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ABSTRACT

Estimation of the means of a characteristic for a population at different points in time, based on a series
of repeated surveys, is briefly reviewed. By imposing a stochastic parametric model on these means, it
is possible to estimate the parameters of the model and to obtain alternative estimators of the means
themselves. We describe the case where the population means follow an autoregressive-moving average
(ARMA) process and the survey errors can also be formulated as an ARMA process. An example using
data from the Canadian Travel Survey is presented.

KEY WORDS: Kalman filter; Overlapping surveys; State-space models; Time series modelling; Small
area estimates.

1. INTRODUCTION

When surveys with similar data items are conducted on repeated occasions, certain estima-
tion and data analysis methods are available which are not possible with single occasion surveys.
For example, efficient estimation methods for the current occasion can depend on data from
previous occasions. This occurs when there are overlapping sampling units between occasions
and, hence, the survey errors can be correlated over time. As well, the series of estimates from
arepeated survey are often modelled by the data users. A common example of this is to assume
an autoregressive-moving average (ARMA) model. However, most existing procedures for
estimating the unknown parameters of this model assume that the input data are not subject
to survey error.

In this paper we develop procedures for estimating these model parameters when the data
contain survey errors. The covariance structure of the survey errors we consider include some
cases where the survey errors are correlated over time.

When such a model for the behaviour of the population characteristics is assumed, the
minimum mean squared error (MMSE) linear estimator can be derived. This estimator incor-
porates the model structure which the classical minimum variance linear unbiased estimator
(MVLUE) ignores. The MVLUE is discussed in Section 2.

Blight and Scott (1973), Scott and Smith (1974), Scott, Smith and Jones (1977), R.G. Jones
(1980) and others considered the implications of such stochastic models for the population
means over time. These results and a more general formulation using state-space models and
Kalman filters are discussed in Section 3, for the case where the stochastic model for the popula-
tion characteristics is completely specified. These methods can be developed in a setting which
is equivalent to a Bayes formulation, where the prior distribution is completely specified.

When the assumed model is an ARMA process in the presence of survey errors, the state-
space formulation can be used to derive the maximum likelihood estimates of the unknown
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parameters. We note that this approach can be viewed as empirical Bayes. We assume that
the survey errors can be described through an ARMA process up to a multiplicative factor.
This is discussed in Section 4.

An example of this model is described in Section 5 using data from the Canadian Travel
Survey. This example shows the implications on the estimates of the model parameters when
the survey errors are taken into account. We also derive a smoothed estimate of the underlying
process under the model assumptions. In this example, the survey errors are independent, so
that the full machinery of the general formulation in this paper is not required. However, the
example demonstrates that the impact of ignoring the survey errors even in this case can be
appreciable.

Section 6 contains some concluding remarks.

2. MINIMUM VARIANCE LINEAR UNBIASED ESTIMATION
IN OVERLAPPING REPEATED SURVEYS

In this section we briefly review the literature for the case where the population values of
a characteristic such as a mean or total are taken as fixed unknown constants. In Section 3,
we study the case where a stochastic model is assumed for the population characteristic.

In overlapping surveys, where the same individual provides responses on repeated occasions,
the sampling errors between occasions are usually correlated. Correlations can also occur in
a multi-stage survey where some of the first stage sampling units overlap, even though the
ultimate respondents differ.

Estimators which ignore these correlations and use only the data collected in the single
reference period are in general inefficient relative to the minimum variance linear unbiased
estimator (MVLUE). The relative efficiency depends on the size of the correlation of the
sampling errors between occasions. When the correlations are zero, as in our example in Sec-
tion 5, the MVLUE is simply the estimator based on data from a single reference period.

Jessen (1942) was the first to incorporate the overlapping information from the same indi-
vidual on two successive occasions. Patterson (1950) provided a general theory for repeated
surveys with overlapping units. He considered in detail the special case of simple random
sampling from an infinite population, where the correlation for individuals is exponentially
declining in time lag. On each occasions, a sample of individuals is removed from the sample
of the previous occasion and a sample of individuals is added. All data are collected with
reference to the current occasion only. Patterson derived the MVLUE for this setup.

Extensions have been made to the basic assumptions of Patterson (1950). Eckler (1955) called
Patterson’s design one-level rotation sampling. Eckler derived the MVLUE when individuals
report for two successive time periods, which he termed two-level rotation sampling. He also
derived the MVLUE for surveys with higher order rotation sampling designs.

Rao and Graham (1964) relaxed the infinite population assumption by incorporating the
finite population correction factor into the variances of the survey error. Singh (1968) was the
first to consider multi-stage designs. He examined two-stage sampling with the assumption that
the correlation between responses on different occasions can be considered in two parts: (i)
the correlation between second stage units (SSU’s) within primary sampling units (PSU’s) and
(ii) the correlation between PSU means on successive occasions. If both of these correlation
patterns are assumed to be that of a first order autoregressive process, then the form of the
MVLUE follows the general form given by Patterson (1950).



