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ABSTRACT

A generalized implementation of a method for performing automated coding is described. Traditionally,
coding has been performed manually by specially trained personnel, but recently computerized systems
have appeared which either eliminate or substantially reduce the need for manual coding. Typically,
such systems are limited in use to those applications for which they were originally designed. The system
presented here may be used by any application to perform coding of English or French text using any
classification scheme.
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1. INTRODUCTION

Automated coding refers to the process by which text is machine analysed in order to assign
it a classification, or code. To be practical, automated coding systems must be capable of
coping with such problems as: rearranged words, plural vs singular forms, missing words,
extraneous words, spelling variations, synonyms, abbreviations, inconsistent hyphenation
and variable punctuation and syntax. In addition, in searching a text database for a match,
they should be capable of determining the closest match when no identical match can be found.

Generalized systems provide all of the features required, packaged within an easy to use,
flexible, and efficient framework. To use a generalized system for a particular application,
no development or conversion effort is needed to tailor it to the application specific
requirements. As well, no application sponsored support for the maintenance of a generalized
system is necessary, since the package is supported and maintained by a central agency.

ACTR (an acronym for: Automated Coding by Text Recognition) employs techniques
similar to those employed in other automated coding systems currently in production at
Statistics Canada (Landry and Pidcock 1984), but is unique in that it has been generalized
to allow it to be used by any application to assign codes based on the input of English or French
text according to any classification scheme.

The methods which ACTR uses to perform automated coding are based on techniques
which were originally developed at the U.S. Bureau of the Census (Appel and Hellerman 1983).
Basically stated, the method consists of searching through a collection of text previously
associated with correct codes. If the subject text is successfully located, the associated code
is returned and the process ends. Otherwise, the search continues, but uses an algorithm to
locate the closest match, and subsequently assign its associated code.
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2. USING ACTR

To use ACTR in an automated coding application users first need to define the text and
associated codes which they intend to use as a standard for matching. While there are many
sources for this information, the best is a set of text which is representative of the text which
will most likely be encountered in a matching run. For a survey, this generally means the
responses and manually assigned codes from a previously completed survey. Although great
care should be taken to ensure that the correct codes have been assigned, the text should be
left as is, complete with spelling, grammar and syntax errors, since in this form it is most
representative of the text which will be encountered in subsequent surveys.

After having defined a file of text and correctly assigned codes, they must be loaded into
a matching database. ACTR provides the software required to perform this task and so
automatically transforms the file into a matching database.

ACTR has been designed to allow an iterative approach to developing an automated coding
application. Accordingly, text and codes can be added, changed or deleted at any time during
the life of the application. In addition, the parsing strategy (discussed in detail below) can be
altered at any time. Thus, users are presented with a software framework which, through cycles
of database updates and matching runs, will allow for as many iterations as is necessary to
obtain the matching quality desired. Users are encouraged to use ACTR in this manner, since
ultimately it leads to higher quality and more economical coding operations.

3. PRINCIPLES OF OPERATION

In the case of a human being performing a coding operation, the similarity between occupa-
tions described as ‘“‘Computer Programmer’’ and ‘‘Programming Computers’’ is so great that
they would generally be judged as identical. However intuitive this reasoning may seem, com-
puter systems in general would rate the two as unequal. Unfortunately, natural language (for
example, English or French) frequently provides a large number of ways to express the same
meaning. So, for a computer based system to be able to cope with this variance, there must
be some means by which a degree of similarity can be determined.

This is the essence of ACTR: text is rated according to how similar it is to some other text.
In the preceding example, ACTR treats the two occupation descriptions as identical since, after
suffixes are truncated, double letters are removed and word order is ignored, both phrases
become ‘‘Comput Program’’ and as such are clearly equal.

The steps employed in reducing the above phrases to a standard form are part of what is
known in ACTR as the parsing strategy. ACTR’s parsing strategy is entirely user controlled
and may be changed at any time during the life of an application. Users exercise control over
the parsing strategy employed in their applications by supplying the data which is to be used
to direct the process. This means that all steps are entirely controlled by the user, even to the
extent of allowing a step to be skipped.

