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ABSTRACT

To estimate census undercount, a post-enumeration survey (PES) is taken, and an attempt is made to
find a matching census record for each individual in the PES; the rate of successful matching provides
an estimate of census coverage. Undercount estimation is performed within poststrata defined by
geographic, demographic, and housing characteristics, X. Portions of X are missing for some individuals
due to survey nonresponse; moreover, a match status ¥ cannot be determined for all individuals. A pro-
cedure is needed for imputing the missing values of X and Y. This paper reviews the imputation methods
used in the 1986 Test of Adjustment Related Operations (Schenker 1988) and proposes two alternative
model-based methods: (1) a maximume-likelihood contingency-table estimation procedure that ignores
the missing-data mechanism; and (2) a new Bayesian contingency table estimation procedure that does
not ignore the missing-data mechanism. The first method is computationally simpler, but the second is
preferred on conceptual and scientific grounds.

KEY WORDS: Bayesian methods; Categorical data; Coverage error; EM algorithm; Multiple imputa-
tion; Nonignorable nonresponse; Undercount.

1. INTRODUCTION

The U.S. Bureau of the Census has used a post-enumeration survey (PES) to evaluate cov-
erage error in several past censuses, and it plans to conduct a PES after the 1990 Decennial
Census as well. For each individual in the PES, an attempt is made to find a census record
(i.e., amatch) to determine whether the person was enumerated in the census. The proportion
of PES persons who were missed in the census is used as an estimate of the proportion of persons
in the population who were missed. A similar matching operation is performed to match a
sample of individuals from the census to the PES; this provides an estimate of the census over-
count resulting from erroneous (e.g., duplicate or fictitious) enumerations.

The data on matches and erroneous enumerations obtained from the PES are combined
to estimate the population size via the dual-system estimator; this capture-recapture type of
estimator is discussed in Marks, Seltzer and Krotki (1974), Krotki (1978), Wolter (1986), Dif-
fendal (1988), and Fay, Passell and Robinson (1988, Chapter 5). Dual-system estimates of
population size are computed within poststrata defined by geographic, demographic (age, sex,
race), and housing (owner/renter, type of housing structure) characteristics.

Two problems of missing data occur in the PES and complicate the estimation process:
1. Geographic, demographic, or housing characteristics may be missing for a person, so it is

not known to which poststratum that person belongs.

2. After the processing of the PES, there are some individuals with match status (dichotomous
variable indicating matched/not matched to census) or erroneous enumeration status
missing. This can occur, for instance, when an incomplete name is obtained in the PES,
or when there is difficulty in specifying a Census Day address for someone who moved
between Census Day and the PES.
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Missing data were a major source of uncertainty in undercount estimation for the 1980
Decennial Census (Freedman and Navidi 1986; Fay, Passell and Robinson 1988, Chapter 6).
Improvements in the PES design should reduce the amount of missing data in 1990 (Hogan
and Wolter 1988), but a method for dealing with missing data will still be necessary.

The 1986 Test of Adjustment Related Operations (TARO), a recent test of undercount
estimation and adjustment (Diffendal 1988; Schenker 1988), used a PES that was similar in
design to that planned for 1990. This paper reviews the methods used to handle missing data
in TARO (Schenker 1988), identifies potential weaknesses of these methods, and discusses
potential alternatives.

Our goal is to indicate issues and problems, and to suggest methods for their solution. The
long range plan for research is to carefully evaluate these methods. Although we only discuss
imputation for missing PES data when estimating undercount, missing data also occur in the
census sample used to estimate overcount. The missing-data problems in estimating overcount,
however, are analogous to those in estimating undercount (Schenker 1988), and so our discus-
sion applies to both problems.

In our discussion of alternatives to the TARO procedures, we propose a new method based
on a Bayesian model that does not ignore the missing-data mechanism, and thus does not assume
that the missing data are missing at random. Nonignorable models for incomplete categorical
data are a recent development in the theory of handling missing data; see Fay (1986), Little
and Rubin (1987, Section 11.6), and Baker and Laird (1988) for discussions and reviews of
the literature. Moreover, the types of missing data that we discuss occur not only in under-
count estimation, but in many other situations as well; thus our discussion is relevant to the
general problem of handling missing categorical data.

Section 2 discusses the imputation methods used in TARO. In Section 3, alternative methods
are described and illustrated using a simple example. Section 4 presents a concluding discussion.

