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ABSTRACT

Let A x B be the product space of two sets A and B which is divided into matches (pairs representing
the same entity) and nonmatches (pairs representing different entities). Linkage rules are those that divide
A x Binto links (designated matches), possible links (pairs for which we delay a decision), and nonlinks
(designated nonmatches). Under fixed bounds on the error rates, Fellegi and Sunter (1969) provided a
linkage rule that is optimal in the sense that it minimizes the set of possible links. The optimality is depen-
dent on knowledge of certain probabilities that are used in a crucial likelihood ratio. In applying the record
linkage model, an independence assumption is often made that allows estimation of the probabilities.
If the assumption is not met, then a record linkage procedure using estimates computed under the assump-
tion may not be optimal. This paper contains an examination of methods for adjusting linkage rules when
the independence assumption is not valid. The presentation takes the form of an empirical analysis of
lists of businesses for which the truth of matches is known. The number of possible links obtained using
standard and adjusted computational procedures may be dependent on different samples. Bootstrap
methods (Efron 1987) are used to examine the variation due to different samples.

KEY WORDS: Decision rule; Error rate; Steepest ascent; Bootstrap; Capture-recapture.

1. INTRODUCTION

This paper presents an analysis of decision rules obtained by applying the Fellegi-Sunter
model of record linkage to lists of businesses. The analysis compares a rule obtained under
an independence assumption that is typically assumed in practice with rules that include methods
for adjusting for the failure of the independence assumption.

Given two lists, we wish to use identifying information to delineate those record pairs that
represent the same entities (matches) and those that are different (nonmatches). Thus, we desire
to define a linkage rule that allows us to divide the cross-product space of pairs into links
(designated matches), possible links (pairs for which a decision is delayed), and nonlinks
(designated nonmatches).

Under fixed bounds on the numbers of erroneous matches and nonmatches, Fellegi and
Sunter (1969, Theorem) provide a procedure that, in theory, minimizes the number of possible
links. The optimality is dependent on knowledge of certain probabilities that are used in a crucial
likelihood ratio.

In typical applications, an independence assumption is made that allows estimation of the
probabilities used in the likelihood ratio. The probabilities are called matching parameters.
If the independence assumption is not valid (Winkler 1985¢; Kelley 1986) then linkage rules
based on the estimated probabilities may not be optimal.

1 William E. Winkler, Statistical Research Division, U.S. Bureau of the Census, Washington, DC 20233, USA.
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Given fixed bounds on error rates, better linkage rules will be those that reduce the set of
possible links. If a rule is based on matching parameters that are estimated under an invalid
independence assumption, then it may be possible to develop adjustment procedures to deter-
mine better rules. To test whether one rule is statistically better than another, we use Efron’s
bootstrap (1987; also Hall 1988).

The remainder of the paper presents background, methods, and results from applying several
record linkage rules to lists of businesses. The application involves pairs of lists for which the
truth and falsehood of linkages are known.

The second section of this paper is divided into four subsections. The first contains a descrip-
tion of the data base and the specific subfields that are compared. The second subsection con-
tains a summary of the Fellegi-Sunter model. The third subsection highlights common
assumptions made and computational procedures used. It also contains details of computa-
tional procedures that are specific to the application of this paper.

The fourth subsection describes the evaluation procedures. The basic evaluation technique
involves comparing sizes of the regions of possible links when different types of linkage rules
are applied under fixed error bounds. The sizes of the regions of possible links are statistics
that may be dependent on the samples used in calibrating the linkage rules. Efron’s bootstrap
(1987, 1982, 1979; also Hall 1988) is used to evaluate their distributions.

Results are presented in the third section. This is followed in the fourth section by discus-
sion of the robustness of weight adjustment procedures, the type of conditioning represented
by the adjusted weights, additional types of comparisons, and the use of extra blocking criteria.
Finally, the paper concludes with a summary.

2. DATA BASE, LINKAGE MODEL, COMPUTATIONAL AND
EVALUATION PROCEDURES

2.1 Data Base

The description of the data base is divided into two components. The first component is
a description of the overall properties. The second contains a listing of the specific subfield
comparisons that are made.

2.1.1 Overall Description

The data base of 57,900 records contains 54,850 records that are identified as individual
companies and 3,050 duplicates. A pair of records that consists of a company and its correspon-
ding duplicate is a match; all others are nonmatches.

The data base was constructed from 11 Energy Information Administration (EIA) and 47
State and industry lists containing 176,000 records. Duplicates were identified via elementary
techniques, through call-backs (phone numbers are sometimes present) and through surveying.

The decision rules that are developed are only applied to those pairs that generally repre-
sent hard-to-identify duplicates. Easy-to-identify duplicates are those pairs having substan-
tial portions of their name and addresses agreeing on a character-by-character basis.

