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When Are Census Counts Improved
by Adjustment?

NOEL CRESSIE!

ABSTRACT

There are persuasive arguments for and against adjustment of the U.S. decennial census counts, although
many of them are based on political rather than technical considerations. The decision whether or not
to adjust depends crucially on the method of adjustment. Moreover, should adjustment take place using
say a synthetic-based or a regression-based method, at which level should this occur and how should
aggregation and disaggregation proceed? In order to answer these questions sensibly, a model of under-
count errors is needed which is ‘‘level-consistent’” in the sense that it is preserved for areas at the national,
state, county, efc. level. Such a model is proposed in this article; like subareas are identified with strata
such that within a stratum the subareas’ adjustment factors have a common stratum mean and have
variances inversely proportional to their census counts. By taking into account sampling of the areas (e.g. ,
by dual-system estimation), empirical Bayes estimators that combine information from the stratum average
and the sample value, can be constructed. These estimators are evaluated at the state level (51 states,
including Washington, D.C.), and stratified on race/ethnicity (3 strata) using data from the 1980 post-
enumeration survey (PEP 3-8, for the noninstitutional population).

KEY WORDS: Emprical Bayes estimation; Loss functions; Measures of improvement; Quantile
function; Spatial correlation; Synthetic estimation.

1. INTRODUCTION

This article is of a technical nature, but it is important to present a brief explanation of the
political and social ramifications of the ‘‘undercount issue’’ in the United States of America.
By December 31 of the year of the decennial census, the U.S. Census Bureau is specified by
law to submit state population counts to Congress for the purpose of reapportionment of the
House of Representatives, and by March 31, 1991, to submit small-area population counts
for the purpose of redistricting. In recent decades, the number of uses to which census data
are put have multiplied: revenue-sharing formulas use population and per capita income for
each incorporated place, demographic and sociological research at regional, state, and national
levels usually rely on census counts, efc.

Inaccurate census counts should be cause for concern to the whole nation. That certain
groups of people (young black males, illegal aliens, efc.) are harder to count than others, is
without question; see Ericksen and Kadane (1985), and Freedman and Navidi (1986), and the
discussion following these articles. If the hard-to-count groups were distributed in equal pro-
portions throughout the political and administrative regions of the USA there would be far
less controversy over what to do about the uncounted people. As it is, many of the large
American cities such as Chicago, Detroit, New York, and Los Angeles feel they are losing
federal funds because their cities contain more of the types of people that tend to remain
uncounted. And certain states such as New York and California feel they are under-represented
in Congress, to the benefit of Midwestern states such as Indiana and Iowa.
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Census undercount is defined simply as the difference between the true count and the census
count, expressed as a percentage of the true count. My approach to its estimation is model-
based, relying on data obtained from the post-enumeration survey (PES). A number of technical
aspects of a model-based approach to adjustment will be addressed in this article. Section 2
establishes the model, addresses the question of choice of measures of improvement, and
presents results for aggregation and disaggregation based on Bayes and Synthetic estimators.
Section 3 gives empirical Bayes versions of the results of Section 2. Section 4 summarizes what
has been learned from this model-based approach; there is also discussion of the implications
of the sufficient conditions that guarantee risks of adjusted counts to be smaller than risks of
census counts.

2. THE MIXTURE MODEL AND ITS CONSEQUENCES

At the outset I would like to explain the source of random variation in my model, originally
defined in Cressie (1986), and further developed in Cressie (1988). I consider the true popula-
tion in any well-defined stratum of the USA, to be unknown. After observing the correspon-
ding census population, the uncertainties about the true population are updated. In other words,
all inference will be performed conditionally on the observed census counts.

2.1 The Model

The method of synthetic estimation constructs estimators of undercount at a particular level
(e.g., the state level) by summing undercounts of various strata (e.g., demographic strata) over
the area being considered (e.g., California), where it is assumed that any stratum has a constant
proportion of true counts to census count regardless of which area is being considered. For
example, it would be assumed that the proportion for young black males is the same for
California, Delaware and so on. Most often these strata are defined demographically according
to the factors of age, race, and sex. However Tukey (1981) suggested that geographic and urban
factors should be added. Two such stratifications of the USA are given in Isaki et a/. (1986).

The mixture model I am proposing assumes a stratification has been defined already,
although in Section 4 there is a suggestion how one might determine post hoc whether a chosen
stratification is satisfactory.

Suppose therearej = 1, ..., Jstrata,andi = 1, ..., Jareas (e.g., at the enumeration-
district level, I = 300,000, while at the state level, I = 51, including the District of Columbia;
for demographic stratification, J = 30 say, while for the two stratifications in Isaki et al., 1986,
J = 90 and J = 96. Think of stratum j as fixed (for example, stratum j might be the blacks
in central cities in those SMSA’s whose population’s greater than or equal to 250,000, in the
New England Census Division). Then as i ranges from 1, ..., I, a sequence of subareas is
generated; the subarea indexed by *‘ji*’ refers to that part of the i-th area that has stratum j
in it. Only subareas with nonzero census counts are considered.