2. IMPUTATION METHODS USED IN TARO

2.1 Description of Methods

For each individual in the PES, let X denote categorical variables for age, sex, race,
owner/renter status, and type of housing structure; let Y denote match status (1 = match,
0 = nonmatch); and let Z denote variables indicating whether the PES interview was with a
household member or a proxy, and whether the PES person moved between Census Day and
the PES. In TARO, the X variables (except type of housing structure) were used in forming
poststrata (Diffendal 1988); Z was observed for all PES individuals, but ¥ and components
of X were sometimes missing (Schenker 1988).

Missing values of X and Y were imputed in two stages. (Our description is simplified for
ease of presentation; see Schenker (1988) for the precise procedure). First, all missing X values
were imputed using a “‘hot deck’’ scheme based on observed X variables; that is, imputed values
were drawn from the observed distributions of X values. Second, after the missing values of
X were filled in, a logistic regression model predicting Y from X and Z was fitted to the cases
with Y observed. This logistic regression model was then used to impute probabilities of match
for all missing Y values. Probabilities rather than zeros and ones were imputed to (a) increase
the precision of estimation, and (b) allow the assessment of variability due to imputation
(Schenker 1989).
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2.2 Critique of Methods

The TARO imputation methods have many positive features. They are easily understood
and use explicit modeling for the imputation of Y. They also condition on much of the observed
data, rather than imputing from marginal distributions. Finally, in principle they allow the
assessment of uncertainty in undercount estimates due to the missing Y values. The methods
have some potential weaknesses, however, which we now describe.

The TARO imputation procedure is an ‘‘ignorable’ procedure, because it ignores the
missing-data mechanism. Ignorable procedures assume that the missing data are missing at
random (MAR) (Rubin 1976); that is, they assume that given the observed data, the missingness
is independent of the values of the missing items. For example, if X and Z are observed for
all people, MAR implies that ¥ can be imputed using the conditional distribution of ¥ given
X and Z for those individuals having X, Y, and Z observed.

The TARO procedure is actually a special case of an ignorable procedure, because it makes
assumptions that are stronger than the general MAR assumption. The TARO procedure treated
X and Y asymmetrically; that is, it imputed missing values of Y conditional on all observed
data, but it imputed missing X values conditional only on the observed X’s, rather than on
the observed values of X, Y, and Z. Hence, in addition to the general MAR assumption, the
TARO procedure also effectively assumed that, given the observed components of X, the
missing components of X are conditionally independent of both Y and Z.

This additional independence assumption may not be realistic; it may be that given the
observed X data, there is a residual dependence of values of missing components of X on Y
and/or Z. If this is the case, then observed values of Y and Z should be used in the imputation
of X. For instance, suppose a PES individual has sex missing, but is found not to match any
census record (Y = 0) on the basis of observed age, race, and address; and suppose males tend
to be undercounted in the census more than females with identical other characteristics. Then
knowing that ¥ = 0 provides some evidence that the person in question is more likely to be
male than if Y were 1. The most general ignorable imputation procedure would use informa-
tion provided by Y and Z in imputing missing X values; this is one of the alternative imputa-
tion methods, which we discuss in Section 3.4.1.

Another feature of the TARO procedure that may be unrealistic is the ignorability assump-
tion itself. It may be that the missing data are not MAR — i.e., given the observed data, the
missingness is not independent of the values of the missing items; if so, then it would be more
appropriate to use a nonignorable model for the missing-data mechanism. For instance, con-
sider a group of people with identical values of all variables except race; it may be more diffi-
cult to obtain information on race for minorities than nonminorities, and consequently the
distribution of race will be different among those missing race and those with race observed.
Similarly, even after all X and Z variables are controlled for, it may be that people who were
not enumerated in the census are more likely to be missing Y than those who were enumerated
in the census. An alternative imputation method based on a general class of nonignorable
models is presented in Section 3.4.2.

3. ALTERNATIVE METHODS OF IMPUTATION IN THE PES

3.1 Introduction

Let X = (X, X;, X;) denote three individual characteristics recorded by the PES (e.g., age,
sex, and race). The variables X, X,, and X; are assumed to be categorical, taking 7, J, and
K possible values respectively. We have chosen three variables merely for illustrative purposes



212 Rubin, Schafer and Schenker: Imputation Strategies for Missing Values

and notational simplicity; all ideas developed here will extend immediately to any number of
categorical variables. In practice, these X variables will probably include the demographic,
geographic, and housing characteristics used to define poststrata for undercount estimation;
they may also include additional PES variables, such as mover status and household
member/proxy status, which are not of intrinsic interest but which may be useful for imputa-
tion purposes.