An example of a hard-to-identify duplicate might be:

NAME STREET CITY STATE Z1P

Zabrinsky Fuel 16 W Sycamore St Dayton OH 53315
Zabrinky Cmpny 167 Sycamere St Springfield OH 53315.
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We observe that both ‘Zabrinsky’ and ‘Sycamore’ are spelled wrong in the second record, that
‘Cmpny’ is a nonstandard abbreviation, and that Springfield OH, a suburb of Dayton, has
Postal ZIP code 53315.

2.1.2 Specific Subfields Compared

There are four sets of specific subfields that are compared in each pair of records. First are
those that can be obtained through easy substring comparisons. For instance, we could com-
pare character positions 1-4 of the NAME field from one record with the corresponding same
character positions of the NAME field in another record.

In Table 1 WL-NAME is obtained by sorting the NAME field by words of decreasing length
with ties broken by an alpha sort. Corresponding subfields are then compared on a character-
by-character basis.

The second set is the four comparisons of the first and second largest words in the NAME
field. Ties are again broken by an alpha sort.

The last two sets are of subsets of the STREET and NAME fields that are designated by
highly sophisticated software. ZIPSTAN software from the Census Bureau (U.S. Dept. of
Commerce 1978b) is used to obtain corresponding subfields of the STREET field. The sub-
fields are: House No., Prefixes 1 and 2, Street Name, Suffixes 1 and 2, and Unit. Prefixes are
directions such as East and North. Suffixes are words such as Street and Road. Unit designates
identifiers such as apartment or suite number.

The NSKGENS5 module from software used in the Canadian Business Register (Statistics
Canada 1984, 1982) is used to obtain corresponding subfields of the NAME field. NSKGEN3
creates three groups of words. The first group consists of three abbreviations with the first
corresponding to surname if present. The second group contains two words with the first cor-
responding to surname. The third group is a single word obtained by concatenating and
abbreviating individual words in the NAME field. Details are given in Winkler (1987) or in
Statistics Canada (1984, 1982).

2.2 Fellegi-Sunter Model

The Fellegi-Sunter Model uses a decision-theoretic approach establishing the validity of prin-
ciples first used in practice by Newcombe (Newcombe et al. 1959). To give an overview, we
describe the model in terms of ordered pairs in a product space. The description closely follows
Fellegi and Sunter (1969, pp. 1184-1187).

Table 1

Corresponding Subfields Compared on a
Character-by-Character Basis

Field 1-4, 5-10, 11-20, 21-30
NAME 1-4, 5-10, 11-20, 21-30
STREET 1-6, 7-15, 16-30

Z1P 1-3, 4-5

CITY 1-5, 6-10, 11-15
STATE 1-2

TELEPHONE 1-3, 4-6, 7-10

WL-NAME 1-4, 5-10, 11-20, 21-30




104 Winkler: Methods for Adjusting for Lack of Independence

There are two populations A and B whose elements will be denoted by ¢ and b. We assume
that some elements are common to A and B. Consequently the set of ordered pairs

A X B = {(a,b): acA, beB}
is the union of two disjoint sets of matches
M = {(a,b):a = b, acA, beB}
and nonmatches

U= {(a,b):a # b, acA, beB}.

The records corresponding to members of A and B are denoted by « (a) and 8(b), respec-
tively. The comparison vector y associated with the records is defined by:

vla(a), B(b)] = (v'[a(a), B(B)1, ¥*[a(a), B(B)], ..., vX[a(a), B(D)]).

Eachof they’,i = 1, ..., K, represents a specific comparison. For instance, ~! could rep-
resent agreement/disagreement on sex. v could represent the comparison that two surnames
agree and take a specific value or that they disagree.

Where confusion does not arise, the functionyon A X B will be denoted by y(«,8), v(a,b),
or . The set of all possible realizations of v is denoted by T'.

The conditional probability of vy(a,b) if (a,b)eM is given by

m(y) = Ply[a(a)B(b)]] (a,b)eM]}

Y, Plyla(@), B(b)]) - Pl(ab)|M].

(a,b)eM

Similarly we denote the conditional probability of v if (a,b)eU by u(vy).

