppose we were given a probability sample of unit values and were asked to estimate the
mean of a small domain within the larger population covered by the sample. Scott and Smith
(1969) introduced a Bayesian estimator for this purpose and showed that their estimator could
also be developed using only unbiasedness and minimum variance (UMV) criteria. Their UMV
approach, sometimes called random effects or components-of-variance modeling, will be
adopted here.

Most attempts at small domain estimation paralleling Scott and Smith (e.g., Fay and Herriot
1979, Battese and Fuller 1971, Ghosh and Meeden 1986, Prasad and Rao 1986, Fuller and
Harter 1987, and Stroud 1987) assume that the sampling design is noninformative and so
ignorable. The same assumption is made for synthetic estimators of small domain means, which
will not be discussed at any depth here (for examples of these, see Gonzalez and Hora 1978).

Assuming a noninformative sampling design misses perhaps the most important contribu-
tion of randomization to inference. Since most statistical models in finite population inference
are either wrong or (at best) incomplete, it is desirable for an estimation strategy to have the
following property: if the sample were large enough, the estimator should approach what it
is estimating almost certainly no matter what the ‘‘true’” model. This desire receives formal
expression in the criterion of design consistency introduced by Isaki and Fuller (1982).

Design consistency is an asymptotic property. As a result, it is often necessary to hypothesize
amodel (or models) when choosing among alternative design consistent estimation strategies.
This is especially true in the case of small domain estimation, where the sample may be par-
ticularly small and the sampling design beyond one’s control. Nevertheless, limiting attention
to design consistent estimators does offer some, albeit small, protection against model failure.
Using this reasoning, Sirndal (1984) focused his attention on design consistent small domain
estimators. We will follow that practice here.

Section 2 develops a design consistent random effects estimator for a small domain popula-
tion mean. Section 3 introduces a robust (but unstable) estimator for the model and design
mean squared errors of the small domain estimator. It is robust in the sense of not depending
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on the necessary, but heroic, model that links the small domains together. Section 4 contains
an empirical example and Section 5 a discussion.

2. THE ESTIMATOR
We begin with the basic (or fixed effects) model:

Yoi = 0 + €4, 0))

where the €,; are uncorrelated random variables with means of zero, and var (€ gi) = 6g2. The
subscript gi denotes a unit in domain g. There are N, units in the population from domain g
and m domains.
Let us focus on a particular domain j. The problem is to estimate the domain mean:
Nj
Fip = E Yji/ Nj.

i=1

Let pj; be the probability of selecting unit ji for the sample and n; be the number of units
selected from domain j. It is well known that a design unbiased and model efficent linear es-
timation strategy for y;» would set the pjiequal to n;/N; and the estimator equal to ¥ iZ, Yji/nj,
where the units are relabeled so that j1, ..., jn ; are in the sample.

Unfortunately, one is often required in practice to estimate a domain mean using a sample
that has not been selected primarily for that purpose. Consequently, the selection probabilities
within domain j may not all equal n ;/N;. A popular estimator in this circumstance is

nj
d; = E Wi Viis 2
i=1

where
i
_ =1 -1
W = pji / E Djk »
k=1

denotes the sampling weight of unit ji. This estimator was suggested by Brewer (1963) and Hajek
(1971).

The estimator dj is clearly model unbiased under (1), in the sense that E (d; — yip) = 0.
Under many sampling designs, d; is also design consistent; i.e.,

plim,(d; — y;p) = 0,

n; —o

where 7 denote the probability space generated by the random selection process rather than
the model in (1).

