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ABSTRACT

Suppose that undercount rates in a census have been estimated and that block-level estimates of the
undercount have been computed. It may then be desirable to create a new roster of households incor-
porating the estimated omissions. It is proposed here that such a roster be created by weighting the
enumerated households. The household weights are constrained by linear equations representing the
desired total counts of persons in each estimation class and the desired total count of households. Weights
are then calculated that satisfy the constraints while making the fitted table as close as possible to the
raw data. The procedure may be regarded as an extension of the standard ‘‘raking’’ methodology to
situations where the constraints do not refer to the margins of a contingency table. Continuous as well
as discrete covariates may be used in the adjustment, and it is possible to check directly whether the
constraints can be satisfied. Methods are proposed for the use of weighted data for various Census pur-
poses, and for adjustment of covariate information on characteristics of omitted households, such as
income, that are not directly considered in undercount estimation.
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1. HOUSEHOLD-LEVEL ADJUSTMENT BY WEIGHTING

A major research effort has been devoted to methods for estimation of the undercount
in the 1990 Census in the United States (National Academy of Sciences 1985). In one of the
primary methodologies that has been proposed, a Post Enumeration Survey (PES) would
be conducted shortly after the Census in a sample of blocks. The fraction of persons in the
PES who were omitted from the Census enumeration yields an estimate of Census under-
coverage. Estimates of the undercount would be carried down to some geographical level
(possibly the smallest geographical unit used by the Census, the block). These estimates would
apply to classes formed on the basis of characteristics of persons, as well as possibly some
household or block-level characteristics. The term “‘class’’ will be used henceforth to refer
to estimation or adjustment classes or cells; the term ‘‘block’” will refer to the smallest
geographical unit for which undercount estimates are calculated. The 1980 Census found
approximately one hundred million households in two to four million blocks, depending on
the definitions used.

For each block, the outcome of the processes described above would be a vector of
estimated undercounts, with S components corresponding to the adjustment, or estimated
number of persons omitted from the census in that block, from each of S adjustment classes.
The methods by which these estimates are arrived upon are beyond the scope of this paper.
However, in our examples we shall assume that for each class within each block there is an
undercount rate, expressing estimated omissions as a fraction of enumerated persons in that
class and block. In this paper, the term ‘‘adjustment’’ refers to any process which incorporates
the estimated undercount into the enumeration. The adjustment classes might be, but would
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not necessarily be, the same as the post-strata formed in analysis of a Post-Enumeration Pro-
gram. For forming simple marginal tabulations of persons by characteristics, this informa-
tion might well be adequate. In particular, small-area counts used for various official and
commercial purposes could be calculated from block totals.

However, for some purposes it would be desirable to place the added persons in households.
We assume for these purposes that there is also an estimate of the number of omissions of whole
households in each block. There might also be information distinguishing omissions of persons
within enumerated households from those in omitted households.

If the resulting adjusted records are to be meaningful, the composition of the added
households and the relationships of its individual members must be logically consistent and
typical of the types of households found in that area. The term ‘‘composition’’ will be used
to refer to the number of household members from each adjustment class. Thus, for example,
a household consisting of a 20-year old white female head of household, a 75-year-old Chi-
nese male, and a 10-year-old black daughter would not be a very plausible household, even
if all of its members were from classes that are well represented in the block. Yet abstractly
to describe these patterns and create new households that fit them is a daunting task.

Example 1: Forming a roster of households.
Table 1 illustrates part of a census enumeration as it might appear on a microdata tape.

Table 2 represents the same roster, showing how the composition of the households
might be summarized if there were only three estimation classes: (1) men over 20 years
of age, (2) women over 20 years of age, and (3) children up to 20 years of age.

Table 1
A piece of a sample microdata file
Name Address Sex Age
John Smith 328 Main Street M 34
Mary Smith 328 Main Street F 32
Louise Smith 328 Main Street F 7
Nancy Chen 330 Main Street F 62
Jorge Ramirez 332 Main Street M 21
Juan Ramirez 332 Main Street M 24
Table 2
Microdata file recoded by household, showing
composition of households
Count of persons by class
Address
Class 1 Class 2 Class 3
328 Main Street 1 1 1
330 Main Street 0 1 0
332 Main Street 2 0 0
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Essentially the same problem arises in many situations in which a household survey must
be reweighted to match known marginal totals for various classes of individuals.

The essence of the method proposed in this paper is to assign weights to the households
enumerated in the census lists for the block, so that the weighted totals of persons in each adjust-
ment class and the weighted total number of households are precisely equal to the correspon-
ding adjusted totals. Thus, although the weighting changes the proportionate composition of
the block, all of the households are real and possess characteristics and relationships that are
logically consistent and reasonable for that block. This weighting methodology is similar to
the standard raking adjustment, in which the weight applied to counts in a cell of a contingency
table is the adjusted count divided by the original count. The household weights are calculated
after the block totals have been adjusted and will be consistent with those totals. For most
Census purposes, the weighted records would be an adequate basis for forming published tables
and sampled lists.

This proposal might be contrasted with imputation methods, in which undercounted units
are represented by whole units added to the roster. The imputed units may be either persons
or households. Although individual persons may be imputed into the block, the problem of
fitting these persons into plausible households remains unsolved. Placing them in fictitious
““group quarters,”’ as was done in some tests of adjustment procedures, sidesteps this prob-
lem at the cost of creating a skewed picture of relationships in the block. Reweighting or imputa-
tion of individuals would be appropriate for residents of institutions or group homes, for whom
the particular configuration of persons in the dwelling unit has no particular significance.

Another approach to imputation starts with probability models for omissions of households
and of persons within households, and draws imputed households from the posterior
distribution of the omissions given the enumerated households. This methodology is suited
to the multiple imputation approach (Rubin 1987), in which the entire imputation process is
repeated several times to represent the variability introduced by the underenumeration.
However, in each block roster that is created, totals based on enumerated and imputed
households would not necessarily be precisely equal to the desired adjusted totals. In this paper,
our concern is with methods that give an exact fit to population estimates derived at a preceding
stage.

The remaining sections of this paper develop methods for the proposed weighting adjust-
ment. Section 2 gives a mathematical formulation of the objectives of the weighting scheme,
while Section 3 explains how to fit the weights. Section 4 explains how to incorporate the distinc-
tion between omissions in enumerated and omitted households into the scheme. Section 5
introduces some refinements that improve the robustness of the procedure against the variability
of small blocks. Section 6 describes simulation results. Section 7 discusses the use of weighted
data for various Census purposes, while Section 8 considers the effects of the weighting adjust-
ment on covariates that are not part of the scheme used in forming the adjustment classes.
Finally, Section 9 summarizes some unresolved questions and areas for future research.

2. OBJECTIVES AND MATHEMATICAL FORMULATION
OF A WEIGHTING PLAN

It is an essential goal of the proposed plan that the population of the block be assigned to
valid household units, so that statistics for which the unit is the household are unambiguously
defined. Thus, weights are assigned to households; the same weights apply to every person
within the household.
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In order that the counts in the weighted roster be those which are given by the predeter-
mined adjustment, the following constraints must be satisfied:
(A1) Within each block, the sum of household weights equals the adjusted number of
households.
(A2) Within each adjustment class and each block, the sum of weights for persons equals
the adjusted number of persons.
In order that the weighted block roster be as similar as possible to the original block roster,
we further require that:
(B) The weights should be, in some sense, as close to each other as possible.