Survey Methodology, June 1989 31

Tikkiwal (1979) and others considered the implications of relaxing the assumption of a first
order autoregressive correlation pattern. Tikkiwal concluded that if a completely general cor-
relation structure is assumed, the simple form of the MVLUE is lost and approximations must
be used in practice. Rao and Graham (1964) and Gurney and Daly (1965) proposed the use
of composite estimators which are approximations to the optimal estimators. These estimators
are easily implemented and have high relative efficiency. For a discussion on the use of these
estimators, see Binder and Hidiroglou (1988).

Gurney and Daly (1965) also generalized the results of Patterson (1950) to a linear model
framework. They introduced the concept of an ‘‘elementary estimate’’. This is an estimate which
uses data from a specific time period, based on individuals which all join and leave the survey
at the same time. The expected value of these elementary estimates can be expressed as a linear
combination of the population parameters, {6,;}. When the correlation structure is known,
standard general linear model theory can be used to derive the MVLUE.

To formalize this discussion, let y,; be the j-th elementary estimate from the #-th time
period, where E(y,;) = 6,. If Y and © are vectors with components y,; and 6, respectively, we
can write:

Y=X0 +e 2.1

where X is a fixed (n X T) matrix of 0’s and 1’s, E(e) = Oand E(ee’) = U, which is the
known variance-covariance matrix of the elementary estimates. Thus, the MVLUE is given by:

0= XU X)) 'Xx Uy, (2.2a)
with
Var(0) = (X’U"'Xx)!. (2.2b)

These results imply that every new survey would require the updating of all previous
estimates. However, since estimates from the earlier occasions often have a much smaller effect
than the recent occasions, composite estimates, such as proposed by Gurney and Daly (1965),
are simpler to use and have a high relative efficiency. Binder and Hidiroglou (1988) discussed
the appropriateness of these methods and their application in a number of surveys. In gen-
eral, they found that good results can be achieved using composite estimators, providing the
rotation group biases are not substantial.

3. SIGNAL-NOISE EXTRACTION

It is quite common for economists and sociologists to treat the underlying parameters, {6,},
as random inputs for their stochastic models (Smith 1978). However, if the sampling errors
associated with the input data are ignored, the estimates of the parameters of the stochastic
model are biased.

In this section, we show how the stochastic model assumptions can also be used to obtain
model-dependent, design-consistent estimators. In Section 4, we discuss maximum likelihood
estimation of these parameters. Since misspecification of the model could lead to serious biases,
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hypothesis testing methods should be used to check the consistency of the model with the data.
The model should also reflect the subject matter knowledge of the underlying phenomenon.

First we consider the case where the survey errors are independent. (This would be approx-
imately true for non-overlapping surveys with small sampling fractions.) In this case, the
MVLUE for 6, is §, = y,. However, by imposing a stochastic model for the sequence of
parameters, {8,}, an improvement in the mean squared error of the estimate can be achieved.

Scott and Smith (1974) proposed the following model for non-overlapping surveys. They
wrote the model for the survey estimates at time ¢ as:

ye=10,+ ¢ 3.1

where the e,’s are independent N (O,Sf). They assumed that the sequence of parameters, {6,},
can be modelled such that, conditional on 8/_; = (6, ... 0,_.,),

6[ = g,’ 9,_1 + €y (3.2)

where the ¢,’s are independent N(0,57) and independent of {e,}, and o, is a (£ —1)
dimensional vector of constants.

In general at time ¢r—1, conditional on ¥/_; = (¥}, ..., ¥:—1), we have 0,_, ~
N(©,_,,V,_,). Conditional arguments then yield

E(|y) = 6; = m(a/0,_)) + (1-m)y, (3.3a)
and
Var(6,|y;) = (1—=,)S?, (3.3b)
where
_ Var(6) _ 52 (3.30)

Var (y;) gt’Vt—-l a, + U% + S? .

Note that the estimator in (3.3a) is a weighted average of two components. The first con-
sists of the best linear forecast of 6, given the previous value of ©,_,; the second consists of
the best estimate of 8, from the survey. The contribution of each term is controlled by =, the
ratio of the survey variance to the total variance. As the survey error component becomes small,
then the contribution from @,_; becomes small and the estimate of 8, in (3.3a) is composed
primarily of y,, the estimate from the survey data. Therefore, the estimator of 6, is design-
consistent whenever y, is design-consistent.