The Parsing Strategy

Parsing is the ACTR process which is responsible for the reduction of phrases to a standard
form. Ideally, the resulting form should be such that any two phrases with the same words
will be identical in their ACTR representation regardless of their syntactical and grammatical
differences. Returning to the previous example, the two phrases ‘‘Computer Programmer’’ and
“Programming Computers’’ when properly parsed, should ideally result in a set of identical
words for each phrase. For example, both phrases could be reduced to ‘‘Comput Program”’.



Survey Methodology, December 1988 301

The parsing process employed may involve the reduction of plural forms, elimination of
trivial words, removal of suffixes and/or a number of other steps. Although the order of the
parsing steps applied is fixed by ACTR, users control how, if at all, each step is executed. For
further information on the order of parsing, the interested reader should consult Connor,
Salloum and Wenzowski (1988).

Basically, the parsing process can be thought of as having the following two major subcom-
ponents:

1. TEXT PROCESSING. In this stage of parsing, the text supplied is processed as a
continuous stream of characters. Although one may think of the text as containing
words, spaces and punctuation, none of these is given any special consideration at
this point in the parse. This view is necessary in order to allow for the recognition of
particular character strings exactly as they occur in situ.

2. WORD PROCESSING. When this stage of the parse begins, the text has already been
broken down into words and so further processing is performed on a word by word
basis. This view is necessary since a large amount of text standardization occurs on
the basis of defined words.

Text Processing

As already discussed, these steps are performed regardless of context. Thus, the following
steps are performed on a character by character basis.

Exclusion Clauses: Exclusion clauses are ignored in matching, but are used in database
updating to indicate the intention of allowing controlled duplication of phrases. By default,
ACTR will not allow identical phrases to be loaded into a matching database.

By providing a means of controlling duplication, users are able to load phrases which could
have more than one code assigned, even though they are identical after having been parsed.
Although not used in matching, exclusion clauses are stored along with the phrase in the mat-
ching database and can subsequently be used to manually resolve multiple matches.

The syntax of an exclusion clause is defined entirely by the user. Both beginning and ter-
minating strings must be provided. These and any information enclosed by them are ignored
during matching.

As an example, consider an exclusion clause syntax defined with a beginning string of
““(Except” and a terminating string of ‘“)’’. With this in place, the two phrases ‘‘Computer
Programming (Except As An Employee)’’ and ‘‘Computer Programming (Except As Self-
Employed)’’ could co-exist in the matching database, even though their ACTR representations
are identical. Subsequently, if a match for ‘“Computer Programmer’’ is requested, both of
these phrases would be returned. Since exclusion clauses are stored along with the original phrase
text, they can be displayed to a reviewer, who could then manually resolve the match.

Deletion Strings: If any deletion string supplied by the user is found in any position in a
phrase, ACTR will remove it from consideration before continuing the parse.

As an example, in English processing, this is a way in which the apostrophe can be removed.
For example, the two phrases ‘“Electrician’s Apprentice’” and ¢‘ Apprentice Electrician’’ would
become identical with the removal of the apostrophe.

Note that if this step were not performed, the apostrophe would most likely be used as a
word delimiter. This would yield three words for the first phrase and two for the second, of
which only one word would be common to both.

Replacement Strings: This facility is most useful for standardizing abbreviations. This is
desirable since abbreviations commonly include characters which, although useful to the
abbreviation, would be viewed as word separators at a later stage in the parse. If this were
allowed to happen, information loss would most likely occur.
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As an example, if the string “‘T.V.>” was defined with a replacement value of: ‘‘Television”’
then any occurrence of the original string would be translated to the replacement value before
continuing the parse.

Note that if this step were not performed, the result of parsing ““T.V.”” would most likely
be the two letters ““T*” and ““V’’. This is clearly undesirable, since the meaning of the abbrevia-
tion has been completely lost.