With unit (or equal) weights, the composition of the block remains unchanged. If the weights
are not very unequal, the census composition of the block is nearly preserved by the weighting
scheme. To the extent that information about the undercount does not require a drastic revi-
sion of our view of the makeup of the block such a drastic revision should be avoided, con-
sistently with good survey practise regarding weights.

We now turn to the mathematical formulation of these criteria. Suppose that in the block
under consideration, there are S adjustment classes and I enumerated households, and
household i contains C;, members from class s. Suppose that H is the desired total number of
households in the adjusted roster for the block and D is the desired total number of persons
in class s. Let W;, i = 1,2, ...I, be the weights corresponding to the households. (Al)
requires that

Y Wi=H M

i=1

and (A2) requires that

I
Z W.C;, = Dy, s = 1,2...5. )
i=1

These constraints can be represented by a matrix equation of the form AW = B, where

A= [IC,],B = [g] W' = [W, Wy... Wl and D’ = [D, D, ...D;) 3)

and 1is arow of 1's.

Objective (B) is represented by selecting some objective function that represents the distance
between the weights W and uniform weighting, and minimizing it. We will use the objective
function T = ¥, W; log (W;). This measure is proportional to the discriminant information
(Kullback-Liebler information) of the discrete probability distribution (over households) with
relative weights W; with respect to the probability distribution with equal weights, and is the
same objective function that underlies the traditional ‘‘raking’’ (iterative proportional fitting)
procedure for adjusting contingency tables (Deming and Stephan 1940; Ireland and Kullback
1968; Oh and Scheuren 1978 have a larger bibliography). Thus, our procedure may be regarded
as an extension of raking. Scheuren (1973) applies raking to reweighting of households; Cilke
and Wyscarver (1988) reweight to linear constraints but use a different objective function than



Survey Methodology, December 1988 269

those considered here. Methods similar to those presented here were developed independently
by Alexander (1987).

In the context of raking, initial counts X are given for cells in a contingency table, and new
cell counts Y are calculated to minimize the objective function ¥ Y;log (Y;/X;). Then the
weights of the original observations are the ratios W; = Y;/X;. In our context, if X;
households happened to have exactly the same composition we could regard them, in the same
way, as forming a single entry in the roster with initial count X; and fit an adjusted count Y.
However, with a large number of adjustment classes, it would be unusual for several households
in the same block to have exactly the same composition. Thus we will not attempt to group
households; rather, it is notationally and computationally simpler to list the households
separately so that for each enumerated household composition the initial count X; = 1 and
Y, = W, Aside from this notational difference, the mathematical formulation here differs
from that of a raking adjustment only in that the linear constraints do not have the special
structure of margins in a contingency table. For brevity in the presentation of examples, we
will sometimes include a count on a line to represent that number of identical lines in the ros-
ter of households.

In the contingency table setting, raking preserves cross-product ratios of cells, and preserves
independence of variables when it holds in the original table. For these reasons, it has been
called “‘structure-preserving estimation’’ in small-area estimation applications (Purcell 1979;
Purcell and Kish 1979). See Section 10.1 for a further discussion of objective functions.

Our procedure differs from raking in that the linear constraints do not necessarily refer to
margins in a contingency table. Our methodology includes raking as a special case, as well as
the raking generalization of Oh and Scheuren (1978) in which different tables are used to fit
each margin. In fact, constraints may be imposed on continuous as well as discrete covariates;
applications of this sort are proposed in Section 8.3. Furthermore, the algorithms that are set
forth allow direct determination of whether there are in fact any weights that are consistent
with all of the given constraints. It is possible then to select constraints that must be relaxed
in order to fit weights. These features give these methods potential applicability extending
beyond the area of representing undercount.

3. FITTING THE WEIGHTS

The problem before us now is to determine weights satisfying the constraints AW = B,
W = 0, minimizing the objective function T = ¥ W, log (W}). To make T a continuous
function of W, we adopt the usual convention 0 log 0 = 0.

We will call any weight vector that satisfies the linear constraints (the equations and the ine-
qualities) a feasible solution. As long as there is a constraint on the total weight of the
households, the set of feasible solutions is bounded and therefore T assumes a minimum value
on it; furthermore, since 7T is strictly convex, the solution is unique.

The problem of calculating weights then naturally is divided into three tasks: (1) determin-
ing whether the linear constraints AW = B are consistent; (2) determining whether there are
any feasible solutions; and (3) finding the feasible solution minimizing 7. We will suppose that
there are I households and p constraints, so 4 is a p X I matrix.

Example 2:  Fitting weights.

Table 3 illustrates the roster of households in a block in which three classes are
represented, as in Example 1; we may think of the classes as ‘‘men,”” ‘‘women,”” and
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Table 3
A household roster

Count per household by class

. Number of
Line # Class 1 Class 2 Class 3 households
(men) (women) (children)
1 0 1 0 50
2 0 1 1 40
3 1 0 0 40
4 1 0 2 15
5 1 1 0 50
6 1 1 1 60
7 1 1 2 40
Table 4
Adjusted totals
Raw Adjustment Adjusted
count rate count
Class 1 205 .05 215
Class 2 240 .03 247
Class 3 210 .04 218
Households 295 .02 301

and “‘children.”’ This table may be regarded as a condensed version of a table with 295
lines, each representing one household.

The unadjusted and adjusted counts of households and of persons in each class are
found in Table 4. The adjusted counts are calculated by applying the listed adjustment
rates and rounding. The method by which the adjusted counts are obtained is immaterial,
however, to the rest of the process.

3.1 Consistency of Linear Constraints

As long as the rows of A are independent, the constraints AW = B will be consistent. If
any row is dependent on the others, the corresponding constraint is either inconsistent or redun-
dant, depending on the values in B. Dependent rows can be identified by applying the O-R
decomposition to 4. If the corresponding constraints are redundant, they may be deleted with-
out any loss of information; if they are inconsistent, the constraints must be reformulated in
some way.

Example 2: (continued).

The A4 matrix for this example has independent rows, and hence the constraints are
consistent.
In Section 5, we consider circumstances in which inconsistent constraints are likely to appear
and some methods for dealing with them.

3.2 Existence of Feasible Solutions

Determining the existence of feasible solutions is equivalent to determining an initial feasible
solution in a linear programming problem, and the standard algorithms can be used. Suppose
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our problem is to find a positive solution Wto AW = B, where B = 0. (If the latter condi-
tion does not hold it can be made true by reversing the sign of negative elements of B and the
corresponding rows in A.) Then create an augmented problem [A4 | I] [W' | Z']’ =
B, W,Z = 0, where [is a p X p identity matrix and Z is a p element vector variable. This
problem automatically has an initial solution W = 0, Z = B. Then apply the simplex method
(as in Gass (1964) or any other linear programming text) to minimize Y Z;. If that sum can
be reduced to 0, the corresponding W values are a solution to the original problem, while if
it cannot, the original problem has no solution.

Example 2: (continued).

A feasible (but not optimal) solution for this example gives total weighted counts of
86, 54, 29, and 132 to the household compositions in lines 2, 3, 5, and 6 respectively of
Table 3. It may be verified that these counts yield the desired adjusted totals for
households and for individuals in each class.