However, as the survey error component becomes large, the estimate of 8, is due primarily
from the linear forecast of ©,_,. The relative efficiency of the estimator, §,, in (3.3a) is given
by 1/(1—;), where =,is defined in (3.3¢). The greatest efficiency gains occur when the survey
error is large relative to o2 the variance of the ‘“‘shocks’’ of the model process.
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Scott and Smith (1974) and R.G. Jones (1980) also considered the case of overlapping
surveys. Jones’ formulation for this case was as follows. Let 0, be multivariate normal with
mean zero and variance matrix V}. Now the observations at time ¢ may be generalized to a
vector of elementary estimates, y,. The conditional distribution of ¥, = (y{, ... ,y/)’ given
O, is assumed to be of the form:

Y, = X/0, + ¢, (3.4)

where X, is a fixed matrix of 0’s and 1’s linking the parameters and the observations, and e, is
the survey error, assumed to be multivariate normal with mean zero and covariance matrix U,.
Using conditional arguments, the best estimate of 6, given Y, is:

E(91|Yz) = ét = (Xt,Ut_lXt + I7;1‘—1)_1)(/(];11/1 (3.5a)

with a variance of

Var(0,|Y,) = (X; U7X, + v~ L (3.5b)

This result is very general. If we allow the underlying stochastic model for 9, to be very dif-
fuse, then the inverse of V¥ is approximately zero, thus yielding the MVLUE given by (2.2a).
R.G. Jones (1980) derived (3.5) by application of stochastic least squares, so that the estimator
0, is the minimum mean squared error (MMSE) linear estimator, even when the normality
assumptions are dropped.

Applying (3.5) directly would involve inverting matrices which have the same dimensionality
as the vector of all the elementary estimates for all time periods. Computing such inverses can
be numerically unstable. However, expression (3.5) can often be restructured using state-space
models, which are useful for describing many time series models. See Harvey (1984) for a review
of such models. As we demonstrate below, this would avoid the inversion of large matrices.
Some structure for {6,} and {e;} would be required to take advantage of the reduction in
dimensionality afforded by the state-space approach. An example of such a structure, which
is often used in time series applications, is an autoregressive-moving average (ARMA) process,
not necessarily homogeneous in time,

For applications such as small area estimation, where the sample size is not large, modelling
the variances of the survey error, U,, using such ARMA models can be useful. This is not
usually done for repeated surveys. This would also alleviate the problem of applying the result
in (3.5) directly when the dimensions of V¥ and U, are large and the inverses are numerically
unstable.

In the state-space model, two processes occur simultaneously. The first process, the observa-
tion system, details how the observations depend on the current state of the process parameters.
The second process, the transition system, details how the parameters evolve over time.

State-space models can be written as follows. The observation equation is written as:

Ye=H,z; + w, (3.6a)
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and the transition equation is written as:
zt = Ft—l zt + Gt Et’ (3-6b)

where z,is an (r X 1) state vector, H,is a fixed (n, X r) matrix, F,is a fixed (r X r) tran-
sition matrix, G,is a fixed (r X m) matrix and w, and ¢, are independent random disturbances
with mean zero and covariances given by E(w, w/) = U;and E(¢,¢/) = V.

As an example of this formulation, we rewrite the model studied by Blight and Scott (1973)
in terms of the state-space model. Blight and Scott considered data from Patterson’s (1950)
one-level rotation design. They let 7/ be the mean of the new units at time ¢, and 7" and X/
the means of the overlapping units at times ¢ and #— 1, respectively. They assumed that 7 and
y/ — px/ are independent observations at time ¢, where p is the between-occasion correlation
of the responses from the same individual. They also assumed that the mean process {#6,} is
first order autoregressive.

We let the state vector be z; = (6;, §,_,). The observation equation can be written as:

\74 — 1 0 6, + Wiy ,
yi — px/ 1 - ;-1 Wy
where (wy;, wy;)’ has a diagonal covariance matrix.
The transition equation would be written as:
0 0 6;_ 1
A I =1y €
0,1 1 0 0,_, 0

where ¢, is N(0,0%). Thus, the Blight-Scott model can be written in state-space form.
Harvey and Phillips (1979) described a method to put the ARMA (p,q) model, defined by:

Ye— Qo1 = oo QY p = € — Bi&g — ... —Bq€t—g» 3.7

where the ¢,’s are independent N(0,6%), into state-space form. The dimension of z, is
r = MAX(p,qg+1). Where necessary, o = (ay, ... ,ap) or8 = (B, ..., B,) is augmented
with zeroes to have dimension r. The matrix, U, is set to zero. The ARMA (p,q) model is
equivalent to (3.6) when H, = (1,0, ...,0),G/ = (1, =8, ..., —8,_1) and
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where I,_ the (r—1) X (r—1) identity matrix and O’ is a row vector of zeroes.

In this formulation, the state vector z, = (2y;, ... , Z)’ is defined as follows:
Zip = oy T Y2t oo T o it
= Bic1er — Bie—1 — -0 = Broi&_(r—iy

fori =2,3,...,rand z;, = y,asin (3.7).
A necessary condition for stationarity is that Var(z;) = Var(z,_) for all #. From expres-
sion (3.6b), we see that this implies that

Var(z) = F'Var(z)F + GVG’,

where V, = Vis constant for all ¢. Pearlman (1980) pointed out that this can be used to obtain
the initial conditions for z;.