Define

h<
I

true count in the j-th stratum of area / 2.1)

%
I

census counts in the j-th stratum of area i 2.2)

Fi=Yu/Ci=1,..,Lj=1, ..., J. (2.3)
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Suppose for the moment that we know the ratios {F;;: j = 1, ..., J} for the i-th area. Then
from the census counts Cj;, the true count Y; can be calculated.

The Fj; are often called adjustment factors. The strata are constructed so that these adjust-
ment factors {F;:i = 1, ..., I} are as homogeneous as possible within the j-th stratum;
J =1, ..., J(Tukey 1981).

Realistically the adjustment factors are never known; synthetic estimators exploit the
homogeneity and replace (2.4) with

J
ye = 2 F;Cj. (2.5)
i=1

Now there are only J synthetic adjusment factors {F;:j = 1, ..., J} to estimate, which
through (2.5) yields an estimate of Y;. Synthetic estimators have the advantage that the adjust-
ment factors are independent of i and so can be applied to any level of aggregation.

The (estimated) adjustment factors could also be modeled by regression on independent
variables that may or may not be census variables; for example, percent minority, crime rate,
and percent conventionally counted in the census. Consider,

J 14
Yree = E < E :Bk,jzk,ji> Cii. (2.6)
j=1 k=1
To fit the parameters 8 ;, ..., 8, ; efficiently, various assumptions are made about the error

components {Fj; — y2_, 8, ;z; i}, viz. independent and identically distributed with mean zero.

Ericksen and Kadane (1985) propose the fitting of a regression relation to ), leFj,-Cj,-/
¥y fz 1Ciis i =1, ..., I. Freedman and Navidi (1986) criticize the approach and point out the
consequences of failure of any of the error assumptions. A problem they did not perceive which
I emphasize in (2.7) below, is the heteroskedasticity forced onto the problem by working with
ratios; Section 2.2 justifies this model choice. Furthermore, in this latter regression approach
undercounts across strata are combined, so that variation between strata is shared by both the
regression relation and the error variance. More precise estimators can be obtained through
(2.6) by allowing each stratum its own regression relation. Homoskedastic errors and a regres-
sion model based on the combination of heterogeneous strata, are also assumed by Ericksen
and Kadane (1987) and Ericksen, Kadane and Tukey (1987). It seems that the combination
of heterogeneous strata was made necessary by the lack of suitable data.

I do not assume F;;’s that depend only on j, nor a regression relation for the Fj’s, but
instead reformulate the synthetic assumption F;; = F}, into a (statistical) homogeneity
assumption:

Fiy~N(F;,t}/Cp)s i=1,..,L; j=1,...,J, 2.7

where ““ ~*’ means “‘is distributed as,’’ and N(u,0?) is a normal distribution with mean u and
variance o2. Using a regression relation for the mean has the potential of explaining more of
the variation of the F’s at the risk of introducing bias through misspecification. The strata
chosen in Section 3 are based on race; it was decided not to cloud this sensitive issue with
selection of controversial regression variables. I shall refer to the model (2.7) as a mixing
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distribution. The normality assumption is made for convenience and will be relaxed later.
Here Fj is a fixed but unknown mean to be estimated, and sz = var (@ Fj;) is a param-
eter 1 shall call the (standardized) stratum variance. As a representation of reality, model (2.7)
is better at higher levels of aggregation; see Section 3. All distributions in (2.7) are assumed
independent.

There are good reasons for weighting the variance by 1/Cj; (see Cressie 1987a, Appendix
and 1988). The most attractive consequence of model (2.7), is that it is level-consistent ; that
is, it is preserved through different levels of aggregation. Specifically,

2

7
Fjuir ~ N F; —) , (2.8)

_/’
Ciigir
where

_ FiCyi + Fy Gy

Fjiair =

' , and Cj,i&i’ = CI’ + Cji" (2.9)

Cjiai

This is a very important property that most of the currently proposed statistical models of under-
count do not possess. It enables the modeler to escape from the geographical and historical
accidents that divided up the country into the states, counties, efc., that we now see.

Of course the {F;: i = 1, ..., I;j =1, ..., J} are not available as data; if they were,
{Y;:i =1, ..., 1} would be trivial to calculate. In reality, some sampling takes place so that
F; is observed imperfectly. The best way to think of it is that within stratum j of the i-th area,
a sample is taken for undercount. Let the outcome be X; (e.g., Xj; is the ratio of dual-system
estimator to census count, for the j-th stratum in the i-th area), and model

Xi~NFudf/Cy);i=1, .., Lj=1,...,J, (2.10)

where Fj; is an unknown mean parameter to be estimated, and ajz = var (\/—C_j,- Xj;) is a par-
ameter I shall call the (standardized) sampling variance . All distributions in (2.10) are assumed
independent. When the number of strata is large, a large PES (say, 300,000 households) is
needed to obtain data for each area-stratum combination.