The problem of infeasibility is similar to that of inconsistency and is also discussed in
Section 5.

3.3 Optimizing the Objective Function.

By the method of Lagrange multipliers, the minimizing solution must satisfy the equations
aT/oW; = log W; + 1 = a;’\, where g;is the i-th column of A and X" = (A, Ay, ... Ap).
Then W; = exp(a; A\ — 1); thus the model for the weights is log-linear in form, like that for
a conventional raking adjustment. A, represents the additional log-weight increment associated
with a unit increment in the corresponding constraint coefficient ¢, i.e. adding an additional
household member from adjustment class s to the household.

We can solve for A by Newton’s method to satisfy AW = B. The iterative scheme we use is

AHD = N . (AW*A") ! (AW — B), @

where W* is the matrix with the elements of W = W(A (") on the diagonal. A good starting
value for Nis \¥ = (A4A4’) ~'B, which can be derived from a linear approximation around
equal starting weights. A cyclic descent procedure for solving these equations, which is a
generalization of iterative proportional fitting, is described in Section 10.2.

Example 2: (continued).

The weights per household and total weighted counts (weight times raw count) for
each line in Table 3 are shown in Table 5. No household is upweighted by more than 8%
or downweighted by more than 5%.

Table S
Optimal weights for Example 2
Line # Weight Weighted

counts
1 0.9554 47.77
2 0.9557 38.23
3 0.9816 39.27
4 0.9823 14.73
5 1.0730 53.65
6 1.0734 64.40
7 1.0737 42.95
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4. WHOLE-AND WITHIN-HOUSEHOLD ADJUSTMENTS

We now consider the distinction between within-household adjustments (that is, adjustments
for omissions of persons within enumerated households) and whole-household adjustments
(that is, adjustments for omissions of whole households). This distinction has previously been
made for purposes of analysing the causes of undercount (Fay 1986). Our concern here is to
use it to more accurately represent the undercount by an adjustment.

Within-household adjustments do not involve adding any households to the roster, but only
shifting weight between households to increase the weighted totals of persons in the various
classes. That is, households with few or no persons in a particular class are downweighted and
those with many are upweighted, so that the total household weight remains constant. Thus,
in this portion of the adjustment, some households will inevitably have their weights reduced.
Whole-household adjustments, on the other hand, correspond to households that were omit-
ted entirely from the census. These adjustments do not reflect on the accuracy of the enumerated
households; thus they should be represented by adding households to the roster without taking
weight away from the households that were enumerated.

We propose to separate these two portions of the adjustment. One set of constraints
represents the within-household adjustment. The total household weights are here constrained
to equal the enumerated count of households, while the total weights assigned to persons in
each class are constrained to equal the enumerated count in that class plus the within-household
adjustment for that class. AW, = B, where B, consists of the enumerated household count
and the counts of persons by class adjusted for within-household undercount.

A second set of constraints represents the whole-household adjustment. The total household
weights are here constrained to equal the estimated omitted households, and the total person
weights in each class are constrained to equal the estimated omitted persons in those households.
AW, = B, where B, consists of the count of added households and the counts of added per-
sons by class for the adjustment for whole-household undercount.

After fitting two sets of weights corresponding to the two sets of constraints, the two weights
for each household are added to obtain weights that incorporate both parts of the adjustment
(W = W, + W,). The distinction between whole- and within-household adjustments
contains information which may lead to a different set of adjusted weights than would be
calculated if the adjustments were combined, as is illustrated in Example 3. However, if this
distinction is not made in the estimation of the undercount, an adjustment can still be calculated
in a single step.

Example 3: adjustments for whole-household omissions.

Suppose there are only two adjustment classes, and a hypothetical block has the com-
position described in the first three columns of Table 6.

Suppose now that to the 30,010 households enumerated, we must add 231 persons each
in Class 1 and Class 2, and 121 households. The last three columns of Table 6 show the
adjusted counts under alternative assumptions: (1) the omitted persons may belong to
any household, enumerated or omitted, and (2) all of the omitted persons were in the
omitted households.

When the omitted persons could have been in any household, the algorithm
downweights the households with only one person from each class (1,1) and upweights
households with two from one class and one from the other (1,2 and 2,1). While the
households with two persons from each class are substantially upweighted (by a factor
of 1.354), only a small portion of the added persons appear in those households since
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Table 6

Hypothetical raw and adjusted household counts for Example 3

(1) Omitted

Household ersons in an (2) Omitted persons in
composition p y omitted households only
household
Raw count )
(number of Counts At(i]tislzed
Celrasscfnls C;:lsssni houscholds) Ac(gllllrslied of omitted omitted and
p p s households enumerated
households
1 1 10,000 9904.54 .01 10,000.01
1 2 10,000 10106.46 10.99 10,010.99
2 1 10,000 10106.46 10.99 10,010.99
2 2 10 13.54 99.01 109.01

the original count for that composition is so small.

When the omitted persons appear only in the omitted households, weights are
calculated first to fit 231 x 2 = 462 persons into 121 additional households, and then
these weights are added to the unit weights in the raw counts. While no household com-
position is downweighted, the (2,2) households are upweighted extremely (by a factor
of 10.901). In fact, it is mathematically impossible to accommodate 462 persons in 121
households of two to four persons each without having at least 99 households with 4
members. Thus, the information that the added persons (or some known fraction of them)
belong in the omitted households substantially changes our view of the appropriate
adjustment.

5. FEASIBILITY OF CONSTRAINTS

In the preceding sections we have assumed that feasible solutions exist to the constrained
optimization problem. Here we will consider situations in which the solutions will not exist
or will be unsatisfactory, and some alternative methods to deal with these situations.

5.1 When Will Constraints be Non-feasible?

There are three ways in which the constraints may fail to allow of satisfactory solutions:
(1) when the constraints are actually inconsistent, (2) when the constraints are consistent but
there are no positive weights that satisfy them, and (3) when there is a feasible solution but
it involves an extreme adjustment to some household weights. The issues associated with these
three failure modes are fairly similar.

One could write down constraints that are intrinsically inconsistent, for example that all
classes of men are adjusted upward by 2% while men in total are adjusted upward by 4%. In
our procedure each constraint applies to the number of persons in a distinct adjustment class
and so there are no inconsistencies of this sort. However, a contingent inconsistency is still
possible, that is to say one that depends on the particular collection of household composi-
tions that appears in a block. The following are examples of contingent inconsistency,
infeasibility, or unsatisfactory weights:

(1) Proposed undercount estimation methods envision defining over 100 adjustment classes.
In a small but diverse block the number of classes represented might be larger than the
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number of households; hence the number of constraints would be larger than the number
of weights to be fitted. An inconsistency is then almost inevitable.

(2) If all households in the block have exactly the same number of members from a particular
adjustment class (e.g. every household has one young Hispanic girl), then the number of
members of this class represented is unaffected by the distribution of weights.

(3) The adjustment of the number of households may be too large or small to accommodate
the adjustment of persons in some class. This may represent a failure of the model for
adjustment of the number of households. For example, suppose that the number of men
to be added by the whole-household adjustment is greater than the number of households
to be added, but no household in the block has more than one man. The constraints then
might be consistent but infeasible, since they could be satisfied only by assigning negative
weights to some households without men.