We will form /JK different classes of individuals by cross-classifying them according to X},
X,, and X;. These classes may or may not be the same as the poststrata for undercount estima-
tion; in practice the poststrata will probably be coarser than these classes. It is convenient, but
not necessary, for these classes to be defined as cross-classifications of all possible values of
X, X5, and X3; more complicated patterns (such as nested ones) are also possible. We will
be constructing loglinear models for cross-classified contingency tables, but loglinear models
may be based on other patterns as well.

Let Y be the dichotomous variable denoting match status, taking values 1 (matched to census)
or 0 (not matched). If there were no missing data, the results of the PES could be summarized
in a single four-dimensional contingency table with 7 X J X K X 2 cells, since each individual
could be fully classified according to X, X, X3, and Y. But those individuals missing one or
more variables can be only partially classified according to those variables that are observed.
Those having X, X5, X3, and Y all observed will constitute a four-dimensional table, which
we will call the table of complete cases (CC), or the data table for missingness pattern 1 (no
variables missing). Those having X;, X;, and X; observed but ¥ missing will constitute a three-
dimensional supplementary table with IJK cells, which we will call the data table for missingness
pattern 2. In general, there will be 24 such tables corresponding to all possible missingness pat-
terns, one CC table and 24 — 1 supplementary tables.

3.2 Imputation from Reference Tables

In our model-based approach to imputation, we will model the data tables for different miss-
ingness patterns as multinomial observations. Corresponding to each missingness pattern, we
will define a set of cell probabilities 8° = {ijk,} , where the superscript ¢ indexes the miss-
ingness pattern, f = 1, ..., 24 and the subscripts i, j, k, and / indicate the levels of X;, X,
X;, and Y respectively. Because we will refer to ©! when imputing missing values for the ¢-th
data table, we will call ©' the reference table for the #-th data table, and 0ht=1,...,24
the set of reference tables.

Imputation of missing values corresponds to expanding each supplementary data table to
make it fully four-dimensional, according to its corresponding reference table. For example,
consider the imputation of ¥ for those individuals missing only Y. This is equivalent to expan-
ding the supplementary data table for missingness pattern 2, by dividing each cell count in this
table into two parts, a count of those having Y = 1 and a count of those having Y = 0, split
according to the reference table ©2. With known ©2 this procedure is straightforward: we first
obtain from 62 the conditional distribution of Y given X for this missingness pattern, ie.,

92‘k1
P(Y=1]|X, X5, X5, t =2) = 5———, o))
0,211(0 + elzjkl

fori=1,....,Lj=1,...,J,andk = 1, ..., K. Then, weimpute Y = 1 for each observation
in cell ijk of this table with probability given by the right-hand side of (1); alternatively, we could
impute the mean of this distribution, which is just the probability of a match (1). The relative
merits of random draw versus mean imputation for the PES will be discussed in Section 3.3.
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Note that in the example above, the only information from ©2 needed for the imputation
is the conditional distribution of Y given X; hence, any value of ©? yielding the same values
for (1) leads to the same imputation procedure. For an imputation procedure to be accurate,
then, our estimate of © need not correspond to the joint distribution of Y and X for the #-th
missingness pattern; the only requirement is that the conditional distribution of the missing
variables given the observed ones derived from our estimate of ©° be close to the correct one.

In particular, if the missing-data mechanism is ignorable, one common reference table
0! =0,¢ =1, ...,2°% provides valid imputations for all missingness patterns, even though
the joint distribution of X and Y might vary across missingness patterns. The fact that only
one reference table is needed follows from the definition of ignorability, which implies that
the conditional distribution of missing values given observed values does not depend on the
missingness pattern. The value O that provides valid imputations is not ©¢¢, the cell prob-
abilities for the joint distribution of X, X,, X3, and Y underlying the CC table; rather, it is
the the joint distribution of X, X5, X3, and Y marginalized across missingness patterns. Gen-
erally, if the missing-data mechanism is nonignorable, we will need to specify a different
reference table for each missingness pattern.