We observe a vector of information y (a,b) associated with pair (a,b) and wish to designate
a pair as a link (denote the decision by A,), a possible link (decision A4,), or a nonlink (deci-
sion A3). A linkage rule L is defined a mapping from I, the comparison space, onto a set of
random decision functions D = {d(y)} where

d(v) = {P(A]Y), P(A3]7), P(A3]7)}; v€T

and
3

Y Py = 1.

i=1

There are two types of error associated with a linkage rule. A Type I error occurs if an unmat-
ched comparison is erroneously linked. It has probability

P(A4,|U) = 2 u(y) - P(Aly)

yer
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A Type Il error occurs if a matched comparison is erroneously not linked. It has probability

PA|U) = T m(y) - P(Ay]).
yer

Fellegi and Sunter (1969) define a linkage rule L, with associated decisions A;, A,, and
Aj, that is optimal in the following sense:

THEOREM (Fellegi-Sunter 1969). Let L’ be a linkage rule with associated decisions A7,
Aj, and A7 such that it has the same error probabilities P(A;|M) = P(A;|M) and
P(A{|U) = P(A,|U) as Ly. Then L, is optimal in that P(A,| U) = P(A;|U) and P(A,| M)
=< P(A;|M).

In other words, if L’ is any competitor of L, having the same Type I and Type 11 error rates
(which are both conditional probabilities), then the conditional probabilities (either on set U
or M) of not making a decision under rule L’ are always greater than under L. L, is described
in subsection 2.3.1.

The Fellegi-Sunter linkage rule is actually optimal with respect to any set Q of ordered pairs
in A X B if we define error probabilities Pg and a linkage rule L, conditional on Q. Thus, it
may be possible to define subsets of 4 x B on which we make use of differing amounts and
types of available information.

For instance, if we have a set of pairs in which telephone number is present, we might
use telephone number and a few characters from the name to designate links. With other
pairs, we may additionally have to utilize information from the street address and the
city name.

Sets of ordered pairs Q on which the Fellegi-Sunter linkage rule is applied are often
obtained by blocking criteria. Blocking criteria are sort keys that are used to reduce the
number of pairs that are considered. Rather than consider all pairsin 4 X B, we might only
consider pairs that agree on the first three digits of the ZIP code or on a suitable abbreviation
of surname.

2.3 Computational Procedures

This section is divided into five parts. The first part contains a description of the general
linkage rule of the Fellegi-Sunter Model. The second contains a description of the simplified
computational procedures when a conditional independence assumption is made.

Background on the validity of the conditional independence assumption is presented in the
third part. The fourth describes two general methods of adapting computational procedures.
The fifth provides a description of the specific computational procedures of this paper.

2.3.1 General Form of Linkage Rule

To provide a background for understanding why specific computational procedures are used,
we consider the following likelihood ratio

R = R[vy(a,b)] = m(y)/u(y). (2.1

We observe that, if y represents a comparison of K fields, then there are at least 2X pro-
babilities of form m (7). If y represents agreements of K fields, we would expect this to occur
more often for matches M than for nonmatches U. The ratio R would then be large. Alter-
natively, if v consists of disagreements, the ratio R would be small.
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If the numerator is positive and the denominator is zero in (2.1), we assign an arbitrary very
large number to the ratio. The Fellegi-Sunter linkage rule takes the form:

If R > UPPER, then denote (a,b) as a link.
If LOWER < R < UPPER, then denote (a,b) as a possible link. 2.2)
If R < LOWER, then denote (&,b) as a nonlink.

The cutoffs LOWER and UPPER are determined by the desired error rate bounds.

2.3.2 Simplification Under Conditional Independence Assumption

In practice, computation is simplified two ways. The first is by the conditional indepen-
dence assumption of Fellegi and Sunter (1969):
Foreachy €T

my(y") - my(y?) ... mg(y¥) and
K
)

m(y)
u(y)

(v - wa(v?) . ug(y

wherefori =1,2, ..., K

m;(v") = P(y'| (a,b)eM) and
u;(y') = P(v| (a,b)el).

This assumption basically is that agreement on one characteristic such as surname does not
depend on agreement of other characteristics such as house number or age.

The second is to use a computationally convenient function of the ratio in (2.1). Log; is
used. We then have

W = W(y) = Logy[m(y)/u(y)] (2.3)
=w + w2+ ...+ Wk

where W' = Logz[mi('yi)/ui('yi)] fori = 1,2, ..., K. We call W the total comparison
weight associated with a pair and Wi i=1, 2, ... K, the individual comparison weights.
For the remainder of the paper we will assume that each component vii=1,2,...K,
in y represents a two-state comparison (e.g., agree/disagree). For convenience, we denote agree-
ment in the ith component by v, i = 1, 2, ... K. Under the conditional independence
assumption, for each i = 1, 2, ... K, we need to estimate probabilities of the forms

P(vy = v/ M) and P(y = v} U). 2.4

Using a set of pairs for which the truth and falsehood of matches are known, for each agree-
ment 5, i = 1, 2, ..., K, we divide the set into the four subsets determined by the
agree/disagree and match/nonmatch statuses in (2.4) to perform the estimation.