(4) The block may have had omission rates atypical of blocks in the PES on which omission
rates were estimated. For example, suppose that in most blocks (including most of the PES
sample blocks), adult males with certain characteristics tend to be heavily undercounted,
but the block being adjusted is atypical in having adult males of this class present in most
households and well counted. The class undercount estimate might lead to an extreme
upward adjustment that could not be accommodated within the existing households.

(5) Some adjustment may require giving substantial additional weight to households containing
persons from a combination of adjustment classes that appears in only one household,
so that household receives an extreme weight. In this case the problem is feasible but the
solution is not very satisfactory.

Problems of infeasibility may also arise where the difficulty cannot be so easily traced to
a particular inconsistency in the adjustment.

5.2 Making the Constraints Feasible

Regardless of the stage of the fitting procedure at which the infeasibility is discovered, several
methods are available to relax the constraints and make them feasible. In this section, we survey
several such methods, drawing out both the intuitive logic of each choice and the computa-
tional methods required.

5.2.1 Methods Based on Dropping Rows (constraints) of 4

When checking for consistency of constraints, some rows may be found to be linearly depen-
dent on the previous rows and hence either redundant or inconsistent. If these rows are simply
dropped from the A matrix, a consistent set of constraints is obtained; thus, no further com-
putational effort is required.

If the constraints are arranged in sequence from the most important to the least important,
than the less important constraints will be dropped when they are inconsistent with the more
important ones. This ordering makes the most sense if the original constraints on distinct adjust-
ment classes (defined by a multi-way classification of the population) are reframed in an
ANOVA-like manner as constraints on total population (‘‘grand mean’’), classes defined by
one classification variable (‘‘main effects’’), and classes defined by interactions. For exam-
ple, if there are ten adjustment classes defined by two sexes and five age ranges, the reframed
constraints in order of importance might be: total population (1 constraint), population by
sex (1 more constraint), population by age (4 more constraints), age-sex interactions (the remain-
ing 4 constraints). The 4 age constraints could be further broken down as old-vs.-young (1 con-
straint) and 3 further constraints within those larger groups.
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A similar procedure can be applied at the stage of checking feasibility of the constraints.
If it is not possible to make all of the Z; = 0, the objective function in the linear programming
problem can be modified to be ¥, ¢;Z;, with the coefficients ¢; > 0 corresponding to the most
important constraints made larger. Then a maximal set of feasible constraints can be identified,
and the remaining constraints dropped.

The outcome of this procedure would be weights that give the correct block totals on the
coarser classifications of persons, while failing to be correct on all cross-tabulations.

5.2.2 Methods Based on Adding Columns (househelds) to 4

When constraints are only contingently infeasible (in the previous sense that infeasibility
depends on the particular set of household compositions in the block), they become feasible
when households are added that have the required composition. The simplest application of
this principle is to work at a higher level of geographical aggregation than a block. A few adja-
cent blocks may be combined when problems arise in fitting, or the entire roster may be grouped
at, for example, the enumeration district level before weighting. The larger the unit, the broader
the range of household compositions that will be represented and the less likely that problems
of infeasibility will arise.

A more sophisticated procedure would use a hot-deck of households from adjacent ‘‘donor’’
blocks to enrich the pool of households to which weight can be assigned. Computational
simplicity is important here since it may be necessary to scan through a long list of households
to find the one or ones which will make the constraints feasible. In the consistency-checking
stage, if row j of A is dependent on the previous rows, then if the column for the added
household is independent of the columns of A (with regard only to the first j rows), row j of
the augmented A will be independent. In the stage of checking for feasibility, if the algorithm
halts because no reduction can be made in the objective function ¥ Z;, the search for basic
columns can be extended to columns corresponding to households in the hot deck. Finally,
if some household’s fitted weight is extremely high, the hot deck can be scanned for other
households that would also receive high weights with the current values of A (that is, columns
a such that a’ A is large). If these are added to the block they will draw off some of the weight
from the overweighted households when the weights are refitted, since they are likely to also
have members in the same adjustment classes.

The intuition behind this method is that the household compositions that are enumerated
in a block are only a sample of those which actually could have appeared there had the enumera-
tion been complete. The observed distribution of household compositions is smoothed by
mixing it with the distribution for adjacent blocks, which contain households that are also
typical for that area. Thus, conceptually this method is related to Bayesian smoothing methods
that improve estimation of some quantity for one unit by borrowing strength from its distri-
bution in similar units. This Bayesian rationale is developed in terms of a block-level random-
effects model by Zaslavsky (1989).

The donor blocks could be chosen by a sequential hot deck procedure; then, the donor blocks
would tend to be geographically close to the adjustment block and no particular set of blocks
would have undue influence on the entire census. By detailed stratification of blocks, the donor
blocks could be selected to be similar to the block being adjusted on characteristics such as
mean income, types of housing units, and racial balance.

5.2.3 Combined Methods

The two types of methods outlined above can be combined by an appropriate reframing
of constraints. The principle here is to satisfy @/l constraints in the larger geographical units,
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while satisfying only the more important constraints in the smaller units. This type of com-
promise may make it possible to get a fairly good fit to the desired distribution without having
to add additional records to the roster.

Suppose that the 4 matrices for several blocks have been reframed similarly as sequences
of rows representing main and interaction constraints. Then a single large A matrix represen-
ting all of the constraints can be formed. The rows for the more important constraints can
be kept separate, while rows for subsidiary constraints can be combined across blocks. For
example, suppose there are ten adjustment classes, defined by sex (2 levels) and age (5 levels),
and two blocks. Altogether there are eleven constraints (one for number of households and
one for each adjustment class) in each block. If these are combined into a single matrix, keep-
ing main effects and two-way interactions, the constraints are: block household counts (2 con-
straints), block populations (2 constraints), sex (1 constraint), age (4 constraints), block X sex
interaction (1 constraint), block x age interaction (4 constraints), and sex X age interaction
(4 constraints) in the combined blocks. Here 4 constraints have been eliminated
(block X sex X age interaction); in a more realistic problem with more blocks, classification
variables, and levels, the reduction would be much greater.

6. SIMULATION RESULTS

Simulations were performed to answer two classes of questions:

(1) The first set of questions is concerned with evaluation of the success of the algorithm in
terms of its own constraints and objectives. Does the reweighting algorithm give an answer?
In real problems, is there a solution to the weighting constraints? How much do the weights
vary? Is the amount of computation required within reasonable limits?

To answer these questions, ‘“feasibility simulations”” were performed in which the weighting
algorithm was applied to simulated blocks made up of real households, using real adjustment
rates. This procedure thus closely parallels the practical application of the algorithm.

(2) The second set of questions is concerned with evaluation of the success of the algorithm
in improving the quality of inferences based on a micro-data set: does the weighted micro-
data set more accurately describe the real world than the raw, unweighted data?

To answer these questions, simulated blocks made up of real households were drawn,
representing the true (but unobserved) compositions of households in blocks. For each “‘true”’
block, omissions were imposed using real estimated undercount rates and a plausible model
for the distribution of undercount among households. The weighting algorithm was applied
to the “‘enumerated’’ blocks generated in this way. Summary statistics describing household
composition were calculated for the simulated ‘‘true’” blocks and for the simulated observed
blocks with undercount, both unweighted and weighted for undercount adjustment. The goal
of these ““inference simulations’’ was to determine whether the reweighting brought the statistics
closer to their values in the ““true’’ blocks; in other words, did reweighting correct the biases
caused by the undercount?