Word Characters: ACTR defines a word as any contiguous sequence of characters in a phrase
which are all members of the set of characters contained in the word character list. Any
characters not in this list will be used as word delimiters and will be dropped from further con-
sideration.

Typically, the set of word characters used contains all of the letters of the alphabet and all
of the numeric characters. With this in place, a phrase of ‘‘Farmer/Fisherman’’ will result in
two words, since ‘‘/’’ is not a word character and is therefore used as a word delimiter.

Word Processing

At this point, ACTR begins to treat the text as a collection of words. Thus, the following
processing steps are applied on a word by word basis.

Hyphenated Words: Any hyphenated words supplied are replaced by the subtitute word(s)
also provided. This feature is very useful in providing for the recognition of words and word
groups which are inconsistently hyphenated.

As an example, if the user defines ‘“Take-Out’’ as a hyphenated word with a substitute word
of “Takeout’’ then this substitution will be made. If, on the other hand, this definition had
not been made, then two words would result if the hyphen was not a word character.

Illegal Word Characters: 1f any of the strings supplied are found to exist in any word in
any position, then that entire word is removed from further consideration.

As an example, some applications use this feature to eliminate words which contain numeric
characters. So, if the set of numeric digits was given as illegal word characters, then a word
like ““DEPT716A”’ would be removed from further consideration.

Replacement Words: This feature provides a synonym capability in order to ensure that two
dissimilar words will be recognized for matching purposes. This can also be useful to over-
come commonly occurring spelling mistakes.

As an example, if the phrases ‘‘Automobile Repairs” and ‘‘Car Repairs’’ were processed
with the word “‘Car’’ given as a replacement word for ‘“Automobile’’ then the two phrases
would be made identical.

Double Words: This feature forces ACTR to consider not only the occurrence of the two
word grouping, but their order as well. This can be useful to overcome inconsistencies in word
spellings and also to preserve word order.

As an example, consider the phrase ‘‘Take Out Restaurant’’. Although this would yield three
perfectly acceptable words, the words ““Take’” and ‘“Out’” would not match to either of
““Takeout’ or ‘“‘Take-Out’’. However, if a double word combination of ‘‘Take Qut’’ was
defined with a replacement of *‘Takeout’’ then the first case in the example given is addressed.

We are presented here with an example of how steps in the parsing strategy can be used
together. If the hyphenated word example given above was also entered, then all of the
hyphenated, double word, and single word cases would match.

Trivial Words: If any word in this set is encountered in the course of parsing, then it will
be removed from further consideration.

As an example, if the set of trivial words contained ‘“‘A’’, ““Am’” and ‘‘I’’, and the two
phrases ‘I Am A Computer Programmer’’ and ‘‘Computer Programmer’’ were encountered,
then the phrases would match.
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Suffixes: At this point, words are scanned right to left looking for the longest defined suffix
such that the remaining word, after the suffix is removed, will be at least five characters in
length. If a defined suffix is found, it is removed.

As an example, if the suffixes ‘‘ing”” and ‘‘er’’ are defined, then the phrases ‘‘Computer
Programming’’ and ‘“‘Computer Programmer’’ will match.

Replacement Suffixes: Replacement suffixes are searched for in a word by scanning right
to left for the presence of the longest defined replacement suffix. If one is found, it is removed
and the substitute supplied is used in its place.

As an example, the user may wish a plural form to be reduced to a singular one so that the
singular suffix will be recognized in the suffix truncation step. This is demonstrated with the
phrases ‘‘Battery Manufacturing’’ and ‘“Manufacturing Batteries’’. If the suffix ‘‘jes’’ is
changed to ‘“y*’ then not only will the phrases be the same, they will be processed in the same
manner at suffix truncation time.

Double Letters: At this stage in the parse, each word is examined for the presence of any
double character occurrences which are contained in the (user-defined) double letter set. If any
are found, they are reduced to a single occurrence.

Typically, the double letter set used is the full set of alphabetic characters. If this is the case,
then the words ‘‘Programer’’ and ‘‘Programmer”’ would match, in spite of the spelling error.