If no conditional independence assumption is made, we need to estimate 2- (2%—1) pro-
babilities of form (2.1) and divide the set of pairs for which truth and falsehood are known
to2 - (2X—1) subsets. Even with a small number of comparisons (say, 6 or less), we may not
be able to obtain sufficiently large samples to allow accurate estimation of the probabilities.
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2.3.3 Validity of Conditional Independence Assumption

Winkler (1985¢) has shown that the independence assumption is not valid for simple com-
parisons of portions of the name and street address fields for list of businesses. Using similar
portions of the name and street fields, Kelley (1986) has shown that the independence assump-
tion is not valid for files of individuals. Furthermore, Kelley and Winkler have each shown
that matching efficacy is sensitive to the set of pairs over which probabilities of the form (2.4)
are computed.

Fellegi and Sunter indicate that, if the conditional independence assumption is not valid,
then estimates of weights that are obtained via formula (2.3) will lose their strict probabilistic
interpretation. By this, they mean that the linkage rule of their theorem may not actually min-
imize the number of possible links. They indicate that they believe their procedure to be robust
to departures from the independence assumption.

Under the independence assumption, probabilities are computed as products of probabilities
of the form (2.4). If we have a set of pairs for which truth and falsehood of matches are known,
then we can adjust probabilities of form (2.4) for departures from the independence assump-
tion. If the total weights obtained by adjustment yield substantially smaller sets of potential
links under fixed bounds on error rates, then the Fellegi-Sunter procedure may not be robust
to departures from independence.

2.3.4 General Adjustments

There are two general adjustments to the basic methods of computing individual compar-
ison weights. The first consists of dividing the subset of pairsin 4 X B over which individ-
ual comparison weights are computed into several subsets. The linkage rule is obtained by
restricting the basic Fellegi-Sunter rule to correspond to the different subsets on which
weights are computed. Individual comparison weights may vary significantly in different
subsets.

The second adjustment consists of modifying individual comparison weights. Under the
independence assumption, we consider the equation

W = Log,(P(Y€B,NByN ... NByM)/P(y€B; NB,N ... NBg|U))

=w+ w2+ ... + WK

where, for i = 1, 2, and K, W' = Log,(P(v€B;| M)/P(y€B;| U)) and B’ is the set
{v' = v4} or its complement. We wish to find computationally tractable methods of
adjusting the W*,i = 1, 2, ..., K, so that their sum yields better linkage rules.

If there is a sample for which the truth and falsehood of matches are known, then we can
estimate individual comparison weights (Tepping 1968) and the adjustments.

The simplest adjustment procedure involves a steepest ascent approach (e.g., Cochran
and Cox 1957). To begin, we use the known truth and falsehood of matches within a
sample to estimate probabilities of the form (2.4). The probabilities are then used in computing
individual comparison weights that are added to obtain an estimate of total weight (2.3).
For each pair of fixed bounds on Type I and Type II errors, the cutoffs UPPER and
LOWER of (2.2) can be determined. The number of potential links for rules of the form (2.2)
follows immediately.

Next, we chose an individual comparison weight, change it by a fixed amount (say + 1),
recompute the total weight (2.3) using the new individual weight, and find new cutoffs UPPER
and LOWER and a new region of potential links.
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If under fixed bounds of errors, the size of the region of possible links decreases, then we
continue adjusting the individual comparison weight (either up or down) until the region ceases
its decrease in size. We continue by varying other individual weights in a similar manner.

If the size of the region of possible links decreases substantially, then we know the condi-
tional independence assumption is not valid for the set of comparisons. If the conditional inde-
pendence assumption were valid, then the estimated weights would accurately represent the
true weights. The regions of possible links would be minimal by the theorem of Fellegi and
Sunter.

A linkage rule that is based on adjusted individual comparison weights depends on the sample
used in the steepest ascent procedure.

2.3.5 Specific Methods

To describe the specific methods of computing weights and obtaining corresponding linkage
rules used in this paper, we need some additional background.

The only pairs considered are those that agree on at least one of the blocking criteria in
Table 2.

We subdivide the set of pairs obtained via the four sets of blocking criteria into the five classes
given in Table 3.

Table 2
Blocking Criteria

# Characters Used

1. 3 digits ZIP, 4 characters NAME

2. 5 digits ZIP, 6 characters STREET

3. 10 digits TELEPHONE

4.* Word length sort NAME field, then use 1.

* This criterion also has a deletion stage which prevents matching on commonly
occurring words such as ‘OIL’, ‘FUEL’, ‘CORP’, and ‘DISTRIBUTOR.’

Table 3
Sets of Pairs Determined by Blocking Criteria
Class # pairs Determining Blocking Criteria
1 1021  Agreeing on criterion 1 and no other or simul-

taneously agreeing on criteria 1 and 4 and no others.