Probability-proportional-to-size sampling was used by the U.S. Census Bureau in its 1980
post-enumeration program, which implies a sampling variance of the form given in (2.10). As
a consequence of this weighting, (2.10) is also level-consistent.

2.2 Loss Functions (Measures of Improvement) and their Bayes Estimators

The term loss function is used in statistical decision theory (see, for example, Ferguson 1967)
to quantify the loss incurred from using 6 as a parameter estimator when the true value is 6.
For example, a squared-error loss function is (§ — 6)2. Adopting a more optimistic termi-
nology, the Census Bureau decided in 1986 to use ‘‘measure of improvement’’ instead of *‘loss
function.”’

Think of (2.10) as a conditional distribution of X; given Fj;, and (2.7) as the mixing (or
“‘prior’’) distribution of Fj;. To predict Fj; then, the ‘‘posterior’ distribution of Fj; given X;
is needed. Notice that a Bayesian terminology is being used since I am thinking of the Fj; as
random variables whose collection is modeled according to (2.7). But as well as these random
parameters, there are fixed but unknown parameters {F;}, {77}, {07} to be estimated. The
posterior of Fj; | Xj; is,
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(distribution of X; | Fj;) - (“‘prior” of F;)

: (2.11)
marginal of X;

For squared-error loss, the usual Bayes estimator of Fj; is simply the expectation of Fj; with
respect to the posterior: F};ba = E(Fj; | Xj;). Substituting the model (2.7), (2.10) into (2.11),
the posterior distribution is easily obtained (see, for example, Lindley and Smith 1972):

2 2.2
7; 9 7j
Fy| Xji ~ N(Fj + — X; - F), —— /Cji) ; (2.12)
2 + g2 7} + o}

fori=1, ..., I;j=1, ..., J. Hence the posterior expectation is simply
ba _
F{™ = F; + Dj(X; ~ F)), (2.13)

where D; = sz/ (Tj2 + ojz ). To convert (2.13) into an empirical Bayes estimator, estimators
have to be found for F; and D;; see Section 3.1.

Although the normality assumptions in (2.7) and (2.10) were used to derive (2.13), more
generally (2.13) can be shown to be Bayes for squared-error loss, when assuming simply the
mean and variance structure of (2.7) and (2.10), and E(F; | X;;) = a;; + b;Xj;. Goldstein
(1975) has an even more general result of which this is a special case. For ease of exposition
I shall continue to assume normality but it should be remembered that there is a nonparametric
optimality for all the estimators considered.

The estimator Fj}?b"‘ given by (2.13) is Bayes for squared-error loss, within the j-th stratum
of the i-th area. Define the estimator of Y,

i

J
vt = Y ORRCi=1, .., @.14)
=1

and consider the following general loss function:
I
Y & - Yy, (2.15)
i=1

where f(C;) is any nonnegative function of the i-th area’s census count. Minimizing
(2.15) over all Y = Y /., F§" C; leads to choosing Ff*’s such that E [ L 1_; T/ A
(Ff* — Fj,-)2 [ {X:i=1,...,;j=1,...,J}] is minimized, where the \; = 0 only
depend on census counts {Cy: i =1, ..., I;j = 1, ..., J}. This minimum is achieved by
the estimator (2.14), which shows it to possess a certain robustness since it is optimal regard-
less of which f(-) is chosen.

In accordance with recommendation 7.2 in National Academy of Sciences (1985), choice
of f(C;) = 1/C; yields an area’s contribution to the total loss that reflects the size of its
population. Among the loss functions the Census Bureau has been using, the one most like

(2.15) with £(C;) = 1/C;, is

7
Y (Y - Y)Yy (2.16)
i=1
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it is ““most like’’ in the sense that it is also a weighted sum of squares where each summand
yields an area’s contribution to the total loss that reflects the size of its population. Here, under-
count in more populous areas receive more weight, so that using such loss functions reflects
an emphasis on national considerations. The loss function ¥/, (Y;*' — ¥;)?/Y}, which
guarantees undercount equity for the 7 areas, will not be considered in this article.