Often the survey error process can be included in the state-space model, when some struc-
ture for the survey errors can be assumed. We have already demonstrated this for the Blight
and Scott (1973) model. Scott and Smith (1974) and Miazaki (1985) considered a variety of
models which were special cases of (6,) being ARMA (p,q), {e,} being ARMA (p*,q*) and
the scalar observations satisfying y, = 6, + e,. State-space models for this process can be
formulated analogously to the Harvey-Phillips representation above, where the state vector
z,1s the vector formed by concatenating the state vectors from each of the individual ARMA
processes.

For example, suppose {6,} is an ARMA (3,0) process with parameter (o, oy, a3) and
model variance o2 and, {e,} is an ARMA (0,1) process with parameter 8* and model variance
s2. An ARMA (0,1) process for {e,} would be plausible for a survey which follows Eckler’s
two-level rotation sampling pattern, where the survey estimate for 6, is given by 7, the mean
of all individuals reporting for the #-th occasion.

This can be written in state-space form by letting

Q R

| 5 I,
coco
o oo,

Ft ’Gt

’ooo
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U, = 0and H/ = (100]10). The first three components of the state vector correspond to
the state-space formulation for the {6,} process and the last two components are for the {e;}
process.

Note that the state-space approach allows for measurement error, given by w, in (3.6a).
However, unless the survey design has non-overlapping units with independent sampling errors,
the measurement error terms cannot be used to model the survey error. Instead, we have
absorbed the measurement (survey) error into the state vector.
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From the general state-space framework, the Kalman filter equations can be derived. If,
as in Meinhold and Singpurwalla (1983), we let the conditional distribution of z,_, given ¥,_,
be N(Z_1jr—1, Pr—1)¢-1), then recursive relationships for Z;, and Py, can be constructed.
Harvey (1984) shows these relationships are equivalent to the Kalman filter.

The Kalman filter, in general, consists of two parts. The first is a one-step ahead prediction
of the state vector and its covariance; the second part provides an update of the mean and
covariance matrix of the state-space vector after the new observations are available.

Following the notation used in (3.6), we let Y|, = y, and ¥/, = (Y/, y/,;)’, then the
one-step ahead prediction has a mean and variance given by

E(z)) = Zyp0 (3.92)

Var(z;) = Py (3.9b)

E(z|Y21) = Z—1 = Fr o (3.9¢)
Var(z|Y,_y) = P,y = FP_y -1 F/ + GV,G,. (3.9d)

The update of the mean and variance for the state vector at time ¢ after the observation at
time ¢ becomes available is:

E(z|Y,) = e

= Zt]t—l + P~t|t—1Ht (H, P~t|t—1Ht + U)-1(y — Ht’zt|t—1) (3.10a)
Var(z,|Y,) = P~t|t = Ist|t—1 - ﬁt|t—1Ht (Ht,ﬁtlt—lHt + U) - Ht'ﬁm—l (3.10b)

The equations (3.9) and (3.10) are the well-known Kalman filter equations. The formula-
tion followed here is essentially Bayesian; however, it is possible to derive equivalent results
using orthogonal projections; see Young (1984).

The simplification in the computations due to the Kalman filter formulation in the sample
survey setting can be seen by comparing equations (3.9) and (3.10) with R.G. Jones’ (1980)
result (3.5). Note that Jones’ result required the inversion of a matrix with dimensionality given
by the complete vector of survey estimates.

The Kalman filter can also be used to obtain smoothed estimates given by E(z,| Y;) for
T > t. Details of this backcasting may be found in Harvey (1984).

Remarks

1. Although the Kalman filter assumes an infinite population model, when the sample survey
is based on a large sample, the central limit theorem often allows the survey errors to be
approximately normally distributed. As well, since the smoothed estimators for {8,} are
the same as those obtained by R.G. Jones (1980) in (3.5a), these are the linear MMSE
estimators even when the normality assumptions are dropped.
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2. Missing time points can be incorporated in the state-space approach. If y, is missing at time
£, then the updating equations analagous to (3.9) become Z;;, = Z;,—; and Py = Py_as
in R.H. Jones (1980). However, smoothed estimates for the missing time points will depend
strongly on the model selected, since no survey estimate is available. Therefore, the risks
of model misspecification here are high.

3. The likelihood function, which we discuss in Section 4 for obtaining the maximum likelihood
estimates of the unknown parameters, can also be obtained when some data are missing,
using the same approach given by R.H. Jones (1980). However, missing data will tend to
increase the standard errors of the parameter estimates. In our example of Section 5, we
encounter a case with missing time points.

4. ESTIMATION OF THE PARAMETERS IN A STATE-SPACE MODEL

When data are generated from the ARMA model (3.7) and the parameters a, 3, and o?are
unknown, the maximium likelihood estimates for the unknown parameters can be obtained
using the likelihood function derived from the state-space model. This approach was suggested
by Harvey and Phillips (1979), R.H. Jones (1980) and others.