Isaki and Fuller (1982) give sufficient conditions for d; to be design consistent, and it is
under most sampling designs in common practice. Notable exceptions involve systematic
sampling from a predetermined list (see Kott 1986). A popular alternative to design consistency
is Brewer’s (1979) asymptotic design unbiasedness (ADU) property. The estimator d;is always
ADU,
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The trouble with d; is that it may not be very efficient for small ;. One solution is to ‘‘draw
strength’’ from the other domains by treating the fixed parameter 6; as if it was a realization
of a random variable satisfying this /inking model:

0, =pn+ 1, 3)

where E(7;) = 0, and E(7;7;) = o2 when j = g and 0 otherwise. This is sometimes called
“random effects modeling,’’ because the heretofore fixed effect of being a unit in domain j,
0;, is now being treated as a random variable.

Combining equations (1) and (3) results in the reduced form components-of-variance model:

yj,' = W + Tj + Eji- (4)

Many analysts start with equation (4). We have separated the basic and linking models to

underscore the greater level of confidence one often has in the validity of the basic model

(especially when it is assumed as part of the linking model that all §7 = 82, as it soon will be).
Any estimator of the form:

file,e) = (1 —a)d; + ajpi,

where
c= (¢, . s €1, 0,415 - o5 Cm)s
m
ﬁ = E Cg)_)gS’
g=1
g
)—)gS = E ygi/ng’
i=1
and

m
Ecg=1

is unbiased under the model in (4). (Note: although the variables ¢ and j depend on domain
Jj, additional denotation has been suppressed for simplicity.)

If all the 65 are assumed equal to 6%, then using a Lagrangian multiplier technique it is not
difficult to show that the choices for « and the c, that minimize the model variance of

Jila, ¢) — y;pare -
2 wh — 1/N;
. i=1
o =

Yowh+ Yot + (1+ Y 6h (0%/5%)
i g g

, ®)
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and
02/8%) + n71 !
cr = ¢ ) g | , for g#j. ©)
Y [(6%8%) + ny'1 7!

h

In practice, o2 and 62 are rarely known. Ghosh and Meeden (1986) have proposed estima-
ting the ratio 0%/62 from the sample in a model consistent manner (as m—o) by

Y 1 (Fgs —95)*/(m — 1)

L =max{0, [ —1f (m = 1)/(n =Y nZim) ¢, ()
E E (Vei — Pes)?/(n — m) 2
g i

where
Vs = E ”g)7gs/”

and
n = Z Ng.

Let o’(L) and ¢’(L) be the right hand sides of equations (5) and (6) respectively with L
replacing ¢2/6% Now call

e = fila’(L), ¢’(L)]

the random effects estimator, where ji in e; = fi(.,.) issetequalto u’(L) =Y c;(L) Fes- As
m grows large, e; become indistinguishable from Sila®, c*).

If the model in (4) is correct and all the 6J~2 = 2 > 0, then for sufficiently large m, L must
be positive. Even if the model fails, as long as L is bounded from below by a positive number,
| w’(L)| is bounded, and n Y, w},» is bounded as #; (but not m) grows arbitrarily large,
then e; is design consistent whenever d; is. This is because

plim, [a’(L)] = 0,
nj—-OO

so that e; converges to the design consistent d;.

3. MODEL AND DESIGN MEAN SQUARED ERROR

Under some sampling designs there exists an estimator of the design variance of d;that is
also a model unbiased estimator of the variance of d; as an estimator for y;» under the basic
model (henceforth I will omit the clarifying phrase ‘‘as an estimator for J;p”’ to simplify the
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exposition). Often, however, one must settle for a design consistent estimator of the design
mean squared error of d; (assuming, as we will, one exists). This is particularly true when
Y g pj“k‘?f N,. Kott (1987) shows how (when necessary) this estimator of the design mean
squared error of d; can be adjusted to be simultaneously a design consistent estimator of the
design mean squared error of d; and a model unbiased estimator of the variance of d; under
the basic model. Call this adjusted ‘‘variance estimator’’ v(d;).

We are now ready to address the model and design mean squared errors of the random effects
estimator, e;. Although we needed to assume that the 81-2 were all equal to determine e;, we need
not make that assumption in assessing the accuracy of e;. In fact, we need not even assume
that the linking model in equation (3) holds! Instead, we assume only that m is large enough
so that L may be viewed as (virtually) independent of the units in domain j. Alternatively, L
can be redefined by excluding units from domain j in the summations on the right hand side
of (7).