It is easy to show that the Bayes estimator in the case of loss function (2.16) is given by,

J
YS = [E(( E F,,-c,,.> N Xpi=1, o Lj=1, ..., J})] -1 (2.17)
j=1

which is not a linear combination of {Fj‘;ba: j=1,...,j). However to a first approxima-
tion, using the 8-method, it can be shown that this Y = Y"*2_ This is in fact true for a much
larger class of loss functions suggested by Cressie (1987b):

2 Y_est
N — 2 verl(— )= 1| + A Y-y Ga=0,—1; (218
e K (6 Mt Rl o

i=1

the cases A = 0, — 1 are defined as the respective limits of L»as A — 0, — 1. Read and
Cressie (1988, Chapter 8) show that in this case the Bayes estimator is

J
YN = [E<( E Ifjic,,-> M{Xpi=1, .., Lji=1,..., J}>] I (2.19)
j=1

which reduces to (2.14) when A = — 1, and to (2.17) when A = 1.

The curious fact is that most undercount estimators used are optimal (under various model
assumptions) for A = — 1, but their performance is measured using A = 1; i.e., (2.16). The
s-method argument gives Y '™ = Y *2 and recall Y*** is optimal for (2.15); therefore
squared-error loss estimators of undercount perform well according to a large class of loss func-
tions. This was observed by Kadane (1984) in his heirarchical Bayesian analysis of 1980 census
undercount data (A = — 1and A = — 2 were compared), and confirmed on the studies of
artificial populations carried out by Cressie and Dajani (1988).

It has just been demonstrated that the estimators (2.13) and (2.14) are Bayes (or approxi-
mately so) for a large class of loss functions. However it is not likely that the ensemble prop-
erties of {Fj‘,-‘ba: i=1,....,1;j =1, ...,j],estimate the corresponding ensemble properties
of (Fj:i=1,...,L;j=1,...,J}, very well. This follows from the inequality var(§) =
var(E(8 | X)); in other words the posterior mean of the parameter has a smaller variance than
the parameter itself. For estimation of state population totals, this does not matter, but for
estimation of the distribution of say {F;C;:i =1, ..., 51};j =1, ..., J,or {(Yi:i =1,

, 51}, (2.13) is ill-suited to the task. Such a distribution is needed in standards research
(Mulry-Liggan and Hogan 1986) to determine the proportion of people in a stratum affected
by an undercount more severe than u% (Cressie 1988, Section 4).

I shall constrain the estimator of {Fj:i = 1, ..., I} so that the posterior moments of its
(weighted) empirical distribution function match the moments of the estimator’s weighted
empirical distribution function. This is achieved by modifying the usual Bayes estimator,
yielding a constrained Bayes estimator with the right ensemble properties. Louis (1984) presents
the details for an equal-variance version of the model (2.7), (2.10), but a straightforward
modification of his approach is possible for weighted variances. Cressie (1986) shows that such
a constrained Bayes estimator is



Survey Methodology, December 1988 197

Ff =&+ G(X; — &), (2.20)
J

Yicba — E Irj(i:bacji, (221)
j=1

obtained by solving for {; and G, in:

G+ GiX; = §) = 5+ DX, = F);

Gy (Cﬁ/z th) (X — X;)? =
i h

1

(I - )D}/ Y Gy + D? Y (c,,-/E cj,,> (X; — X;.)2,
h I (2.22)

where

1 1
X;. = Y XiCii/ Y, Cin- (2.23)

2.3 Risks of Adjustment; Model Parameters Assumed Known

The model-based approach described in the previous section specifies undercounts in various
area-strata combinations, to be random variables. When it comes to comparing the value of
one adjustment procedure against another, the expected loss (or the risk) is used. Statistical
procedures with small risk are preferred.

In the absence of other considerations (e.g., political, practical, etc.), implementing the pro-
cedure with the smallest risk is the correct, impartial approach. The statistician knows that
adherence to this modus operandi will yield better estimates on the average, where the average
is taken over all problems considered by the statistician. However there is nothing to guarantee
that for the particular problem being considered, here estimation of undercount in the 1990
census, a set of area-strata estimates derived from the criterion of minimum risk will actually
have smaller loss than another set of estimates. To put it more succinctly, the inequality
E(V?) < E(W?) does not guarantee that ¥ < W? for a particular realization. If, in the
light of the data collected, a minimum risk prediction did not prove to be the most accurate,
the statistical procedure should still be seen as optimal.

In the rest of this section, various results about Bayes estimators will be stated (proofs are
given in Cressie 1988). Needless to say, these results rely on the correctness of the assumed
model. In practice, the more relevant results are for empirical Bayes estimators, which are given
(with proofs) in Section 3.

The first thing to recall (from Section 2.2) about the usual Bayes estimators (2.13), (2.14)
is that they are optimal or near optimal for a large class of loss functions. Moreover the
estimators are level-free; i.e., they are not only optimal at the level at which they are constructed,
but after aggregation they are also optimal at the higher level. From (2.14),

Yl_uba + Yil;\ba — Y,‘%B'a', (2.24)
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where i&i’ denotes the area obtained by combining the two disjoint areas i and i”.