The usual state-space models can also be used when the input data have independent measure-
ment errors. This is the case for our example of Section 5, where we show the effect on the
parameter estimates when the survey errors are taken into account.

Maximum likelihood estimation of these parameters when the data have correlated survey
errors has not previously been studied in detail. For a model with univariate stationary obser-
vations {y,}, Scott, Smith and Jones (1977) suggested using the estimated autocovariance
function of the observations {y,} to estimate the parameters of the ARMA process. Here, the
data model is y, = 6, + e,. The variances and covariances of the survey errors, {e;} can be
estimated using design-based methods; see, for example, Wolter (1985).

Efficient estimation of the autocovariances of the survey errors, assuming stationarity of
the series, is an area which has not received attention in the literature, so ad hoc methods would
be used in practice. Future research in modelling these survey errors would be worthwhile. In
our example in Section S, we could assume independent survey errors, so this was not
problematic.

Assuming the autocovariance of {e,} is available, the autocovariance of {6,} can be
estimated by Cov (8;, 0,_;) = Cov(y;, yi—s) — Cov(es, e_s). However, this method is not
fully efficient (Smith; 1978). Moreover, this method would not incorporate non-stationary
survey errors.

Miazaki(1985) considered the case where {6,} is an ARMA (p,0) process. She also assumed
{e;} to be an ARMA (0,q) process which could be estimated directly from the survey.
Miazaki then wrote the observations {y,} as an ARMA (p,p+ q) process which she estimated
by restricted maximum likelihood methods.

Representing non-stationarity of survey errors in the state-space representation can
sometimes be handled through nonhomogeneous matrices for ¥, the variance matrix of the
random “‘shocks’’ from the transition equation (3.6b). For example, in (3.7) 5% would be
replaced by s? to allow for non-homogeneous survey errors. This approach is taken in the
example in Section 5.
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In general, for state-space models given by (3.5), Harvey and Phillips (1979) write the exact
likelihood function as follows. Letting

yAt]t—l =E|Y,_y) = Ht,ztlt—l
and

R, = Var(y/|Y,_y) = Htlﬁtjt—lHt + U,
the log-likelihood function for Y7 = (y{, ... , y5) is
log f(Y;) = (1/2) L2 log|R,| — (1/2) T ) (v, — Pe-0) RV = Pye-1). (A1)

The unknown parameters in (4.1) are contained in Pie—1 and in R,. Depending on the
algorithm used to maximize (4.1) with respect to the unknown parameters, it may be necessary
to compute first and second derivatives of (4.1) with respect to the unknown parameters. This
generally involves finding derivatives of £1:—1 and 13,|,_ 1. These can be computed
numerically using the recursions given in (3.8) and (3.9). For example, (3.8¢) yields 0y =
(OF)Z; 11— + Fi( 8% _1].—1)- The other expressions using (3.8) and (3.9) can be determined
similarly.

The inclusion of regression parameters into (4.1) can be accomplished by replacing y, by
the deviation of y, from the regression line. Tam (1987) generalized this concept even further
by considering a model where the underlying stochastic process is determined by a state-space
model for the regression coefficients which evolve over time.

To maximize the likelihood function (4.1) with respect to unknown parameters, an iterative
procedure is needed. We omit details of the procedure used for the application in Section 5
since efficient procedures are still in the development stage.

Once having estimated the parameters, smoothed values for the state vector, Z; 7 = E(z,]
Y7) after time T > ¢, can be obtained using the backcasting formulae given by the Kalman
filter; see Harvey (1984). Thus, for example, if y, = 6 + e; as in (3.1), after backcasting we
may formulate y, = 5,|T + &1, so that 5,|T becomes the smoothed estimate of the mean at
time # after observing Y,.

To derive the standard error of the smoothed estimate it is necessary to account for the fact
that the unknown parameters have been estimated from the data, particularly when the data
series is short; see Jones (1979). Hamilton (1986) suggests doing this by Monte Carlo simula-
tions. He generates a set of multivariate normal random variables with mean given by the max-
imum likelihood estimates for the parameters and variance given by the inverse of the estimated
Fisher information matrix. He then estimates E ( Ist,T) and Var (£, 1), where the expectation
and variance are taken over the generated parameter values. The sum of these two components
is the estimated covariance matrix of the estimated state vector. This method assumes that the
sample size is large, so that the normal approximation to the sampling distribution of the param-
eter estimates is valid.

In the examples of Section 5, we approximate the standard deviation of the sampling errors
of the smoothed estimates, ignoring the variation due to estimating certain model parameters.
We then compare these with the actual root mean squared errors of the sampling distribution
obtained from simulated data.
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5. DATA ANALYSIS

In this section we show the impact of the survey errors on estimates of the parameters of
a first order autoregressive model with regression terms. In our example the survey errors are
assumed to be independent between occasions. More complicated cases with correlated survey
error and higher order ARMA models for the population characteristic could be handled within
the framework we have described. We chose this example to demonstrate that the impact of
accounting for the survey errors can be appreciable even for this relatively simple model.