The source of households for all simulations was the 1% ¢‘B’’ Public Use Microdata Sam-
ple (PUMS) from the 1980 Census (Bureau of the Census 1985). Households were extracted
from sections of Los Angeles County, California that include the site of the Test of Adjust-
ment Related Operations (TARO) of the 1986 Test Census.

Undercount rates were those calculated from the 1986 TARO (Diffendal 1988, Table 7) for
adjustment classes defined by sex, age (five levels), race (Hispanic, Asian, or *‘other race’’),
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and tenure (owner or renter). Adjustment factors calculated from the given undercount rates
ranged from 0.982 to 1.211.

Each household was coded as a vector of counts representing the number of individuals in
that household from each of the 60 adjustment classes.

Further details on the simulation procedures and on a larger set of simulations are in
Zaslavsky (1989).

6.1 Feasibility Simulations

For each of four block sizes (20, 50, 100, and 200 households), 50 simulated blocks were
drawn from the full sample and 50 were drawn from only those households with no Asian
members. For each block, simulations were attempted using two levels of the household adjust-
ment rate (the factor by which the number of households in the block is adjusted).

The algorithms of Section 3 were applied. To recapitulate, the linear constraints were checked
first for consistency, and then for feasibility (existence of a positive solution); finally, weights
were calculated using Newton’s method. As no data were available distinguishing within-
household and whole-household omissions, no effort was made to separate them in these or
other simulations.

The results of these simulations are summarized in Table 7.

Consistency and feasibility:

The columns headed “‘incons’’, ‘‘infeas’’, and ‘“‘OK’’ represent the number of simulated
blocks (out of the 50 trials) in each simulation that fell into each of the following categories
respectively: (1) the constraints were inconsistent (could not be satisfied by any weights), (2)
the constraints were consistent but not feasible (could not be satisfied by any positive weights),
or (3) the constraints were both consistent and feasible.

In the ““non-Asian’’ simulations there are 41 constraints to be satisfied (some of which may
be trivial, i.e. when the corresponding adjustment classes are unrepresented in the block). Thus
with 20-household blocks, the constraints were never consistent; with 50-household blocks,
the constraints were sometimes consistent and then usually feasible. The constraints were usually
feasible in 100-household blocks, and always in 200-household blocks.

The numbered columns at the right represent the order of the simplest marginal constraint
that could not be satisfied, in the sense of the heirarchical reparametrization in Section 5.2.1.
Thus, column (1) indicates the number of simulated blocks for which a ‘‘main effect’’ con-
straint (marginal total of persons classified by one stratifying variable) could not be satisfied,
column (2) indicates the number of trials for which a two-way interaction constraint could not
be satisfied, etc. Even when the constraints were inconsistent with 50- or 100- household blocks,
the main-effect constraints and often the two-way or even three-way interactions were feasi-
ble. This suggests that pooling of blocks for higher-order interactions, as described in Section
5.2.3, might be a successful strategy for dealing with problems of infeasibility.

The results were less encouraging for simulations using the full samples. Even with 200-
household blocks, only rarely were the constraints consistent and feasible. With increasing block
size the lower-order constraints were more likely to be feasible. This is explained by the small
number of households with Asian members (approximately 5% in each sample). Out of 200
households, the expected number of Asian households would be about 10, an insufficient num-
ber to satisfy the 20 possible constraints for the Asian adjustment classes. Such a situation in
which some groups of adjustment classes are poorly represented in a certain region or in par-
ticular blocks would surely not be unusual in practise. This would require pooling of blocks
on a large scale for the corresponding constraints, while the constraints for the better-
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Table 7

Feasibility simulation results

Non-Asian Households

size HH rate incons infeas OK maxW minW varW ters (1) (2) 3 @
10 1.00 50 0 0 NA NA NA NA 22 28 0 0
10 1.05 50 0 0 NA NA NA NA 8 42 0 0
20 1.00 50 0 0 NA NA NA NA 0 50 0o 0
20 1.05 50 0 0 NA NA NA NA 0 50 0 0
50 1.00 47 1 2 1.921 0.200 0.142 3.00 0 3 37 8
50 1.05 47 0 3 1.550 0.620 0.036 1.33 0 3 36 8
100 1.00 10 0 40 2.068 0.429 0.088 2.03 0 0 8 2
100 1.05 10 0 40 1.573  0.753 0.020 1.90 0 0 8 2
200 1.00 0 0 50 2.434  0.543 0.063 2.18 0 0 0 0
200 1.05 0 0 50 1.749  0.821 0.015 2.00 0 0 o 0

Full Sample

size¢  HH rate incons infeas OK maxW minW varW iters (1) (2) 3) @)

o
o

100 1.00 49 0 1 — - — -— 34 15
200 1.00 49 0 1 - - — — 0 2 43 4

represented classes might be satisfied on a smaller scale.
Weights:

The maximum and minimum household weights and the variance of the weights were
calculated for each simulated block for which the constraints were consistent and feasible. For
each simulation condition, the average value of these quantities (across simulated blocks) is
displayed under the heads ““maxW?”’, “minW”’, and ‘‘varW.”” The following observations
characterize some of the effects of the simulation design factors on the fitted weights.

(1) For simulations with household count adjustment factor of 1.05, in every case, the average
variance of the weights was smaller, and the average of the minimum weights and of the
maximum weights were closer to unity, than with household adjustment factor 1. This is
intuitively reasonable since almost all class adjustment factors exceed 1, and it requires
a more extreme adjustment to add individuals to existing households than to add individuals
and households to accommodate them. For example, if the adjustment factors for
households and for every adjustment class are all equal, every household would be
upweighted equally.

(2) Fixing other factors, the variance of the weights becomes smaller as the number of
households per block increases. Again, this is intuitively reasonable because the pool of
households is richer in a larger block; the probability of finding exactly the households
needed to represent undercounted individuals is higher. The trends for the extreme weights
are less clear-cut than for variances; here, the narrowing of the variance is offset by the
larger sample over which the extreme is calculated in the larger blocks.
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(3) The average variances for simulations with 200-household blocks were at most .063. Thus
the reweighting is generally not extreme.

Computational costs:

The mean number of Newton steps required to fit the weights (from the starting values given
in Section 3.3), shown under the heading “‘iters’’, is usually about two. These iterations were
sufficient to satisfy all constraints with error no greater than .001. Using this information, a
rough estimate can be given of the number of floating point operations required to apply the
algorithm. Computational costs of the modified raking algorithm are discussed in Section 10.2.

Assume that blocks are of sufficient size that it is not necessary to check consistency and
feasibility of the constraints in every case (but perhaps only when the weight fitting does not
succeed in a few steps). Then the key calculation is fitting the weights. For production runs,
data structures and programs should be devised which take advantage of the sparseness of the
A matrix (due to the fact that only a few classes are represented in each household). Then if
S is the total number of nonzero entries in 4 and S, is the sum (through the block) of the
squares of the number of nonzero entries for each household, each Newton step requires about
55172 + S,/2 multiplications (plus a term independent of the number of households per
block). In the samples studied here, S, = 58;; S; is bounded by the total population of the
block. Thus the bound on the number of multiplications is approximately 15 x population
total (counting the start as an iteration); the number of additions is comparable.