Root Words: At this point, words are scanned for the presence of any of the root words
supplied. The scan is applied from left to right in the word, and searches for the longest defined
matching root word. If one is found, then its substitute is used as a replacement for the word
and the suffix truncation and replacement steps are skipped.

As an example, the languages ‘‘Slavee’” and *‘Slavic’’ differ only in their last two characters.
So, if the suffixes defined include ‘‘ee’’ and ““ic’’ then an information loss occurs, since both
words will become identical. Although generally, suffix truncation works well for most applica-
tions, it quite clearly fails for this particular example. To overcome this problem, if root words
of ““Slave’’ and ‘‘Slavi’’ are defined, then the suffix truncation step is bypassed for these cases
only. Thus, as suffix truncation problem cases are identified, root words and their substitutes
can be defined to overcome them.

Duplicate Words: Finally, the set of words resulting from the parse of the supplied text is
examined for the presence of duplicates.

Note that words which are duplicates at this point may not have appeared as duplicates before
the text was parsed. Only one occurrence of each word defined at this point in the parse is kept.

4. SEARCHING AND MATCHING METHODS

ACTR always processes the supplied text according to the parsing strategy defined before
attempting a match. If after doing this, ACTR is able to locate a phrase on the matching
database with all of its words in common with all of the words in the supplied text, then the
match found is referred to as a ‘‘Direct Match’’. If a direct match cannot be found, ACTR
may, as a user option, continue to search the database for the closest match. This latter type
of match is called an ‘‘Indirect Match’’. Although they share a common foundation in that
they are both based on parsed text, the two matching methods used by ACTR differ greatly
in their mechanisms for both locating and assigning a match.

Direct Matching

In direct matching, only a 100% match is searched for. Recall that matching is based on
parsed text, so phrases which are 100% matches may not appear to be identical in their original
form. This is a direct effect of the parsing strategy in use.
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In terms of database access techniques, the fastest path to an item is through the use of a
key. Unfortunately, the roadblocks to keyed access of ACTR phrases exactly as they occur
include a maximum phrase length of 200 characters and an upper limit of 20 on the number
of parsed words. These two items make keyed access impractical since the extreme length of
the key would negate any benefit derived. The only alternative to keyed access is sequential
access, but this is undesirable because of the time required to search through the large volumes
of information generally contained in a matching database.

So, we are presented with no other alternative but to somehow reduce the size of the key,
thus making keyed access viable. There are many well known data compression techniques
which could be used to do this, a general survey of which can be found in Reghbati (1981).
In ACTR, the required data compression is achieved by forming the ‘‘compressed phrase key”’
or CPK. How CPK’s are actually formed is discussed below. Accept for now that CPK for-
mation results in a key which is approximately 35% of the original size of the phrase. The CPK
can thus be used to access the matching database with an efficiently sized key in order to deter-
mine whether any direct matches exist.

The use of the CPK in ACTR is significant in the following ways:
1. All 100% matches will always be located using this method.

2. Since ACTR is able to locate direct matches by using the most efficient means
possible, matches made by using this method are both faster and cheaper to
perform.

3. As applications mature, the proportion of direct matches generally increases due to
ongoing database update activity on the part of the user. Thus, overall
matching costs for an application can actually decrease as the application
matures, even though the size of the matching database may increase.

CPK Formation
The CPK is formed by first ordering the words defined in parsing. The actual order is
arbitrarily chosen and so is not significant, as long as the same ordering applies for all CPK
formations. (The order used happens to be in ascending order of the collating sequence in use.)
After ordering, the words are concatenated into a single string which contains no blanks.
This string is then compressed in order to form a short enough string to allow for efficient use
as a database retrieval key. The compression of the string is based on the following:

1. The words resulting from parsing generally contain only characters from the 26 alphabetic
character set and the 10 character numeric set. (Recall that the actual set of characters which
may be encountered in words is user-defined.) However, characters are stored internally
(fe. in memory and on disk) using an 8 bit code. Thus, there are 2% or 256 possible 8 bit
code combinations while ACTR words typically use no more than 36 of these. This leaves
a 220 code surplus which could be used for other purposes.