2 624  Agreeing on criterion 2 and no other or simul-
taneously agreeing on criteria 2 and 3 and no others.

256  Agreeing on criterion 3 only.
4 344  Agreeing on criterion 4 only.

2240  Agreeing on at least one criterion but not in classes
1-4.
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Class 5 contains pairs that generally agree on two or more blocking criteria. Classes 1-5
contain 2991 matches and 1494 nonmatches and miss 59 known matches. The determination
of sets of blocking criteria and classes is treated in detail in Winkler (1985b, 1987).

We classify linkage rules by the different ways in which the individual comparison weights
are computed and how resultant linkage rules are defined.

The first type, AA, of weight computation is an overall aggregate in all pairs. The second,
A, is an overall aggregate in classes 1-4. The third, U, yields separate weight computations
in classes 1-4. The fourth, C, uses steepest ascent to adjust the individual weight computation
of Type U.

Each successive type of linkage rule involves increasingly more complex weight computa-
tions. Matches outside classes 1-5 are not considered in the results section because their number
is constant for each of the four linkage rules.

2.4 Evaluation Procedures

The basic evaluation technique involves comparing sizes of the region of possible links when
the different types of linkage rules are applied under fixed error bounds.

Efron’s bootstrap (1987, 1982, 1979) is used to estimate confidence intervals for statistics
such as the number of possible links. As these statistics are obtained under complicated rules,
it seems unlikely that closed-form estimates can be determined.

If there are sets of pairs for which the truth and falsehood of matches are known, then we
can use Efron’s bootstrap to estimate the variation of parameters in the following fashion:

1. Draw calibration samples of equal size with replacement.

2. Estimate individual comparison weights of the form (2.4) using the known truth and
falsehood in the sample and use them to estimate total weight via (2.3).

3. Compute cutoffs LOWER and UPPER using each sample (in our application we allow
at most 2 percent of the links to be nonmatches and 3 percent of the nonlinks to be matches).

4. Using individual comparison weights from step 2, compute a total comparison weight for
each pair in the entire selected set of pairs. Use cutoffs from step 2 to classify pairs as links,
possible links, and nonlinks.

5. Using estimates from individual samples, determine the means and variances of the cutoff
weights, of the misclassification rates, and of the number of possible links.

The bounds (2 and 3 percent, step 3) are used to try to assure that the corresponding classifica-
tion error rates in the entire data base are less than 5 percent.

Table 4

Linkage Rules by Type of Weight Computation and
Sets of Pairs to Which Applied

Type Individual Weight Linkage Rule
Computation
AA Uniformly over all Over all pairs
pairs in Classes 1-5
A Uniformly over all Designate pairs in Class 5 Links, Apply Fellegi-
pairs in Classes 1-4 Sunter Rule to remaining pairs in Classes 1-4
U Uniformly in each Designate pairs in Class 5 Links, Apply Fellegi-
Class 1-4 Sunter Rule individually in Classes 1-4
C Uniformly in each Same as U except modify weights using steepest

Class 1-4 ascent procedure




110 Winkler: Methods for Adjusting for Lack of Independence

Computations and adjustments must be performed consistently across calibration samples.
Identical adjustment procedures must be used in obtaining individual adjusted weights, total
weights, and cutoffs. If an individual weight is adjusted upward (step 2) by amount x or per-
centage y with one sample, then the same adjustment must be used with other samples.

As the underlying distributions may not be normal or may be biased and skewed, we can
use new techniques of Efron (1982, 1987; also Hall 1988) to determine confidence intervals.
Hall (1988) has shown the theoretical validity of the nonparametric bootstrap that includes
an acceleration-constant type adjustment for skewness of a distribution.

3. RESULTS

The results in this section comprise three parts. The first part is an overall comparison from
using the four different weighting methods described in section 2.3.5. The second part con-
tains more details about the best two methods from the first part. The third part contains results
from the bootstrap evaluation.

3.1 Overall Comparison

We place fixed upper bounds of 5 percent on the number of matches misclassified as nonmatches
and 2 percent on the number of nonmatches misclassified as matches. As we are using discrete
data, actual error rates will generally not equal their upper bounds (Table 5, columns 2 and 3).

We see that, as the complexity of the application of the weighting methodology increases,
the number of possible links (size of manual review region) decreases dramatically from 1512
to 97. This indicates that the increasing complexity of the weight computations yields increas-
ingly better decision rules.

We see that the last two methods, which both involve computing individual comparison
weights separately in classes 1-4, yield the smallest sets of possible links (695 and 97, respec-
tively).