In our model-based approach, the two crucial issues to be addressed are: (1) how to estimate
the set of reference tables using well-established principles of efficient estimation; and (2) how
to perform the imputation once these estimates are obtained. Two methods of estimation will
be compared in Section 3.4; in Section 3.3 we briefly discuss various alternatives for imputation.

3.3 Single, Multiple, and Mean Imputation

Once the reference tables have been estimated, distributions for each individual’s missing
variables given the observed ones have been completely specified. In theory, these distribu-
tions could be used to analytically calculate correct point and interval estimates for any quan-
tities of interest. In practice, however, these calculations are usually intractable; some other
procedure is needed. Filling in the missing values by imputation is an attractive alternative,
because it creates a completed dataset, which can be analyzed by complete-data methods. Little
(1986) summarizes the strengths and weaknesses of various imputation methods; we shall only
comment on aspects relevant to the PES.

In current practice, each missing value is typically filled in by taking a single random draw
from a distribution, thereby producing a simulated complete dataset, which is analyzed in the
usual complete-data fashion. Interval estimates derived from this method will be artificially
too precise, because they do not reflect the uncertainties of the imputation. One remedy for
this, which is coming into use, is multiple imputation (Rubin 1987), in which each missing value
is replaced by m random draws from the distribution. With moderate amounts of missing infor-
mation, m = 5 draws are enough to produce efficient point estimates and adequate interval
estimates. With rates of missing information that appear likely in the PES (typically 5 - 10
percent or less, judging from TARO), m = 2 draws will be perfectly adequate for essentially
all purposes. In a large-scale survey like the PES, however, even a small number of multiple
imputations may be computationally difficult to handle.

Since the estimates of interest in the PES are the match rates within poststrata, it is pro-
bably more important to accurately reflect the variability of imputation for ¥ than for X; that
is, it is probably more important to reflect uncertainty in overall undercount rates than uncer-
tainty in the allocation of undercount to poststrata. Thus it may be possible to obtain ade-
quate results by imputing a single set of X values, and then multiply imputing Y given X. Yet
another possibility is to impute a single set of X values, and then impute the probability of
match given X. This approach was used in TARO (Schenker 1988); it allows the imputed X’s
and fractional Y’s to be treated like single imputations when estimating undercount rates.



214 Rubin, Schafer and Schenker: Imputation Strategies for Missing Values

Choosing an acceptable imputation procedure given a set of reference tables is the subject
of ongoing research. It is hoped that the TARO approach of imputing a single value of X and
then imputing P (Y = 1 | X) will prove to be a useful compromise between the accuracy of
multiple imputation and the computational ease of single imputation.

3.4 Models and Methods of Estimation

In this section, we present two alternative procedures for modeling the missing data and
estimating the reference tables for imputation. The two procedures are the Ignorable Maximum-
Likelihood (IML) method and a new Nonignorable Bayesian (NB) method that should be an
improvement over IML if the missing data are not MAR.

3.4.1 The Ignorable Maximum-Likelihood Method

As mentioned previously, an ignorable imputation procedure needs to specify only a single
reference table and apply it to all missingness patterns. One naive approach is to estimate this
common reference table O by the cell proportions observed in the CC table. The resulting
estimate écc is asymptotically unbiased for © if the missing data are missing completely at
random (MCAR), that is, if the probability of missingness for each item is completely indepen-
dent of the data values, observed or missing. If the missing data are merely MAR, and not
MCAR, then using écc for imputation introduces biases into the data. Moreover, even when
the data are MCAR, O is not efficient because it does not make use of all of the observed
data to estimate O.

The IML method makes use of all the data, both in the CC table and in the suplementary
tables, to estimate ©. The estimated value 8, is chosen to maximize the likelihood ignoring
the missing-data mechanism (Little and Rubin 1987, Section 5.3). In general, there is no closed
form expression for Oy,,; ; it must be obtained iteratively, for instance via the EM algorithm
(Dempster, Laird and Rubin 1977; Little and Rubin 1987, Section 9.3).

The EM algorithm for contingency tables is easy to implement, and the resulting maximum
likelihood estimate ©,,; is both efficient and consistent under the assumption of ignorability;
thus this EM procedure for IML is attractive from both computational and theoretical perspec-
tives. When the missing data are not MAR, however, the IML method will generally introduce
biases. Since there are good reasons to believe that the missing data in the PES are not missing
at random, we propose a new method of estimation that makes a different assumption.