Therefore, one should aim to construct a Bayes estimator at the very lowest level (census
blocks) and aggregate up to whatever level is desired, thus ensuring consistency of counts at
all levels. In practice this is out of the question, simply because the post-enumeration survey
would never be large enough to give dual-system estimated undercount data for all the blocks.
The same is true at the enumeration-district level and the county level. Moreover, at these lower
levels the model (2.7) and (2.10) does not fit as well (Cressie and Dajani 1988); an adequate
fit at the state level is shown in Section 3.1.

It is certain that the post-enumeration survey will gather data from each of the 51 states,
allowing construction of (empirical) Bayes estimators at the state level. Politically, the state
level is the most sensitive; reapportionment of the 50 states’ representation (Washington, D.C.
is excluded) in the House is the first use made of decennial census counts (mandated to reach
Congress by December 31 in the year of the census). Thus at this level, the Bayes estimators
(2.13) and (2.14) offer a compromise between a state’s observed adjustment factors { X
j =1, ...,J); and the (synthetic) adjustment factors {F;: j = 1, ..., J}. For example,
Mississippi’s black undercount is recognized as being potentially different from New York’s
black undercount, when using the Bayes estimators.

I shall now explore the consequences of synthetic estimation at lower levels, after Bayes
estimation is carried out at a given level. For consistency of counts at all levels, it is desired
to estimate undercount at the block level and aggregate up to whatever level is desired. Suppose
an adjustment factor Fji* is estimated for the j-th stratum in the i-th area. Now suppose
i = i; &iy; i.e., the i-th area is split up into two disjoint subareas /; and i,. Then the synthetic
method at the lower level posits,

ER* = iy = 7, @229

so0 that estimators of the true population are given by,

J J
YR = Y FRCi YE° = ) FCy (2.26)
! ~
Notice that from (2.25) and (2.26).
J
Yye+ Yy = Y& = E F$Cy, (2.27)
=1

which is the desired disaggregation-aggregation property.

Compare the risk of using Y2, Y2, and Y°* (given by (2.14), (2.5), and (2.21) respec-
tively) to the risk of using C;, the census count of the i-th area. Using the loss function (2. 15),
the risks are:

uba-risk; = E[ (Y™ — Y)2f(C)1, (2.28)
cen-risk; = E[(C;— Y)*f(CH]1, (2.29)
sya-risk; = E[(Y?® — Y)2f(C)]1, (2.30)
cba-risk; = E[ (Y — Y)2f(C)]. (2.31)
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The following sequence of inequalities can be proved (Cressie 1988):
uba-risk; < cba-risk; < sya-risk; < cen-risk;, (2.32)

where the middle inequality requires o7 /77 < 3;j =1, ..., J.

Now compare the risk of using Y} and Y.2° (estimators of Y, and Y, respectively) based
on Fj‘,lba in (2.25), with the risk of usmg C, and C;,, where area 1 =1 & i, the union of
disjoint areas /; and i,. It can be shown (Cre551e 1988) that the synthetic estimation based on
the usual Bayes estimator defined at a particular level but applied at a lower level, always has
smaller risk than the census counts.

It is also of interest to determine the behaviour of the census-based risk minus the Bayes-
then-synthetic-based risk as a function of the level; the larger this difference, the more advan-
tageous it is to adjust the census counts. Here use f(C;) = 1/C;in loss function (2.15). It is
possible to show (Cressie 1988) that as disaggregation proceeds to a lower level, the ‘‘risk gap”’
between Bayes-then-synthetic estimation and census counts widens in absolute terms. Although
this is proved there for the uba-then-synthetic- based estimator, the same is true for cba-then-
synthetic-based and sya-then- synthetic-based estimators, and the ordering of risks (2.32) is
preserved at any level of disaggregation. This conclusion depends on the model (2.7) and (2.10)
holding at all levels. Unfortunately at the lower levels there is some evidence that biases can
be substantial. That is, E(F;) = F; + b;;; E(X}; | F;) = F; + dj;. Realistically b;’s and
d;/’s are never zero, but at sufficiently high levels of aggregation they are unimportant. At the
block and enumeration-district level they can be substantial (Cressie and Dajani 1988) and could
invalidate the risk inequalities proved so far. Moreover, at lower levels, the data { X} are
more variable leading to less precise estimates of D;-= r, / (TJ + ajz) in the empzrzcal
Bayes version (see Section 3) of the Bayes estimator (2.14). These observations, as well as a
recognition of the difference between risk and loss, help to explain the deterioration of the
performance of the adjusted counts at lower levels, observed in artificial populations (Schultz
et al. 1986).