3.2 Best Methods

We consider the best two methods, linkage rules using weights of Type U and of Type C,
in greater detail. Results from applying weights of Type U and Type C are presented in Tables
6 and 7, respectively. In determining cutoff weights by class, we place rough upper bounds
of 5 percent misclassified nonmatches and 2 percent misclassified matches in each class. The
overall upper bound is maintained.

Comparing columns 4 and 5 across tables 6 and 7, we that the corresponding numbers of
misclassified matches and nonmatches are approximately the same. This is consistent with the
bounding method. In every class, the linkage rule using Type C weights yields less possible links
than the rule using Type U weights.

The numbers of records classified as possible links are less in classes 1 and 4 (83 versus 55
and 44 versus 0, respectively) and dramatically less in classes 2 and 3 (409 versus 0 and 159
versus 42, respectively).

One hundred percent of the pairs in classes 2 and 4 are classified by the procedure that uses
Type C weights.

Two variations distinguish the linkage rule based on type C weights from the rule based on
type U weights. First, we vary agreement weights associated with the four subfields of the
NAME after words have been sorted by decreasing length (Table 8). The only substantial varia-
tions (greater than 2.5 on the log, scale) occur in Class 2.
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Table 5

Error Rates and Number of Possible Links
from Applying Different Weighting Methods

RrOf)ortion Total Classed
Weight Misclassed as Possible
Type Non N Links
- h On_
Match Mate Match Match
AA .047 .020 964 2009 1512
A .041 .015 952 2481 1052
U .050 .020 1083 2707 695
C .033 .019 1441 2947 97
Table 6
Results from Using a Linkage Rule Based on Type U
Weights for Delineating Matches and Nonmatches
(5 Percent Overall Misclassification Rate)
Cutoff Weights Misclassed CITO“(‘; Total  Total
Class as assed as Not Records
Classed
Non- Non-
LOWER UPPER Match Match Match Match
1 0.5 6.5 39 14 674 264 83 1021
2 -4.5 3.5 2 4 100 115 409 624
3 -4.5 6.5 2 1 55 42 159 256
4 2.5 11.5 11 2 254 46 44 344
Totals 54 21 1083 467 695 2245
Table 7
Results from Using a Linkage Rule Based on Type C
Weights for Delineating Matches and Nonmatches
(3 Percent Overall Misclassification Rate)
Cutoff Weights Misclassed CITOt‘:‘il Total Total
Class as assed as Not Records
Classed
Non- Non-
LOWER UPPER Match Match Match Match
1 4.5 7.5 28 8 692 274 55 1021
2 2.5 2.5 5 3 379 245 0 624
3 -0.5 4.5 5 6 104 110 42 256
4 8.5 8.5 9 4 266 78 0 344
Totals 47 21 1441 707 97 2245
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Table 8

Steepest Ascent Adjustment to Agreement Wei;hts
for Subfields Obtained by Wordlength Sort

Subfield
Class
1 2 3 4
1 - +
2 + + + + + +
3 + + - + +
4 . + - +
1 <. means deviation less than 1.0, ‘+° ‘—’ mean deviation

greater than 1.0 and less than 2.5, and * + 4+’ means deviation greater than 2.5.

The second is that the agreement weight is only utilized if four corresponding subfields, the
three subfields of CITY and the one STATE, agree. The variation, in effect, typically increases
the relative distinguishing power of agreements/disagreements in subfields other than the CITY
field.

The largest reduction (from 409 to 0) in the number of possible links takes place in Class
2. A slightly higher proportion (.95=~359/379) of nonlinks have an agreeing CITY field than
links (.91=223/245).

The following is an example of a match that is not designated as a link using the rule based
on Type U weights but is using the rule based on Type C weights.

NAME STREET CITY STATE ZIP
Roberts Heat Oils 167 Sycamore St Dayton OH 53315
Maxwell S Robert Heat Oil 167 Sycamore St Dayton OH 53315.

The first six digits of the telephone number also agreed.
The following is an example of an erroneous match using Type C weights.

NAME STREET CITY STATE ZIP
Molar Petro 167 Sycamore St Dayton OH 53315
Petrochem 167 Sycamore St Dayton OH 53315.

These two companies do business from the same location and also have identical phone
numbers.
The following is an example of an erroneous nonmatch using Type C weights.

NAME STREET CITY STATE ZIP
Johns Geo M 167 Sycamore St Springfield OH 53315
Geo M Johns Jobber 167 Sycamore Spring Field OH 53315.