3.4.2 Nonignorable Modeling and Nonuniqueness of the MLE

When the missing data are not MAR, it is no longer valid to ignore the missing-data mech-
anism; the fact that a data value is missing conveys information about its value. Hence, a model
that reflects this dependence must include indicator variables for response, indicating whether
data values were observed or missing. Consequently, a nonignorable model will generally
estimate a separate reference table for each missingness pattern, or equivalently, an expanded
reference table © with twice as many dimensions (i.e., with an additional dimension for each
missingness indicator).

Let R = (Ry, R, R;, Ry) be indicator variables for whether X;, X, X;, and Y are
observed, respectively; for example, R; = 1if X, is observed and R, = 0 if X is missing.
Consider the eight-dimensional contingency table formed by cross-classifying individuals
by X, Y, and R, and now let © be the eight-dimensional table of cell probabilities for this
expanded table.
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Each individual in the survey belongs to a cell of the expanded table, but because some data
are missing, we only observe certain margins of this table. Because R is fully observed, any
margin involving only missingness indicators is fully observed, but a margin involving Y or
one of the X”s might not be observed. For example, in the cross-section of the table with
Ry = R, = Ry = 1 and R, = 0, we can classify individuals by X), X;, and X3, but not by
Y; therefore we observe only the marginal totals obtained by summing across Y.

The number of parameters in the fully saturated model for this table is 2°/JK — 1, which
is larger than the number of observed sufficient statistics; hence the maximum-likelihood
estimate (MLE) for O is not uniquely determined. In order to obtain a unique estimate for O,
one must impose additional structure.

One possible way to obtain a unique MLE is to build a log-linear model for the expanded
contingency table, with some of the higher-order interactions set equal to zero (Little
1985; Fay 1986; Little and Rubin 1987, Section 11.6). We might try to set to zero those
interactions that are not estimable from the data, but the formalization of this does not
always work well in practice. For example, it may at first appear that the R, by X, interac-
tion is not estimable, because the value of X, is never observed when R, = 0; however,
the data may contain information about the R; by X interaction indirectly through another
variable, one that is observed for some individuals having R, = 1 and some having R; = 0.
An example of a quantity that is truly inestimable from the data is P(Y = 1| X; = i,
X, =J, X3 =k R, =Ry, = Ry =1, R, = 0), but this does not correspond to any single
interaction term in the log-linear model parameterization. (By ‘‘truly inestimable’’ we mean
in Rubin’s (1974) sense that the parameter’s posterior distribution equals its prior distribu-
tion for all priors).

In a dataset with a complicated pattern of missingness, it is not easy to find a set of log-
linear terms that, if set to zero, will yield a unique MLE for ©. The minimum number of terms
that must be set to zero to produce uniqueness is 2°7JK — 1, the dimension of ©, minus the
number of observed sufficient statistics. Even if such a minimal set can be found, it is usually
not unique, and one is faced with the task of deciding which set of terms should be excluded
from the model. Rather than attempting to obtain a unique MLE by placing these kinds of
prior restrictions on the log-linear model, we will instead use a Bayesian approach involving
the use of a prior distribution.

3.4.3 A Nonignorable Bayesian Method

In the Bayesian paradigm, one expresses prior assumptions about the parameters formally
through a prior distribution. For our situation, a proper unimodal prior, when combined with
the observed-data likelihood, produces a posterior distribution for © that can yield a unique
estimate; for example, we may take the posterior mode, éNB, as our estimate of ©. This
method is attractive because it automatically allows precise estimation of those functions of
O about which the data contain much information, while using the prior to select appropriate
values for those quantities that are strictly inestimable from the data. If applied properly, this
method will produce a nonignorable model that fits the data as well as any other model — it
essentially maximizes the likelihood function, and yet is as consistent as possible with our beliefs
about the nature of the missing-data mechanism as expressed in the prior distribution.

Sound scientific practice suggests that we should choose a prior distribution that favors
simple structure (i.e., small higher-order interactions) over complicated structure (i.e., large
higher-order interactions). If we choose a prior that assigns a low (but nonzero) a priori prob-
ability to the presence of higher-order interactions in the log-linear model, then we will be
making assumptions that are similar in nature to the assumptions of the IML method — that
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missing values are not radically different from their observed counterparts in their relation-
ships with other observed variables — although in a smoother, more systematic fashion than
the IML method does.