3. EMPIRICAL BAYES ADJUSTMENT OF CENSUS COUNTS

Obtain from (2.14), (2.21), and (2.5), the estimated (or adjusted) true area counts Y3,
Y2, and Y2, respectively. In order to make these functions only of the data, estimators are
needed for the unknown parameters F;, 77, and o7; Fay and Herriot (1979) give empirical
Bayes estimators in a regression setting, of which the model (2.7), (2.10) is a special case. For
reasons of statistical consistency (see Cressie 1986, Section 3.3), choose,

F =X,

¢ 3.1

7 = max{[z Ci > 0)(X; — X,.)2/<E 1(C; > 0) — 1)] - &2, 0} (3.2)

6} is obtained from sampling considerations: it is known for dual-system estimation, and
Schultz er al. (1986) determine it for their artificial populations by replicating probability-
proportional-to-size sampling of 1,440 enumeration districts from the approximately 300,000
total number.
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Statistical stability (i.e., small sampling variance) for sample means is easier to achieve than
for sample variances. The coefficient of variation of the sample variance is approximately
\2/~/n; therefore to achieve a relative confidence region (0.5, 1.5) for the population
variance, a value of n = 32 is needed; and to achieve a region (0.95, 1.05) a value of n = 3,200
is needed. Thus the estimator, ¥ /-, C;iJ(Cj; > 0)(X; — X;.)2/(L11(Cj; > 0) = 1)
of sz + sz is very unstable, particularly when there are a large number of strata and hence
Y. {I-1I(Cj; > 0) is small (smaller than 30).

One way around this is to introduce a further mixing distribution into the problem, namely,
model the {sz: j =1, ..., J} as being generated by the reciprocal of a gamma distribution
for example. Thus instead of estimating J parameters {szl j =1, ..., J}, the problem can
be reduced to estimating just two gamma parameters (see e.g., Hui and Berger 1983). Another
possibility is to aggregate temporarily some of the strata for the purpose of estimating the
stratum variance. In other words, define disjoint groups of strata indices, 4;, ..., Ag, such
that U {4;: k=1, ..., K} = (1,2, ..., J},and 7} = 7} = TZ, whenever j and j’
belong to the same A,. In this way, Cressie and Dajani (1988) reduce the number of stratum
variance parameters from J = 96 down to K = 4. For the data analyzed below, since
¥ {zll(Cﬁ > 0) = 51 for each of the three race strata, it was not necessary to ‘‘borrow
strength’’ in the ways just described.

3.1 Emprical Bayes Estimators

The usual (see, for example, Morris 1983) and constrained (Louis 1984) empirical Bayes
estimators can now be constructed:

FY® = X5 + (711 + 61 (X — X;.), (3.3)
J

e =y FiCsi=1, ..., I; (3.4)
j=1

Ff® = X, + {77/ (7} + )} (X — X)), (3.5)
J

yseb = E FeCypi=1,..., 1. (3.6)
Jj=1

The usual empirical Bayes estimator (3.3) can also be obtained from standard theory for linear
models with random effects (Henderson 1976).

Notice that when -sz = (, the empirical Bayes estimators of the j-th stratum adjustment fac-
tors all reduce to the synthetic estimator X;,. The presence of the weight {#7/(#} + 67)}"
in the constrained empirical Bayes estimator (3.5) may look a little strange at first, but it is
seen in Cressie (1987a) to yield an unbiased estimator of the stratum error Cj',-/Z (Fj; — F)).

An earlier suggestion for empirical Bayes modeling of undercount came from Dempster and
Tomberlin (1980), who proposed that the number of undercounted people in a subarea might
be a binomial random variable. They defined a heirarchical Bayes model but did not take into
account the heteroskedastic variation. Stroud (1987) introduces a covariate into a two-stage
Bayesian model, but his assumptions of homoskedastic variation and equal sample sizes in
each subarea, are too restrictive for the problem considered in this article.
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Formulas for the bias and mean-squared error of the usual empirical Bayes (ueb) estimators
(3.3), (3.4), the constrained empirical Bayes (ceb) estimators (3.5), (3.6), and the synthetic
estimators

F = X, 3.7
J
ypm = YR Cii=1, .1, (3.8)
j=1
are given in Cressie (1987a, Section 4). Since undercount is a nonlinear function of the true
population, its estimators based on {F§*: i =1, ..., [;j = 1, ..., J}, viz.
ot = 1"—l I;j=1 J 3.9
uj,- = _FT‘%_“’I_ y se-ads ] =1, o0, ()
Ji
est Cl ;
utt = _ﬁs_t;’=1""’1’ (3.10)
1]

are biased; estimated biases and mean-squared errors can be obtained by the §-method (Cressie
1987a, Section 4). All of these bias and mean-squared error calculations do not take into account
variation due to the (nonlinear) estimation of 77/ (7} + o).