We used data from Saskatchewan respondents to the Canadian Travel Survey (CTS). The
CTS is conducted by Statistics Canada to collect descriptive statistics on the travelling habits
and characteristics of Canadian residents. This survey is conducted as an ‘‘add-on” to the
Labour Force Survey (LFS). The LFS is a monthly rotating panel survey with six rotation
groups. However, the CTS is conducted at most four times a year, with at least one, but possibly
as many as three rotation groups. The rotation groups used by the CTS for the quarters when
the CTS is conducted are chosen so that there are no overlapping panels between occasions.

The survey errors are assumed to be independent. This is only approximately true. The LFS
is a multi-stage survey and the primary sampling units (PSU’s) do not rotate out as quickly
as the individual rotating panels. The same PSU’s are used on a number of occasions. Therefore,
although the CTS sample is selected such that the panels do not overlap between occasions,
the independence assumption is approximately true only when the correlation of the sampling
errors between quarterly periods within the same PSU is small. This assumption was not
verified.

The coefficients of variation (as a percentage) were calculated using the function:

CV = oy ~?/+/number of rotation groups,

where y is the survey estimate in thousands. This is the function recommended to users of the
CTS for data on Saskatchewan residents; see Statistics Canada (1985). In this report, the
parameters « and 3 were estimated at 91.7528 and 0.353253, respectively, using a loglinear
regression model applied to 1979 data. For the purposes of our example, these
coefficients of variation were rounded to the nearest tenth of a percent.

The assumed model was:

y, =0, + e, (5.1)
where the e,’s are independent survey errors, with e, ~ N (0,5?) and

0, = vo + 11t + 1201 + 3@ + 1aQs + & (5.2)

where (¢} is ARMA (1,0) with parameters (a,0%). The regression terms in (5.2) are, respec-
tively, the intercept, a term representing the quarter number with # taking values from —15.5
to 15.5 linearly in time and, finally, seasonal terms for the first three quarters of each year, where

Qir

1 if the #-th observation is in the i-th quarter;
= —1 if the t-th observation is in the fourth quarter;

= 0 otherwise;

fori =1,2,3.
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Better models may be available for these data, although with such a small data set, tests
of hypotheses against alternative models would not be very powerful.

To obtain the maximum likelihood estimates for the unknown parameters of this model,
it is necessary to incorporate the assumptions made about the survey errors in the estimation
procedure. Most users of official statistics ignore this survey error and implicitly assume that
the input data are error-free. This does not seriously affect the results when the variance of
the survey error is small relative to the variance of the model error.

The survey estimates and the coefficients of variation of the survey errors relative to these
estimates are given in Tables 1 and 2. The results of the maximum likelihood estimation pro-
cedure are displayed in Tables 3 and 4. Two estimates are given for each model. The column
labeled ‘‘Estimate: With Sampling Error’’ uses the method incorporating the assumed error
structure; whereas the column labeled ‘‘Estimate: Ignoring Sampling Error’’ repeats the estima-
tion under the assumption that the survey estimate is observed without error. In both cases
model (5.2) is assumed.

Table 1

Overnight Person-Trips of Saskatchewan Residents to
Destinations within Saskatchewan

No. of Survey  Smoothed Survey Smoothed Simulated Simulated

Rotation Estimate  Estimate C.V. C.V. RMSE Bias

Year Quarter Groups (000’s) (000’s) (%) (%) (%) (%)
1979 Winter 1 598 611 9.6 5.9 6.9 0.1
Spring 1 808 813 8.6 4.8 4.9 0.4
Summer 3 1033 1103 4.6 3.0 3.1 0.0

Fall 3 678 683 5.3 4.3 4.5 1.2

1980 Winter 1 578 608 9.7 5.5 5.8 0.1
Spring 3 837 837 4.9 3.7 3.6 0.0
Summer 1 1451 1169 7.0 3.3 3.5 0.3

Fall 1 744 724 8.9 5.1 5.9 0.8

1981 Winter 3 631 632 5.4 4.3 5.0 -0.1
Summer 3 1262 1172 4.2 2.9 3.3 0.1

1982 Winter 1 565 613 9.8 5.5 6.4 -0.4
Spring 1 901 838 8.3 4.5 5.1 0.8
Summer 3 1167 1147 4.4 2.9 3.1 0.1

Fall 1 721 706 9.0 5.1 5.6 0.2

1984 Winter 1 585 598 9.6 5.8 6.7 -1.2
Spring 1 788 804 8.7 4.6 5.2 -0.4
Summer 3 1068 1107 4.5 2.9 3.6 -0.5

Fall 1 711 686 9.0 5.3 6.7 0.7

1986 Winter 1 793 630 8.7 6.2 7.1 -1.3
Spring 3 798 808 5.0 3.9 39 -0.4
Summer 3 1053 1096 4.5 3.0 3.3 -0.3

Fall 3 650 663 5.4 4.4 4.2 0.2

! The Canadian Travel Survey was not conducted in the Spring and Fall Quarters of 1981 and during 1983 and 1985.