Following the notation of Bishop, Fienberg, and Holland (1975), consider the saturated log-
linear model for the eight-way contingency table for R, X, and ¥,

logh. . p = n + iy + t2gh T -+ T Hep)
+ pigy T pu@ oo
+ p123.. .80k, ..p) )

where 6, is the probability that an observation falls in cell ijk. . . p, and the y’s are the one-
way, two-way, three-way, and higher-order interactions. We propose the simple family of
independent normal prior distributions

wi ~ N(0,0%)
By ~ N (0,0%/7)
Bijk ~ N (0,6%/7%)

k.. p ~ N(0,6%/77), 3)

for some choice of 62 > 0and r > 1. This prior distribution pulls the higher-order interac-
tions toward zero, and hence pulls the estimate of © toward a more parsimonious or simpler
model. We believe that this approach will produce estimates of © that are not too different
from é,ML when the missing data are truly MAR, but will be more robust than the IML
method under departures from MAR. The only cases when IML will be superior occur when
the missing data are MAR and strong higher-order interactions exist among the X’s and Y.

Leonard (1975) and Laird (1978) examined log-linear models with normal prior distribu-
tions on the u terms for complete data; our situation is complicated by the fact that only cer-
tain margins of the eight-way table are observed. Finding the posterior mode O 5 under this
model is conceptually straightforward; the EM algorithm can be applied to the posterior dis-
tribution of O, just as to the likelihood function. The E-step remains the same; the M-step,
however, poses some computational difficulties. The posterior distribution is nearly a ridge
in high-dimensional space; it is very steep in certain directions, but nearly flat in others. The
second-derivitive matrix is nearly singular along this ridge; hence Newton-Raphson and other
gradient methods for maximization will not work well. Difficulty arises as o2 becomes large,
because the ridge becomes flat as 0> — oo and a unique mode no longer exists. Difficulty also
arises as the number of observations grows, because the posterior becomes very steep in cer-
tain directions and thus portions of the second-derivitive matrix become very large. More work
is needed to develop effective methods for finding or approximating Ong-

3.4.4 A Numerical Example

We now present a simple numerical example and compare the results obtained from the IML
and NB methods. For simplicity, we will only use a single dichotomous X variable (taking values
0 or 1) and match status Y.
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If there were no missingness, the data could be fully cross-classified by X and Y and hence
summarized in asingle 2 X 2 contingency table. With four patterns of missingness, however,
the data are summarized in a CC table and three supplementary tables (Figure 1).

The CC estimate O is simply the observed proportions in Table A. The IML estimate
6, is found iteratively via the EM algorithm; using © .. as the starting value, the algorithm
converges in approximately four cycles. The NB estimate 5 was found using a prior distri-
bution with ¢ = 10 and 7 = 3. This means that the one-way terms are a priori normally
distributed about zero with variance 10, so there is a 95 percent probability that the log-odds
for each main effect lies inside the interval (—4 /10, + 4 +/10). The two-way terms have
variance 10/3, the three-ways have variance 10/9, and the four-ways have variance 10/27; this
represents a moderate pulling of the higher-order terms toward the origin. (Finding O for
varying values of ¢? and 7 proved difficult, because of the numerical instability of the par-
ticular maximization routine applied at each M-step.) The values of 6,,,, and O, are given
in Figure 2. The expected imputations under these models are given in Figure 3, along with
the expected imputations under O for comparison.

The differences between the imputation methods can be seen most clearly by comparing
the expected imputations for Table D. Imputatlon using ecc simply reproduces the propor-
tions observed in Table A. Imputation using 6, differs from imputation using 6. because
Tables B and C, as well as Table A, contribute to the estimation of © and hence to the imputa-
tion for Table D.

Imputation using Oz is fundamentally different from imputation using Occ or O, in
that it assumes missingness is informative. From Table B, it surmises that missingness of Y
is associated with X = 0. From Table C, it surmises that missingness of X is associated with
Y = 0. It then combines this information in a smooth fashion to conclude that a larger pro-
portion of the individuals who have both X and Y missing fall into the (X = 0, ¥ = 0)
category.