Suppose that the following three U.S. strata (based on race/ethnicity) are chosen: blacks,
nonblack hispanics, and others. Data from the post-enumeration survey following the 1980
U.S. Census are given in Cressie (1987a, Table 1). These are from the noninstitutional popula-
tion (Cowan and Bettin 1982) and have been labeled ‘‘PEP 3-8’° by the U.S. Census Bureau -

the ““3° refers to census omissions being obtained from an April survey and to imputing missing
data, and the ‘8’ refers to erroneous enumerations being obtained from a separate survey
that imputed missing data with the help of U.S. Post Office information.

From these data and (3.1), (3.2), Cressie (1987a) estimated the mean of the mixture distri-
bution, and standardized stratum and sampling variances defined in (2.7) and (2.10):

blacks: F, = 1.06076 #% = 673.982 4% = 522.183, (3.11)
nomblack 2 _ 4 04667 32 = 308.990 62 = 246.585 (.12)
hispanics: 2 = 2o 2 e :

Others:  F; = 0.99981 # = 242.134 &} = 242.152. (3.13)

Based on these parameter estimators and the PEP 3-8 data {X;: j = 1,2, 3; I = 1, ..., 51},
Cressie (1987a) gave undercount estimates {u5"}, {1} for ueb-based and syn-based esti-
mators defined by (3.3) and (3.7) respectively.

To check the fit of the model, the residuals {C)* (F§® — F#): i = 1, ..., I} were com-
puted for each of the three strata. Table 1 shows the results, presented as stem-and-leaf plots
for the three race strata; a bell-shaped plot for each is the ideal. The model appears to fit the
data, except for the nonblack-hispanic stratum in the state of New York. In light of the lawsuit,
Cuomo vs. Baldridge, heard by the Southern District Court of New York in 1983, this new
way of looking at the data tells an interesting story. The nonblack hispanics in New York State
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were grossly undercounted, even in relation to their undercounted fellow nonblack hispanics
in other states. Incidentally, the judge decided in favour of the U.S. Department of Commerce
(in December 1987) on the grounds that the statistical and demographic professions had not
developed adequate methods of adjustment for the whole country by 1980.

When are census counts improved by replacing {C: i = 1, ..., I} with {Y&: i =1,
..., I}? The next section gives conditions under which an analogous ordering to (2.32) still
holds in the empirical Bayes setting.

3.2 Adjustment at Different Levels; Model Parameters Estimated

The same comments at the beginning of Section 2.3 apply; in a model-based approach a
small risk does not guarantee a small loss in every problem but only on the average. Also the
analogous aggregation property to (2.24) holds for ueb-based, ceb-based, and syn-based
estimators, namely

Yiest + Yie’Sl — Yifﬁsi[’ (314)

for “‘est” = ‘‘ueb,” ‘“‘ceb,”’ and ‘‘syn,’’ given by (3.4), (3.6), and (3.8) respectively. More-
over the disaggregation-aggregation property (2.27), namely

Yiiye + Y[_SZYG = YieSt’ (3.15)

where i = i) & i, and FJ° = FjJ¢ = F§¥, holds for any estimator of Fj;, including those

based on ueb, ceb, and syn.

Write the risk of estimating Y; by Y'( = L/, F5"C;) as
est-risk; = E[ (Y™ — Y;)2A(C)]. (3.16)

The estimators given by “‘est’” = “‘ueb,’” ‘‘ceb,”” and ‘‘syn,”” will be compared to ‘‘cen”
(Fi = 1) via (3.16). For the rest of this section consider the estimator,

F'=rX;+ (1 —rmX.;0=r <1, (3.17)
a convex combination of the data X; and the synthetic estimator X;.. Then

J C (1 = r))C3
est-risk, = Y 77 (1 — rj)z{cﬁ - ——L—} + of {rfcﬁ + it } (3.18)

=1 G; Y Ci
h

It is easy to see that the value of 7; that minimizes (3.18) is r; = D; = 77/(1? + o?); i.e.,
neglecting the effect of estimating 77 and o7, I obtain

ueb-risk; < est-risk;; 0 < r; < 1. 3.19)
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Now compare ueb-risk; (put 7, = D; in (3.17)) with cen-risk;; recall from (2.29)

J

J
cen-risk; = E T7C;i f(Ci) + [ 2 (F; — 1)C,-,-] 2f(Cy).
j=1

j=1
Also, by putting 77 = k;jo7;j =1, ..., J,

J
ueb-risk; = Y7 ajz{ + . } Cif(C)) -

h

A sufficient condition for ueb-risk; < cen-risk; is,

{ 4 + / . } = kj;
1+ kj E th 1 + kj
h

that is, if

o} /1] = {E th/cji} Hi=1 .0,
h

then

ueb-risk; < cen-risk;.

Similarly, it can be shown that if
orjz/rj2 =L j=1,...,J,
then

syn-risk; < cen-risk;.