Simulations in last two columns are based on a sample size of 100.
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Table 2

Overnight Person-Trips of Saskatchewan Residents to
Destinations in Manitoba’

No. of Survey Smoothed Survey Smoothed Simulated Simulated

Rotation Estimate  Estimate C.V. C.V. RMSE Bias

Year Quarter Groups (000’s) (000’s) (%) (%) (%) (%)
1979 Winter 1 27 34 28.6 13.4 14.1 0.5
Spring 1 33 48 26.7 11.0 10.2 0.9
Summer 3 78 80 11.4 6.6 7.1 1.3

Fall 3 55 48 12.9 10.1 10.8 0.6

1980 Winter 1 24 30 29.7 13.6 14.5 0.5
Spring 3 63 50 12.3 9.5 9.4 0.7
Summer 1 86 80 19.0 6.6 6.3 0.8

Fall 1 75 46 19.9 11.0 12.2 0.5

1981 Winter 3 42 34 14.2 11.3 13.2 1.0
Summer 3 79 82 11.3 5.9 5.7 0.1

1982 Winter 1 33 34 26.5 12.5 13.2 -2.8
Spring 1 46 44 23.7 10.7 10.0 1.6
Summer 3 78 82 11.4 5.7 5.4 0.1

Fall 1 30 42 27.6 10.9 114 0.3

1984 Winter 1 36 34 25.7 13.8 16.8 -1.3
Spring 1 48 43 23.4 11.4 11.5 0.1
Summer 3 82 82 11.1 6.1 7.3 -0.2

Fall 1 30 40 27.7 11.5 114 0.6
1986 Winter 1 33 33 26.7 16.3 19.9 -0.8
Spring 3 38 41 14.6 10.9 11.7 -0.1
Summer 3 90 81 10.8 7.1 8.8 -0.3

Fall 3 42 40 14.1 11.2 10.5 1.7

! The Canadian Travel Survey was not conducted in the Spring and Fall Quarters of 1981 and during 1983 and 1985.

Simulations in last two columns are based on a sample size of 100.

Table 3
Parameter Estimates for Saskatchewan to Saskatchewan Person-Trips1

Ignoring

Sampling With Sampling Error
Parameter Error

Estimate Estimate Standard  Simulated  Simulated t-value

Error RMSE Bias of Bias

REGRESSION
Intercept (yvg) 831.4 815.0 15.6 14.4 1.8 1.29
Linear (y;) -0.84 -0.86 1.52 1.51 -0.10 -0.65
1st Quarter (v3) -209.6 -203.8 21.8 24.6 -3.5 -1.41
2nd Quarter (y3) -4.0 7.1 229 23.8 0.4 0.17
3rd Quarter (vy4) 340.1 316.0 21.2 23.4 -0.4 -0.18
ARMA
Autoregressive (o) 0.14 0.47 0.66 0.68 -0.39 -6.77
Model Variance (02) 7930.5 879.3 1205.6 770.0 -488.2 -8.16

1 Simulations and ¢-values are based on a sample size of 100.
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Table 4
Parameter Estimates for Saskatchewan to Manitoba Person-Tripsl

Ignoring

Sampling With Sampling Error
Parameter Error

Estimate Estimate Standard  Simulated  Simulated t-value

s Error RMSE Bias of Bias

REGRESSION
Intercept (vg) 51.2 50.5 1.9 2.0 0.4 1.57
Linear (y,) -0.17 -0.13 0.18 0.17 ~-0.04 -2.01
1st Quarter (y;) -20.1 -17.2 34 3.5 -0.6 -1.52
2nd Quarter (v3) -5.9 -6.1 3.6 3.7 -0.1 -0.32
3rd Quarter (v4) 30.7 30.8 3.7 3.7 0.0 -0.07
ARMA
Autoregressive («) 0.14 -0.75 0.66 0.71 0.49 7.90
Model Variance (02) 100.0 5.7 18.7 9.5 -0.3 -0.29

1 Simulations and #-values are based on a sample size of 100.

The estimates of the regression parameters are essentially the same under either assump-
tion. However, the autoregressive component estimates differ considerably under the two
assumptions. In particular, the model variance increases substantially. This variance estimate
increases because the variation due to survey error is missing from the model. The reason that
the estimates of the regression coefficients are not affected is that the estimators for these coef-
ficients remain unbiased, although they are somewhat inefficient.

Once the parameters of the model have been estimated, it is possible to use the assumed
model to adjust the individual estimates of the number of overnight person-trips. The results
discussed below demonstrate how the procedure reduces the coefficients of variation for these
smoothed estimates when the model assumptions are correct. Such a procedure is analogous
to model-dependent small area estimation methods.