In an era in which even microcomputers have megaflop arithmetic capability, 8 x 10°
floating point operations to reweight an entire census does not seem unreasonable. The calcula-
tion of weights might well take less computer resources than the ‘‘bookkeeping’’ data processing
required in any method of incorporating undercount. Of course, if the procedure were applied
to a sampled database, as in forming a public-use sample, the costs would be reduced corres-
pondingly.

6.2 Inference Simulations

For the inference simulations, pseudo-blocks of 50 households each with only Hispanic
members were drawn. These were treated as if they represented true blocks. Then simulated
omissions were imposed on the these households, assuming that each member was
(independently) omitted with probability equal to the undercount rate from Diffendal (1988),
with two negative undercount rates truncated to 0.

The entire distribution of the “‘enumerated’’ block was represented by including in the
pseudo-Census roster the true composition and the possible compositions obtained by omis-
sion of one or more household members, each weighted by its probability under the model.

The pseudo-Census roster with undercount was then reweighted to the original pseudo-block
totals for number of households and of individuals in each adjustment class. Both the pseudo-
Census roster and the reweighted roster were compared to the original pseudo-block.

The purpose of organizing the simulation in this manner was to remove variability due to
randomness in the rate of omissions in a block (around the mean undercount rate) and in the
distribution of the omissions among the households in the block. Furthermore, feasibility is
guaranteed because the original households are always included (with weights) in the pseudo-
Census roster. One way of regarding this setup is that each simulated block represents a very
large population in which observed undercount rates and the distribution of observed com-
positions approach their expectations.
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Several sets of statistics were used in evaluation of the reweighting procedure. These were
all chosen because they summarized household characteristics that are not functions of the
populations by adjustment class. The first set was the distribution of sizes (number of members)
of households. Note that the mean number of persons per household, like any function of the
class totals and household count, will automatically be adjusted to the correct (pre-undercount)
values; the distribution of sizes, however, is not controlled by the adjustment procedure.

The second set of statistics was the distribution of number of adulf (over 14 years old)
members in households with one or more children (up to 14 years old). In this case, the mean
is not automatically adjusted to the correct value, since it depends on the joint distribution
of counts from different classes within households as well as on marginal totals.

The last two sets of statistics were the distribution of the age group (coded from 1 to 5 as
in the formation of the adjustment classes) of the oldest male in the household (coded 0 if no
male is present), and the same distribution for households with one or more children. Again,
neither the distribution nor its mean are directly constrained to their true values.

The results of these simulations are summarized in Table 8. Because almost all of the dif-
ferences noted here are highly significant (relative to between-pseudo-block variances of the
differences), standard errors are not shown in the tables. The lines of each table are labelled
““true’’ (for the original pseudo-blocks), ‘‘enum’’ (for the simulated enumerated blocks, i.e.
after omissions due to undercount), and ‘‘adjust’” (enumerated blocks after adjustment for
undercount). Every column except the means should be read as a percentage of households
in the block.

Table 8

Inference simulation results

Size distribution

size 1 size 2 size 3 size 4 size 5+ mean
true 7.240 16.200 20.240 22.600 33.720 3.971
enum 10.349 19.631 21.772 20.690 27.558 3.632
adjust 7.372 16.421 20.596 21.392 34.219 3.971
Size distribution (number of adults) for households with children

size 0 size 1 size 2 size 3 size 4 size 5+ mean
true 0.000 6.925 58.404 17.214 9.125 8.332 2.585
enum 1.736 18.309 49.874 15.965 7.677 6.439 2.323
adjust 0.924 13.277 48.557 18.223 9.810 9.209 2.562
Age of oldest male (by five age classifications)

none age 1 age 2 age 3 age 4 age S mean
true 7.080 4.000 28.680 33.800 21.960 4.480 2.730
enum 9.981 7.388 26.296 30.972 21.160 4.203 2.585
adjust 7.853 5.989 26.307 33.439 21.931 4.480 2.690
Age of oldest male (by five age classifications) for households with children

none age 1 age 2 age 3 age 4 age 5 mean
true 3.602 6.214 30.744 42.649 15.843 0.949 2.638
enum 5.809 11.723 27.321 39.096 15.158 0.894 2.488

adjust 4.272 9.069 27.242 42.038 16.418 0.962 2.601
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Household size distribution was biased downwards in the enumerated blocks. As well as
correcting the mean, adjustment brought the estimated percentage for every size substantially
closer to the true percentage.

The distribution of number of adults in households with children was also biased downwards.
The majority of these households had contained two adults, so this size category was most
understated by the enumerated statistics. Due to the log-linear structure of the adjustment,
however, the most extreme adjustments were made to the largest and smallest households. Thus,
the highest size categories were slightly overadjusted and intermediate categories were underad-
justed; the “‘size 2’ category was adjusted a small amount in the wrong direction. Nonetheless,
the mean of the adjusted distribution was much closer to the ‘‘true’” value than the adjusted
mean was.

The story is similar for the distributions of age of oldest male. Although these statistics are
only indirectly related to the counts by class, in almost every case the adjusted distributions
and means are closer to the ‘‘truth’’ than are the unadjusted distributions and means.

In summary, these simulations suggest that these weighting adjustments can improve
estimates of measures of household structure as well as the aggregate counts for which they
were intended. However, reweighting does not provide accurate adjustments with certain con-
figurations of the data, such as the many households with two adults noted above; to deal with
these situations may require a model-based imputation method such as that outlined by
Zaslavsky (1989).

7. THE USE OF WEIGHTED DATA

The product of the methods of the preceding sections would be a census roster in which
households have weights, persons in households have weights adopted from their households,
and institutionalized persons have individually assigned weights. This section outlines the use
of these rosters for various Census purposes.

7.1 Formation of Tables of Counts

As with any data set of weighted observations, the sum of weights replaces the simple count
of observations in forming tables. The only problem created by the use of weights is that of
obtaining integer entries in the tables. This problem arises even before the calculation of
household weights: when the estimated omissions are calculated, the counts in each class will
not in general be integers.

If the adjusted totals by class are rounded to be integers, any table that aggregates classes
(for example, a count of adult males that is a sum of counts of adult males from different classes)
will also contain integers, since it must be consistent with those totals. For tables that are not
based on those totals, summing the weights in a particular group may not necessarily generate
integer counts. For example, if a class combines women of ages 20-40, a sum of weights for
women aged 20-30 would not necessarily be an integer. In any case, it seems unlikely that all
class weights would be rounded since this might well lose the entire adjustment to roundoff
error. However, it should be possible to use existing Census Bureau integerizing methods (‘‘con-
trolled rounding’’) to deal with these problems, especially where non-disclosure requires that
published counts be rounded anyway (Cox et al. 1986; Cox 1987).

7.2 Formation of tables of sums and means

Generally, sums (of continuous quantities) and means are not expected to be integers, so
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the issue of rounding does not arise. Also, tables based on long-form information are already
derived from a sample so an additional source of weights should not change the process much.
A deeper issue is that of the values of non-classification covariates to be assigned to households
that are ‘‘weighted in’’ to the census; this is discussed in Section 8.