Either way, E.[(d; — P;p) (Fjp — n’(L))] = 0. As a result,

E[{d; — p’(L)}?] = var(d; — 7jp) + Ec[(7p — w’(L)}7].
It is now a simple matter to show that under the basic model in (1),

vie) = [1 — 2a°(L)]1 v(d) + [o’(L)]? [d; — p’(L)]?

is an unbiased estimator of the model mean squared error of e; given L and p’(L). Since
a’(L) is asymptotically zero as n; approaches infinity, v(e;) is also a design consistent
estimator of the design mean squared error of e; whenever v(d;) is a design consistent
estimator of the design mean squared error of d;.

It is not necessary for L to converge to 02/8% or p’(L) to converge to u for v(e;) to have
the properties described above. In fact, it is not necessary for the limits of L and p”(L) to have
any interpretations at all, since these properties have been defined independently of the model
in equation (3).

Statisticians often have much more confidence in the basic model in equation (1) than the
linking model in equation (3), especially when the latter is coupled with the assumption of con-
stant unit variances (,) across domains. It is therefore reassuring that the accuracy of the
e; can be estimated without invoking (3) or requiring that the é, be equal.

Unfortunately, v (e;) is unstable and can even be negative when «’(L) exceeds 0.5. Never-
theless, a simple comparison of the relative sizes of v(d;) and v(e;) over the m domains
(j = 1, ..., m) provides a robust method for choosing between the two estimators, d; and e;.

4. AN EMPIRICAL EXAMPLE

The Human Nutrition Information Service (HNIS) conducted a stratified, multistage survey
of one day food intake by women aged 19-50 in 1985 as part of its Continuing Survey of Food
Intakes by Individuals (CSFII). Responses were converted into measured intakes from among
60 food groups and 27 nutrients. See Human Nutrition Information Service (1985) for more
details on the survey and its sample design.
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We will restrict our attention here to the estimation of mean intake of milk and mitk pro-
ducts (one of the 60 food groups) by women 19-34 and 35-50 within 12 mutually exclusive
domains. These domains are defined by two cross classifications: region (northeast, midwest,
south, and west) and level of urbanization (central city, suburban, non-metropolitan). HNIS
published mean food group intakes separately for these two age groups on the national level
only. Mean nutrition intakes were published for each age group by region and level of urbaniza-
tion but were not cross-classified.

The CSFII sample design employed an independent stratified multistage sample with each
of these domains. First primary sampling units (cities or town) were chosen using probability
proportional to size sampling with replacement, then a random subsample of area segments
was selected from which a smaller random subsample of households were chosen. I added
another level of subsampling. When more than one woman per household from an age group
was in the CSFII sample, I randomly chose one.

For each group, d; in equation (2) defines the conventional design-based estimated of the
domain mean. The SESUDAAN program (Shah 1980) provided design consistent estimators of
all the d; and their design root mean squared errors (VMSE (d;)). These estimators, when
squared, are not necessarily model unbiased estimators of the model variance of d; under
equation (1) however.

To see this, we confine our attention not only to an age group but to a domain as well and
suppress the subcript j. Let # = 1, ..., H denote strata, Kk = 1, ..., K, denote primary
sampling units (PSU’s)in 4, andi = 1, ..., ny denote sampled women in Ak. The estimate
for the mean intake estimate is

H Ky npx
d= E E Whaki Yhki-
h=1 k=1 i=1
We need more notation before we proceed. Let
Mhk
Xpk = Whiis
i=1
npk s
Lnk = Whkis
i=1
Mhic
Jme = Whiki Vnri — d)»
i=1
and
Ky
Jn = E S/ K-
k=1