Finally, if (o7 /7?) < 1, and

2C;

C.
4(0}/7})2<?"—>2 - (a}/r})(1 — ) +3=20;,=1,...,J,
jh

Y. Cin

h h

then

ceb-risk; < syn-risk;.

once again (from (3.26)), if ojz/ sz is small, risks can be bounded.

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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Therefore an analogous sequence of inequalities to (2.32) is possible:
ueb-risk; < ceb-risk; < syn-risk; < cen-risk;, (3.28)

where the middle inequality requires the condition (3.26) and the last inequality requires the
condition (3.24). If either of these two inequalities do not hold, at least the ueb-based estimator
is an improvement over the census counts if condition (3.22) is satisfied. For the PEP 3-8 data
from the 1980 U.S. Census,

§2/#2 = 0.77, §2/#3 = 0.80, 63/} = 1.00; (3.29)

that is, for the 1980 U.S. decennial census the census risk is larger than the synthetic risk and
the usual-empirical-Bayes risk is smallest of all.

Now compare the risk of using Y;° and Y€ (estimators of Y, and Y;, respectively,
based on F§* given by (3.17)), with the risk of using C;; and Cj,, where area | = I, & i, is
disaggregated into two disjoint areas i; and i,.

Y E[(Yijy° - Y,-[)zf(C,-()]

LG ge) (6 e)]

=1 j=1

1 —r? 2
+ 0'1'2{—"!— + i}] jlgf(cl[) (3’30)

E th Cji
h

It is easy to see that under precisely the same conditions (3.22), (3.24), (3.26), the same sequence
of inequalities (3.28) holds; interpret est-risk; in (3.28) as being equal to (3.30) with r; = D;
for “‘est” = ‘‘ueb,” withr; = Djl/z for “‘est”” = ‘‘ceb,”” and with r; = 0 for “‘est” = ‘‘syn”’.
Moreover for the loss function (2.15) with f(C;) = 1/C;, risk gaps widen as lower levels of
aggregation are attained.

4. DISCUSSION

Various assumptions are made in deriving the risk inequalities (3.28), all of which deserve
further investigation. The model (2.7) and (2.10) is assumed to fit, and in particular the inde-
pendence of distributions between subareas is assumed. Moreover, the effect of estimating D;
in the empirical Bayes estimators of Fj; is assumed negligible. Notice however that syn-
thetically estimated F};’s do not use an estlmate of D; and so those risk inequalities only rely
on the appropriateness of the model (2.7), (2.10).

The conditions which order the various risks and bound them below the census risk in (3.28),
all depend on o? /77 being “‘small.”” The practical implication is that a large number of
households need to be chosen in the post-enumeration survey (PES) or there can be no guarantee
that census counts can be improved by adjustment. With prior knowledge of stratum variation
(e.g., from a previous census), the PES could be designed so that the conditions are satisfied.
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After the survey has been conducted and the data {X;: i =1, ..., I;j =1, ..., J} are
available, the various conditions (3.22), (3.24), and (3.26) can all be checked by using the

estimators 77 and 67 given by (3.2).

Concentrate on the best convex combination of X; and X;., namely I’,?"'b given by (3.3).
Then, ueb-risk; < cen-risk;, if (3.22) holds; i.e., if

(7j2/Tj2 = { E th/cji} ni=1, ., 4.1)
h

Notice that the condition is less stringent when the i-th area has a small census population;
conversely, areas of large census population may have a ueb-based estimated population
further from the truth than census. A sufficient condition for (4.1) to hold is, 7 /77 < 1;
j =1, ..., J, which is also the condition that guarantees the syn-based estimated popu-
lation improves over census. This condition was satisfied for the 1980 PEP 3-8 data (see
Section 3.2).

Finally, the condition (4.1) becomes less stringent at lower levels, and indeed the results of
Section 3.2 show that the risk gap between the adjusted population and the census population
widens. This deserves comment. The results are true provided the model holds at lower levels,
but this is probably not the case at the block and the enumeration-district level. Presence of
bias in (2.7) and (2.10); namely

E(F;) = F; + by E(X; | Fy) = Fy + dj, 4.2)

i

could cause a reversal in some of the risk inequalities. At the state level however, Table 1 and
Cressie (1988) show through an examination of residuals, that (2.7) and (2.10) does fit for the
1980 PEP 3-8 data. And since (3.29) implies that condition (4.1) is satisfied, one can be confi-
dent that ueb-based adjusted state totals are closer to the truth than census state totals. That
may not be true at the block level; clearly a decision regarding the level at which it is most
important to have accurate census counts, needs to be made. The first use of U.S. Census data
is the reporting of state totals to Congress for the purpose of redistricting House seats. One
might include a number of large cities in with the states, and create e.g., the ‘‘states”
New York City, and New York State Except New York City. It seems to me that this ‘‘state’’
level is the most sensitive politically and that accurate totals at this level should receive the
highest priority.
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