The smoothed estimates and their coefficients of variation are given in Tables 1 and 2. These
coefficients of variation are calculated, taking into account the sampling error of the regres-
sion coefficients, vy, . ..., v4. This is possible since, given o and 02, the smoothed estimates
are linear functions of the original survey estimates, so that the variances can be computed
from this linear function and the assumed model variance of the regression residuals. How-
ever, the sampling errors for the estimated « and o were ignored at this point. The effect of
ignoring these sampling errors is discussed below.

The smoothed estimates for travel within Saskatchewan are generally close to the original
survey estimates, with possible exceptions for the Summer of 1980 and the Winter of 1986.
Those for travel to Manitoba are also close, with a possible exception being the Fall of 1980.
These exceptional cases could possibly be outliers or could be due to a special event that boosted
tourism in those quarters. In general, such phenomena could be incorporated into the model
by: (i) increasing the model variance in the state-space model for those periods or adding
appropriate dummy variables for special events or (ii) increasing the sampling variance for
outliers. A more in-depth knowledge of the circumstances would be required to decide whether
such adjustments are appropriate. The analysis here can help pinpoint possible unusual cases.



Survey Methodology, June 1989 43

Because the analysis so far has ignored the effect of the sampling error associated with
estimating « and ¢?, we performed a simulation study to assess its seriousness. Jones (1979),
Hamilton (1986) and Tam (1987) have suggested that these sampling errors should not be
ignored, especially when the time series has few observations.

For the simulation, we generated sets of random data following the assumed model given
by (5.1) and (5.2). We took as our parameter values the maximum likelihood estimates of the
model. The same missing data pattern was used in the simulations as in the original data set.
One hundred such data sets were generated for each model. In Tables 1 and 2, we report the
percentage bias of the smoothed values and the percentage root mean squared error for the
difference between the smoothed values and the true values based on these simulations.

To assess whether 100 was a sufficiently large number of simulations to estimate the root
mean squared error (RMSE), we computed an estimate of the coefficient variation of the
estimator of the RMSE. From the simulations we obtained an unbiased estimate of the variance
of the estimator of the mean squared error. We then used Taylor linearization to estimate the
variance of the estimator of the RMSE. The estimated coefficients of variation ranged from
6% to 11% for destinations within Saskatchewan and from 5% to 9% for destinations in
Manitoba. Therefore, these estimates of the RMSE’s do provide a reasonable assessment of
the effect of ignoring the sampling error of the autoregressive parameters.

In Tables 1 and 2, the biases of the adjustment procedure are all small and, in fact, for the
two sets of 22 observations only four were significant at the 5% level using a standard #-test.

We also note that the percentage root mean squared errors based on the imulations tend
to be larger than those under the column entitled ‘‘Smoothed C.V.”’. This is to be expected
since the simulations include sampling errors arising from the estimation of « and 2. How-
ever, the values of the ““Smoothed C.V.’s’’ do give reasonable approximations to the simulated
values, so the procedure which ignores the effect of the sampling error of « and 6? does not
seriously affect the coefficients of variation.

In Table 3 and 4, we report some simulation results for the estimated parameters. For the
regression coefficients, only one of the biases was significant at the 5% level. The standard
errors are all consistent with the simulation results.

On the other hand, the simulations did point out a problem with the estimates for o and
o2. The biases for the estimates of o were highly significant. As can be seen from Tables 3 and
4, one of the biases of o2 was also highly significant. The simulated root mean squared errors
were not very close to the asymptotic approximation of the standard error obtained by inver-
ting the Fisher information matrix. It seems that the sample size for our problem is not suffi-
ciently large for the asymptotic approximations to be very accurate. This is a common problem
for time series analyses of short series.

6. CONCLUSION

In cases where the variances of the survey errors are small relative to the variances of the
model errors, the smoothed estimates would be close to the minimum variance linear unbiased
estimates and there would be no appreciable reduction in the standard errors of the estimates,
even when the assumed model is true. However, for cases such as small domain estimation
where the sampling errors are not small, the standard errors for the smoothed estimates may
be substantially smaller than those for the original survey estimates. For example, the smoothed
estimates for the Saskatchewan-to-Manitoba data showed a greater improvement than the
Saskatchewan-to-Saskatchewan data, since the sampling errors for the survey data were larger
for the former data set.
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One of the implications of assuming models for repeated surveys is that if the models are
misspecified, the MMSE estimators may be seriously biased. It is important, therefore, to
choose a model which is both consistent with the data and which reflects subject matter knowl-
edge about the underlying phenomena. In our example the data set is small, so that a large
number of statistical models would be consistent with the data.

Our simulation studies suggest that even for small data sets, the asymptotic approximations
to the variances of the smoothed estimates are quite reasonable. However, as in the case of
more traditional applications of time series analyses, the asymptotic approximations for the
sampling errors of the parameter estimates may be poor.
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