If we assume the population size of the domain is large enough to be ignored (this also vir-
tually assures that no individual had been sampled twice), the model variance of d is
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var(d) = 52 E E Z Wi
Bk i
= 52 E E Zhk-
Bk

The SESUDAAN (linearization) estimator for the design mean squared error of d is

H Ky
vid) = Y (Ku/LKp = 11) ) U — S)*

h=1 k=1

After much manipulation the model expectation of this can be shown to be

Ev*(d)] = 52[ E E Znk
ok
Kp Kp Ky
-2 E (Ku/ Ky — 1])( E Znk Xnie — E Znk E xh/Kh>
P k k k

+ (Zh: Zk: z;,k) Zh: (Kn/ 1Ky — 11)(% xik"{ g6"""}2/1(11)]'

k
Following Kott (1987),
v(d) = v*(d) var(d)/E.[v*(d)]

is both a design consistent estimator for the mean squared error of d (under certain conditions)
and a model unbiased estimator of the model variance of d.

Calculations for n;, d;, a’(L), e, v(d;) and v(e;) for the 12 domains in each of the two
groups are displayed in Table 1 (the domain subscript j has been returned to d; and e;). Using
equation (5), L was calculated to be 0.055 for women 19-34 and 0.037 for women 35-50. This
suggests that women in the same domain had little in common over and above their member-
ship in the same age group. Nevertheless, o’ (L) exceeded 0.5 only for five (out of 24) cells
all with samples of under 25 women.

The estimate v (e;) was negative twice and less than v(d;) 18 out of 24 times, nine times for
each age group. These latter group of numbers suggest to me that the e; are indeed better
estimates than the d;. Formally, if we treat each of the 24 differences, v(e;) — v (d;), asif they
were independent across domains (they aren’t quite), the hypothesis that the true model (or
design) mean squared errors of ¢; and d; are equal and the random variable v(e;) — v (d;) as
likely positive as negative is soundly rejected.

The reduction in mean squared error from using e; in place of d; is estimated (by
Y {v(e) — v(d))}/ ¥ v(d))) tobe 40.6%. This translates into a standard error reduction of
22.9% . Note that because we are summing 24 near independent random variates, we have much
more confidence in this estimate than any particular v(e;) (or v(d;) for that matter).
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Table 1
Estimated Values for the Domains by Age Group

Women 19-34

Domain

Sample Size d; e v(d;) v(e)) o’ (L)
N-C 68 220.6 222.1 683.0 367.5 233
N-S 95 195.7 203.1 568.8 367.8 225
N-R 12 219.1 223.8 5266.7 -1349.5 .630
M-C 55 270.7 258.6 2021.5 1152.5 251
M-S 107 277.2 267.8 625.8 509.6 .164
M-R 73 301.1 285.9 4027.1 2754.3 .187
So-C 66 212.4 215.7 3011.6 1700.1 220
So-S 112 156.8 167.9 472.8 457.3 .146
So-R 81 117.0 139.3 592.0 868.9 .184
wW-C 39 403.0 333.2 2064.2 5438.4 .364
W-S 74 205.0 209.6 1704.0 1018.3 .207
W -R 13 120.0 190.7 3533.5 3924.3 .652

Women 35-50

N-C 44 205.3 197.4 1716.1 318.4 425
N-S§ 67 135.0 153.1 1068.8 698.0 326
N-R 21 206.1 195.4 579.2 56.6 .550
M-C 28 89.0 139.5 470.3 2559.9 482
M-S 87 200.3 196.1 2128.5 1049.2 .258
M-R 38 304.9 250.7 6065.3 3973.9 415
So-C 47 136.1 159.6 266.7 592.6 421
So-S 93 161.0 167.7 1492.5 809.1 .244
So-R 77 128.8 146.3 1023.4 790.9 .263
W-C 23 205.5 193.9 7497.1 -1067.6 .580
W -8 88 245.1 229.1 2484.7 1432.2 .263
W -R 11 132.1 173.3 743.3 1344.1 734

Domain Codes
N - Northeast; M - Midwest; So - South; W - West; C - Central City; S - Suburban;
R - Non-metropolitan.