7.3 Public Use Samples

The public use tapes are a sample of census records that are released for further analysis
by consumers of census data.

To generate these samples from weighted census rosters requires only that the sampling pro-
cedure be modified slightly to make sampling probabilities proportional to weights. Even on
the 5% tape (the highest sampling rate), the weighted sampling probabilities should be smaller
than 1. Once these tapes are produced, the user would not have to be aware of the adjustment
and weighting process that had gone into generating them.

The public use tapes are the source of data for many of the more complicated analyses by
sociologists, economists, planners, etc. in which the details of household composition, as well
as counts of persons, are of importance. It is important that these tapes could be generated
easily and used like raw census data.

As a service to those users of the public use tapes who wish to check the sensitivity of their
analyses to the undercount adjustment, the tape should include factors (the inverse of the adjust-
ment weights attached to the household records in the original census rosters) that would allow
the user to reconstruct the equivalent of the unadjusted census.

8. ADJUSTMENT OF COVARIATES THAT ARE NOT
USED IN CLASSIFICATION

The methods described above guarantee that weighted block totals by variables used in
classification, such as sex, race, and age group, will equal the adjusted block totals. However,
these lists will also be used to accumulate totals or counts for variables such as income and
education that might not be used in the classification scheme. This section will consider the
effect of these adjustment methods on such statistics. For concreteness of exposition, income
will be used as the main example. Income is an important non-classification variable; some
research suggests that revenue allocation programs may be most affected by errors in measure-
ment of income. (National Academy of Sciences 1985).

In general, there are two possible sources of bias in the estimation of a non-classification
covariate: (1) bias in adjustment of household composition, and (2) systematic differences
between fully enumerated households and households with similar composition that are omitted
(entirely or in part). However, if we have an estimate of mean income for the block, we can
make the weighted mean for households in the block equal the estimated (adjusted) mean in
much the same manner we make the weighted counts of individuals in the block equal the
estimated (adjusted) counts.

8.1 Household Composition Bias

In this section we will assume that the average income level associated with a certain
household composition is the same for fully enumerated households and those which are partly
or wholly omitted from the enumeration. In other words, we consider here the case in which
omission is noninformative for income.
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Suppose that household income is a sum of independent contributions from persons of each
class in the household (i.e. suppose that the contribution to income from persons in each class
are independent of what other members are in the household). Then weighted household income
totals would be an unbiased estimate of the true income totals (when adjustment rates are cor-
rect), since the sum of incomes would be a linear function of class counts for the block. How-
ever, under the more realistic assumption that linearity does not hold, misallocation of persons
between households (and corresponding misrepresentation of household composition in the
adjustment) could lead to bias in income estimates. Thus, for example, the average income
of households with two children might not be the mean of the average income of one-child
and three-child households (with the same composition of adult members). Then the weighting
procedure might introduce the correct number of children but if, on the average, too many
(compared to the truth) two-child households were created relative to one- and three-child
households, estimates of household income would be biased.

Our procedure tends to fit weights that make the ‘‘adjusted-in’’ households similar in com-
position to those that are common in the enumeration. However, the adjustment is described
only by adjustment class totals, which do not carry detailed information on the composition
of the omitted households. Thus, if certain household compositions are disproportionately
undercounted they may be underrepresented in the weighted lists, and if these compositions
are associated, for example, with lower incomes, the total income estimates will be biased
upwards.

This is essentially a problem of potential lack of fit of the model used in adjustment to the
patterns in the data. The most severe biases might appear in statistics that refer specifically
to household composition, such as the number of single-parent families.

If composition bias were found to be a serious problem, one approach to controlling it would
be to augment the class adjustment rates with additional information that describes the joint
omissions of persons from different classes (or grouped classes).

8.2 Response Bias

It is not unreasonable to think that, of a group of households with the same composition,
those which are missed in the census will differ systematically in some characteristics from those
that are enumerated. In other words, omission may be a form of nonignorable nonresponse.
For example, households with lower incomes and educational levels may be more likely to be
missed altogether, or to omit some members from their roster; income and education are not
classification variables and therefore are not directly adjusted.

Whole-household adjustments are represented in the proposed methods by upweighting
households, preserving the values of all covariates. The implicit assumption is that the omit-
ted households do not differ on these covariates from enumerated households with similar com-
position. There is no information available in the block being adjusted to contradict this
assumption. However, it should be possible to collect information in the PES on the differences
between enumerated and missed households, which could be incorporated into the adjustment.
For example, the income of wholly omitted households might be related to the mean income
of enumerated households with the same composition by a linear regression; then the added
(weighted-in) households could be imputed the income obtained by applying the linear regres-
sion function to the income of the enumerated donor household. Little and Rubin (1987) discuss
relevant methods for missing data problems with informative nonresponse. Another approach
that is integrated with the weighting adjustment methodology is described in the next section.

Within-household adjustments are represented by downweighting a household with certain
enumerated characteristics and upweighting another household that contains an additional
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member or members. In the absence of further adjustment, the characteristics of the upweighted
household, rather than those of the enumerated household from which the weight was taken,
will apply to the ‘“weighted-in’’ component.

This poses problems that cannot be resolved without collecting some data (from a subsam-
ple of the PES). For example, if a child were omitted from the household roster, there is no
reason to think this would lead to misreporting of income. If households with more children
had a higher mean income than those with fewer children, then the weighting would tend to
over-estimate mean incomes.

If an aduit were omitted from the roster, this might also mean that the same adult’s income
(if any) would be left out of the reported household income. It is plausible that the mean
unreported income in this situation would be positive but less than the mean income of the
corresponding adults in households where all adult members appear on the roster. For a stereo-
typical example, consider a family on public assistance that does not report an adult male
member, whose income would otherwise be deducted from the assistance level, and whose
residence is somewhat inconsistent. That member’s income is likely to be less than that of a
permanently resident adult male in a family that does not depend on public assistance. Thus,
neither the income of the enumerated household nor that of the ‘‘weighted-up’’ household
would be an accurate imputation for the adjusted household.

No direct correspondence is established between households that are down-weighted and
those that receive additional weight. Thus an unadjusted income cannot be carried over directly
from the enumerated household to the ‘‘weighted up’’ household. However, with some research
comparing the incomes of enumerated and missed households, the incomes of down-weighted
households could be used in adjusting incomes. For example, the mean household income of
the reweighted block could be constrained to be equal to that of the block before adjustment.

8.3 Weighting Adjustment of Non-classification Characteristics

Suppose that adjusted summary information (by block) is available on some characteristics
of households other than counts of individuals by adjustment class. For example, we might
have an adjusted estimate of mean income or of the proportion of single-parent families,
possibly from a regression model. As long as the summary statistic can be represented as a
weighted sum of covariate values for each household, then conformity to the desired adjusted
value can be imposed by a linear constraint on weights which can be made part of the weighting
adjustment methodology of this paper. Thus, in the income example, we would constrain the
weighted sum of incomes to equal the product of the number of households and the adjusted
mean income. To adjust the proportion of single-parent families, we would constrain the
weighted sum of 0-1 indicators for that status to the desired total count.