Insertion or deletion of blanks in corresponding fields typically causes record pairs to be
designated as a nonmatch.
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Table 9

Bootstrap 90 Percent Confidence Intervals for Counts of Possible Links
500 Replications

Weight Class Ordinary BC BC,

Type Interval Interval Interval
C 1 ( 42,117) ( 37,108) ( 37,108)
C 2 (0, 0 (77 (7, 7
C 3 ( 31,154) ( 34,156) ( 34,156)
C 4 ( 0, 36) ( 0, 39 ( 0, 39
U 1 (122,192) (128,196) (128,196)
U 2 (383,501) (383,501) (383,501)
U 3 (149,201) (142,197) (142,197)
U 4 ( 35, 82) ( 33, 81) ( 33, 81)

3.3 Bootstrap Variation

The results of this section involve increasingly more sophisticated methods of computing
bootstrap confidence intervals (Table 9). For each class, 500 replications are used in computing
90 percent confidence intervals for estimates of the number of records designated as possible
links. The two error bounds are fixed at 5 percent.

The first interval is the ordinary bootstrap interval that is partially based on normal theory
(Efron 1979). The second interval, denoted by BC, is an interval in which a bias adjustment
has been made (Efron 1979, 1982). The third interval, denoted by BC,, is obtained using
acceleration-constant type adjustments for bias and skewness (Efron 1987; also Hall 1988).

Examination of Table 9 yields that each of the intervals in respective classes are approx-
imately the same length. If the method of adjusting to achieve weights of Type C were highly
sensitive to the individual samples taken for calibration, we would expect the confidence
intervals associated with Type C weights to be larger than those associated with Type U weights.

The fact that the intervals are large for either type of weight indicates the results are quite
dependent on the calibrating samples. The fact that the ordinary confidence intervals are
roughly the same as the BC and BC, indicates that the respective distributions are neither
biased nor skewed.

The number of possible links in intervals based on Type C weights is almost always less than
the corresponding intervals based on Type U weights. Only the intervals associated with classes
3 and 4 show slight overlap. Thus, it is reasonable to accept the hypothesis that the linkage
rule based on Type C weights consistently outperforms the linkage rule based on Type U
weights.

4. DISCUSSION

This section is composed of four parts. The first contains a discussion of the robustness
of the steepest ascent adjustments. The second subsection describes the implicit type of con-
ditioning imposed by the steepest ascent adjustments. The third part considers the usefulness
of making comparisons that are partially dependent on other comparisons. The fourth subsec-
tion describes methods for determining sets of blocking criteria.
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4.1 Robustness of Steepest Ascent Adjustment

The sizes of regions of possible links are somewhat sensitive to the set of weights that are
varied during the steepest ascent procedure. In two cases (one of which was presented in this
paper), the numbers of possible links were approximately 100; in two others, 200. All four of
the steepest ascent variations yielded improvements over the 700 possible links obtained by
the best non-steepest ascent procedure.

The individual weights that were modified varied significantly over the four cases. In no
case were more than eight of the 30 weights varied.

It is reasonable to hypothesize that the steepest ascent weighting procedure will yield
improvements when deviations from conditional independence are substantial. No bootstrap-
based significance tests were used to check the hypothesis for three of the four cases.

Obtaining small samples that allow adjustments such as performed in this paper should be
straightforward. Sample sizes of 100 in each class may be sufficient. The sample sizes used
for the bootstrap results of section 3.3 were approximately 100 in each class. Comparable
bootstrap results using samples of 30 and 50 in each class were not sufficient to show that
adjustments yielded quantifiable improvements. Sample sizes of 200 yielded bootstrap con-
fidence intervals that were almost the same as those based on samples of sizes 100.

Many record linkage systems (e.g., U.S. Dept. Agriculture 1979; U.S. Dept. of Commerce
1978a; Statistics Canada 1984) allow modification of matching parameters based on informa-
tion from samples. Reestimation of parameters using sample information is a powerful feature
of the Generalized Iterative Record Linkage System of Statistics Canada (1983). The parameter-
reestimation in these systems generally involves direct reestimation of the marginal probabilities
m,-('yi ) and u,-('yi ). It does not involve adjustments of weights such as given in this paper.

4.2 Type of Conditioning Represented by Modified Weights

To prepare for the discussion in this section, we need two sets of facts. The first set involves
the conditional discriminating power of components of v. Let o be a vector with components

o', 6%, ..., o¥ that consists of a reordering of the components v, v2, ..., v of v. Then

. P(y|M) = P(o|M) =
P(d' = o, 0* = 0}, ..., " = of|M) = “.1)

P(c' = of|M) - P(6® = dd|c', M) ... P(oX = olj0',0? ..., o5, M).

The component ¢! might refer to first name, ¢2 to house number, ¢> to age, and so on.

For each ¢ we can call P(d' = ¢)|c!, 02, ..., 6"}, M) the successive conditional incre-
mental discriminating component of ¢'in M, i = 1,2, ..., K. These incremental probability
components are dependent on the reordering ¢!, o2, ..., . Each component on the right
hand side of (4.1) is independent of the others. In a similar manner, we can consider incremental
components in U.