5. DISCUSSION

Let n}f = 1/Y7, wf,- define the effective sample size within domain j. Observe that
n* < n; where equality holds if and only if all the sampling weights within j are all equal to
1/n;. For a known 02/8%, the only difference between the optimal estimator developed here,
Ji(a*, ¢*), and the best linear unbiased predictor in Scott and Smith (1969) is that 1/n;* has
replaced 1/7;in the formula for o* (equation (5)). The effect of this when the wj; within j are
not all equal is to increase a*; that is, to increase the dependence on sample information from
outside domain j. This happens because forcing the estimator to be design consistent results
in the domain j sample not being used as efficiently as possible. We could penalize the sample
from outside the domain in a conformal manner by using sample weights in determining p’(L),
but that would only decrease the model efficiency of the estimator without improving any
design-based characteristic.
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Equation (7) assures that L can be no less than zero. This means that o’ (L) can be no greater
than ¥ ,.; ng/ (Lg% Ny + n¥). If a’(L) were equal to its upper bound and n} = n;, then
e; would collapse into the simple mean of the y,; across the entire sample. This makes sense
because when the full model in equation (4) is correct and ¢ = 0, the most efficient estimator
of u + 7; = p is the full sample mean.

If nf < njand L = 0, however, then ¢; will be calculated with more weight given to units
outside of domain j than to units inside the domain, which makes little sense. One ad hoc way
to get around this phenomenon is to set an upper bound of 1 — (n;/ ¥ n,) (or smaller) on
o’ (L). Another approach would be to abandon small domain estimation entirely when o’ (L)
as calculated in the text exceeds 1 — (n;/ ¥ n,). Note that L, the estimated value for 0%/82,
would have to be very small for this to happen. In the empirical study discussed in the previous
section, L was in the 0.03 to 0.06 range, yet o’(L) was always well below 1 — (n;/ ¥ n,).

There are two ways the full model in equation (4) may fail. The fixed effects model within
each domain (equation (1)) can fail or the linking model in (3) can fail. In the real world, both
models are likely to be wrong. Equation (1) for its part ignores stratification and clustering
effects as well as any subtle effect of membership in a household with more than one woman
in the same age group. None of these effects are likely to be great. Moreover, by incorporating
sampling weights into the estimate d; and forcing the mean squared error estimators to be
design consistent, we have done as much as we can do to protect ourselves against the poten-
tial for model failure in equation (1).

On the other hand, we should have little faith in the viability of the linking model. It is hardly
more than a statistical convenience that, among other things, fails to allow for any correla-
tion in the intakes of women from the same region but from different levels of urbanization
or vice versa.

As noted, simply counting the number of times v(e;) — v(d}) is negative provides a means
for choosing between the estimators d; and e; that is independent of the linking model. The
estimator v (e;) is unstable, however, and should not be used by itself as an estimate of mean
squared error in practice.

Not only are the estimates of the mean squared error of e; unstable, the v(d;) are only
slightly better. At best v(d;) has ‘‘degrees of freedom”’ equal to the number of PSU’s minus
the number strata in j. For the CSFII sample, these range from 2 to 7.

Since it is becoming increasingly necessary for statisticians to provide estimated standard
errors along with the estimated means they publish, it is imperative that more stable estimators
than v(d;) and v(e;) be found. One idea might be to fit the v(d;) and the v(e;), either together
or separately, with a variance estimating function. This approach is ad #oc, however, and may
do little more than return values close to fully model-dependent estimates of the mean squared
errors of the d; and e; (see Prasad and Rao 1986, for a good discussion of these) by ““averaging
out”’ the effects of model failure.

One intriguing idea is to combine the stable, but biased, model-dependent mean squared
error estimates with the design consistent estimates developed here, much like e; does for
means. How this should be done is a topic that deserves future attention.
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