8.4 Summary and Implications

The methodology proposed will upweight households, and without further consideration
of possible biases, will carry along the characteristics of the upweighted households. If the size
of the adjustment and the biases introduced in household characteristics are both of small order,
the overall bias in estimated block characteristics will be of second order and should not be
a major problem. Some simple regression adjustments might make it possible to reduce the
biases by an additional order of magnitude.
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9. SUGGESTIONS FOR FUTURE RESEARCH AND DEVELOPMENT
OF METHODOLOGY

This section summarizes a number of suggestions for implementation and further develop-
ment of this adjustment methodology.

9.1 Post Enumeration Survey (PES) Data-gathering and Statistical Modeling

Omissions of persons in enumerated and omitted households should be distinguished in the
PES and the two omission rates modeled separately for each adjustment class. Rates of omis-
sions of whole households should also be modeled (Section 4). A variety of measures (as in
Section 6.2) could be used to compare the composition of ‘‘weighted-in’’ households to that
of omitted households found in the PES; if research found that ‘‘composition bias’’ was a
significant problem, higher-order statistics should be developed (Section 8.1). A sample of PES
households that were omitted in the Census should be administered the long form, so that the
relationship between omission and covariates such as income and education could be modeled
for the adjustment (Sections 8.2, 8.3).

9.2 Feasibility of Adjustments
The methods of Section 5 should be tested and compared using PES data.

9.3 Multiple Imputation

Although the procedures proposed in this paper operate deterministically, there are a number
of sources of uncertainty in statistics based on the weighted records. These include: uncertainty
in estimation of undercount rates; variability in class undercount rates from block to block
around the national mean; binomial variability in the actual number of omitted households
or individuals around the expected number given the undercount rate; uncertainty regarding
differences between covariate values for omitted households and for enumerated households
that are weighted up to replace them.

For research uses, files could be prepared that would represent all of these forms of uncer-
tainty by multiple imputation (Rubin 1987). Two or more versions of the reweighted data set
could be represented by including several sets of weights on the file. Researchers could repeat
their analyses using each set of weights in turn. The variability among the statistics calculated
on the different versions gives an estimate of the variability introduced by the process of under-
count adjustment. Zaslavsky (1989) discusses procedures for multiple imputation in this setting.

10. SUPPLEMENTS

10.1 Choice of Objective Function for Weighting

A number of objective functions have been proposed for calculating an optimal fitted table
(usually in the context of contingency tables, ¢f. Fagan and Greenberg 1988). In each case the
function takes the form T" = Y 7,(W)), where T, takes one of the forms displayed in Table 9.
Each of these functions can be standardized to an equivalent function T, by multiplication
by a constant coefficient and adding a linear function of W, so that Ty(1) = 0, Ty(1) = 0,
Ty (1) = 1. Since Y W; is constrained to a given value, the optimum weights will be
unaffected. Then the standardized objective functions agree through the second term of their
Taylor expansions about 1, and should give similar results when the weights are close to 1.
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Table 9
Comparison of objective functions for table fitting

Obijective Objective Second
Name of fitting function function Ty(W), derivative
procedure T,(W), usual standardized T4 (W)

form form 0

Least squares w—1)?2 W — 1022 1
(minimum variance)
Raking Wlog W (Wlog W) — W + 1 /W
Maximum likelihood —log W W—1—log W 1/ w?
Minimum x2 (W — Dw (W — 122w /w3

in the degree of asymmetry between the costs of downweighting and upweighting, determined
by the exponent of W in the second derivative, Tg (W) = W —*. The least squares procedure
(k = 0) treats up-and down-weighting completely symmetrically and therefore may yield zero
or negative weights. As k increases, the cost of upweighting becomes smaller relative to that
of downweighting. All of the other objective functions (k > 0) give every observation in the
raw data a positive weight; in the case of the “‘raking’’ function, this is obvious from the form
of the weights as shown in Section 3.3. The use of the ‘‘raking’’ function here in preference
to maximum likelihood or minimum x? is motivated by the simple form of its solution and
by the analogy to raking in contingency tables. Cressie and Read (1984) systematically study
the properties of this family of measures of fit.

10.2 A Cyclic Descent Methodology for Fitting Weights

In this section we present a fitting methodology analogous to iterative proportional fitting
(IPF) in contingency tables. In IPF, the cell counts are transformed multiplicati-2ly in such
a way that the cross-products are preserved (the condition for minimization of the objective
function) while the table is made to conform to each set of marginal constraints in turn. The
algorithm converges to a table that satisfies all of the constraints, and perforce preserves the
cross-products as well (Bishop, Feinberg and Holland 1974; Ireland and Kullback 1968).

In our setting, the weights are required to have the log-linear form W; = exp(a/\x — 1)
derived in Section 3.3 while satisfying the constraints AW = B. In this exposition we will
assume that the total weight constraint ¥ W; = H is omitted from AW = B, and that A4 is
of dimension p (constraints) X I (number of household compositions). We will proceed
through a series of steps in each of which each weight W; is multiplied by cp%i to obtain a new
weight W/, thus preserving the log-linear structure; ¢ and p are chosen so that the constraints
YW/ = Hand ¥ W/a; = b, are satisfied. By proceeding cyclically so thatj = 1,2, ... p
indexes each constraint in turn, the algorithm eventually converges to weights that satisfy all
of the constraints.

On step j of cycle ¢, the new weights are given by W,\*? = cp%iW; /=D (initialized for
J = 1 by using the last weights from the last cycle, W;*® = W;~1) Then c and p must
satisfy

E cp“jiW(”j_l) - H, E ajicpajiWi(t,j—l) = b;. (5)
- ”
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Eliminating ¢ from these equations, p is a root of

X <Ha,-,- - b,->Wi<"f'-”p“ﬁ = 0. ©)

i

We must have Ha; iy < b; < Ha; o Where a; ,;, and a; .5, are respectively the minimum
and maximum values of a;. If this were not the case, constraint j could not be satisfied with
any weights. Thus there must be at least one root p, and if the a; are non-negative, the expres-
sion is increasing in p so this root is unique. The actual value of p is determined then by Newton’s
method, or by a closed-form formula for the roots of a polynomial (since with the original
A, aj;is the number of class j members in a household, which is an integer rarely exceeding 2).

While we have not yet proven that this algorithm always converges, we have found it to be
successful in practice. This algorithm does not require any matrix inversion, and if the @;; are
small integers, then at each step, the recalculation of the weights involves calculating only a
few integral powers. Furthermore, if some constraints take the form of simple marginals, the
adjustment for those constraints takes the form of a conventional raking step.

If the original constraint matrix 4 is used, the procedure may take advantage of the
sparseness of A (which is a consequence of the fact that only a few classes are represented in
each household). At each step (say, adjusting to fit margin b)), only the weights correspon-
ding to non-zero a; need be modified; thus only S; multiplications (the number of nonzero
entries in 4, which is less than the population of the block) and perhaps 35, additions are
required per cycle, as compared to 55, + S, operations per iteration with Newton’s method.
On the other hand, the rows of A4 tend to be highly dependent, so convergence may be slow
(typically 20 cycles in our simulations); orthogonalization of A destroys the sparse structure
of the coefficients. Thus, unless S, is much larger than S; (or unless some other method is
devised to accelerate the algorithm), raking is not faster than Newton’s method.
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