4. DISCUSSION

Our work is clearly at an early stage of development. Nevertheless, we feel that it has impor-
tant potential applications, both specifically to the estimation of undercount using a PES, and
generally to contingency table modeling when some data are missing. We conclude with two
brief comments: first, on the need for continuing research on these procedures; and second,
on the need to judge the relative propriety of models when devising an imputation procedure.

Y=1Y=0 Y=1Y=0
X =1| 100 50 X=1| 30 28 60 12
X=0] 75 75 X=0| 60
Table A Table B Table C Table D
Complete Cases Y missing X missing Both missing

Figure 1. Observed Data
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éIML
279 | 174
239 | .308

All missingness patterns

Ong

333 | .167 193 | 140 165 | .262 211 | .224
.250 | .250 305 | .361 153 | .419 222 | 333
Pattern A Pattern B Pattern C Pattern D

Figure 2. Reference Tables for Imputation

Observed Data Expected Expected Expected
Imputations Imputations Imputations
Under GCC Under OIML Under GNB
Y=1Y=0

X =1] 100 50

X=0_75 75

Table A
X =1} 30 20 10 18.5 | 11.5 17.4 | 12.6
X =0 60 30 30 26.2 | 33.8 27.5 | 32.5
Table B
Y=1Y=0
28 60 16 24 15.1 | 21.7 14.5 | 23.1
12 36 12.9 | 38.3 13.5 | 36.9
Table C
12 4 2 3.35 | 2.09 2.54 | 2.70
3 3 2.86 | 3.69 2.68 | 4.09
Table D

Figure 3. Expected Imputations Under Oce Omins Onp
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4.1 Continuing Research

Two kinds of research efforts are needed before our NB method can become broadly
applicable. First, computationally-oriented research is needed to address the ridge-like posterior
distribution. Alternatives to the mode, such as the posterior mean, are worth considering. Fur-
thermore, measures of uncertainty should also be calculated, and considering the odd non-
normal shape of the posterior, these may not be simple to summarize or compute. One strategy
focuses directly on drawing multiple values of © from this posterior distribution without
explicitly finding the posterior mode or the mean; these draws of © may be used to multiply
impute the missing data.

Related to the issue of measuring uncertainty is the issue of performance in repeated sampling
experiments. Although we believe our Bayesian approach is fully appropriate, it is important
for broad application to evaluate the operating characteristics of this procedure in the
wide range of circumstances to which it might be routinely applied. For example, how
well does it work in realistic cases when, unknown to the data analyst, the missing data are
MAR?

These topics will be the focus of a major continuing research effort.

4.2 The Need to Judge the Relative Propriety of Models

Considering the fully saturated model for (X, Y, R) with parameter ©, any method
of imputation, no matter how illogical, can be viewed as the correct procedure under some
model. For example, consider imputation using écc as the reference table for all missingness
patterns. This posits conditional distributions for the missing data, given the observed data
and R, about which there is no information in the observed values. Hence, coupling these
distributions with the estimable distributions (the distributions of R and the observed
data) implies an estimate for ©, which maximizes the likelihood under the saturated model!
It is not a very sensible answer, since it corresponds to the unique MLE under a model in
which all sorts of conditional distributions given various missingness patterns R are equal
to the conditional distributions given R = (1, 1, ..., 1); however, if we consider the likeli-
hood function only, there is no reason to prefer any other maximume-likelihood estimate to
this one.

Even stranger methods of imputation, such as ‘‘impute all missing values as zero,”’ corres-
pond to particular models with estimated O’s that are MLE’s under the saturated model, but
they violate good sense. Any sensible attempt to impute missing data values is based on the
belief that two individuals with similar values of observed characteristics, and similar miss-
ingness patterns, are not radically different in those characteristics that are observed for one
and missing for the other. Our NB method formalizes this notion of smoothness by specifying
a contingency table model with small higher-order interactions.

Choosing one imputation procedure over another, then, cannot be done on maximum-
likelihood-type principles alone, but must involve consideration of the propriety of the
underlying prior specifications. This is not really a serious problem; sound statistical practice
has always advocated the use of smooth or parsimonious models when less smooth models
fit the data equally well. Consider fitting straight lines or polynomial curves through a collec-
tion of data points; simpler models are preferable to complicated ones on scientific grounds
— the same issues arise in imputation. We believe that the model, given by (2) and (3),
underlying our NB method, will be reasonable in many problems, just as linear regression is
a reasonable tool in many problems.
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