The basic purpose of a reordering is to consider one specific pattern of conditional pro-
babilities for v€T'. For the single reordering we let ¢ = o(y) vary in o(I") as y€I". Then for

all o€o(T),
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W

W(vy) = Logy[m(vy)/u(v)]
(4.2)
Al + A2 + ...+ AN

where A’ = Log,[P(0' = )| c',0%, ..., '~ !, M)/P(d' = 6}|d', ¢*, ..., 6’71, U)] for
i=12,...,K

The second set of facts involves transformations that map the ratio R given by (2.1) to real
numbers which we call weights. For each pair of Type I and Type II errors, we consider any
transformation that places weights associated with links in the highest interval, weights
associated with nonlinks in the lowest interval, and weights associated with possible links in
the interval between the upper and lower intervals. Such a transformation yields rules that can
be represented in forms similar to form (2.2) and are equivalent to the Fellegi-Sunter rule at
the same fixed pair of error levels. If the transformation is monotone, then the new weights
yield rules that are equivalent to the original Fellegi-Sunter rule for all error levels.

The steepest ascent weight adjustment procedure implicitly determines a transformation of
the ratio R and a single reordering that is fixed for all y€I" and the same in M and U. The fact
that the steepest ascent procedure adjusts weights sequentially assures that there is a single
reordering. The adjusted weights W' + c; are estimates that replace the W* in (2.3) for some
real constants ¢;, i = 1,2, ..., k.

The fact that the adjusted weights yield smaller regions of possible links means that, at a
fixed pair of error levels, the new total weights more accurately represent a transformation
of the Log;, of the ratio of the true probabilities given by the left hand of (4.1). The new total
weights represent estimates that transform the right hand side of (4.2).

The adjustment procedure allows us to utilize better the incremental distinguishing power
of one field given another, a second field given the first two, and so on. We note that we do
not need to know the specific transformation or the specific pattern of conditioning induced
by the reordering.

The adjustment procedure is similar to new bootstrap procedures (Efron 1987; Hall 1988).
The validity of the bootstrap procedures is dependent on the existence of monotone transfor-
mations, bias constants, and acceleration constants that yield the exact correspondence of con-
fidence intervals of the original distributions with confidence intervals of specified normal
distributions. The transformations and constants need not be known.

4.3 Value of Dependent Comparisons

The intuitive idea of making a number of comparisons, some of which may be partially
dependent on other comparisons, is that they may, when used in properly adjusted rules, yield
additional distinguishing power. Newcombe and Kennedy (1962, see also Newcombe ef al. 1983)
have given examples of comparisons of portions of name fields that intuitively may be depen-
dent on other comparisons. The additional comparisons, nevertheless, may yield better linkage
rules than those rules that do not utilize the same additional comparisons.

The chief difficulty in using additional comparisons is properly utilizing their incremental
distinguishing power. This paper’s set of comparisons - in particular, of subfields of the name
field - is not independent in the sense of equation (2.3). The primary purpose of the set is to
illustrate methods for systematically obtaining better linkage rules when the conditional inde-
pendence assumption is not valid.



116 Winkler: Methods for Adjusting for Lack of Independence

4.4 Additional Blocking Criteria

There are two conflicting goals when a set of blocking criteria is used to reduce the number of
pairsin A X Bthat receive further processing. The first is the need to reduce (drastically) the number
of pairs that are processed and to obtain a set in which linkage rules can accurately delineate matches
and nonmatches. The second is to obtain a set that contains as many matches from M as possible.

To determine whether it is feasible to look for additional sets of blocking criteria, it is first
necessary to find estimates of the number of matches missed by a given set of blocking criteria.
If the estimates are acceptably small, then it is not necessary to look for additional criteria.

To estimate the number of matches missed by given sets of blocking criteria, Scheuren (1983)
suggested using standard capture-recapture techniques such as given in Bishop, Fienberg, and
Holland (1975, Chapter 6). Winkler (1987) applied the techniques to the same empirical data
and four sets of blocking criteria as in this paper.

The best fitting loglinear model for the table of counts of records captured and not cap-
tured by the four sets of blocking criteria was used in obtaining a confidence interval for the
number of matches missed. Based on assumed asymptotic normality, a 95 percent confidence
interval (27,160) was computed. The interval represents between 1 and 5 percent of the matches.

5. SUMMARY

The results of this paper show that the conditional independence assumption is not always
valid. When the assumption is not valid, it is possible to develop adjusted linkage rules that
improve on the standard linkage rule. Under fixed bounds on error rates, the improved rules
reduce the size of the region of possible links.
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