2. Certain double and triple letter combinations are known to occur more frequently than
others in English and French text samples. In ACTR, the double letter combinations are
known as ‘‘digrams’’, and the triple letter combinations are known as ‘‘trigrams’’.

3. The 220 ““free’’ codes can then be used to replace the digrams and trigrams described above
as they occur in text samples.

4. Starting with the concatenated, parsed words, ACTR scans for the presence of any of the
predefined digrams and trigrams. If any are found, they are replaced with the associated
8 bit code. The result is that a character sequence which formerly required 16 or 24 bits of
storage, now requires only 8 bits.
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Indirect Matching

Like direct matching, indirect matching begins with the set of words resulting from the par-
sing process. However, indirect matching can never be as efficient as direct matching since the
concept of closest match is relative. That is, we cannot find the closest match without first per-
forming an exhaustive search through all of the possible matches.

In order to perform indirect matching, the matching database must first be searched for
each of the words resulting from the parsing process in order to determine which, if any, are
known. Following this step, for each word in the supplied phrase which is known to the
database, all phrases containing the word must be retrieved and evaluated.

The nearest matching phrase is determined by calculating a score for each of the possible
matches. Scores are based on the weights of the words which are in common with the database
and subject phrases. Of all database phrases evaluated in this manner, the highest scoring phrase
is the one which is considered to be the closest match.

Word Weight Calculation

For each word known to the database, ACTR calculates a matching heuristic, or weight.
These weights are an indication of the usefulness of a word in assigning a code and act as com-
ponents in the phrase score calculation process.

The method by which word weights are calculated is based on: n, a count of unique codes,
whose associated phrases contain this word; V;, the relative frequency of code i from previous
surveys; X, a count of the number of word occurrences for phrases with code #; P;, the pro-
portion of this word in code /, calculated as V; X X;/E7_, V; X X; ; EW, the entropy of the
word, calculated as ~ Z7_; P; X Log, P;; K, the total number of word occurrences for code
i, calculated as £}, X X;; EU, the entropy of a uniformly distributed variable with K unique
values, calculated as Log,(K); and finally EO, a small value to avoid division by zero,
calculated as - K/K + 1 x Log, K/K + 1.

From the preceding, word weights are calculated as: EU-EW + EO/EO + EW.

Phrase Score Calculations

For each database phrase which is evaluated for an indirect match, a score is calculated.
The score is based on: n, the number of words the phrases have in common; wy, the weight
for word k; m, the number of words in the subject phrase; and /, the number of words in the
database phrase.

From the preceding, phrase scores are calculated as: n°

X ZE_ wy/m X 1.
Matching Parameters

After calculating a score value for each potential match, ACTR compares the score against
user supplied values for the following parameters and takes the action indicated.

1. UPPER THRESHOLD
If the resulting score is greater than or equal to this value, then a winner is considered
to have been found.

2. LOWER THRESHOLD

If the resulting score is greater than or equal to this value, but less than that supplied
for the upper threshold value, then a possible match is considered to have been found.

3. PER CENT DIFFERENCE
If more than one winner is found, and their scores are within the supplied value for
this parameter, then multiple winners are considered to have been found.
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Limiting the Search for an Indirect Match

ACTR searches the matching database for possible matches using the known words in the
subject phrase. That is, these words are used to search for database phrases which contain them.
The search proceeds in order of the ascending frequency of occurrence of the known words.
Thus, the known word which occurs the least frequently in the database is used to stnrt the
search, the next lowest is used to continue the search, and so on.

As can readily be appreciated, finding a match by the indirect process has the potential of
being time consuming and very expensive. Unfortunately, attempts to find matches by indirect
means are unavoidable since a nearest matching feature is an essential component of any
automated coding system.

While performing a search in this manner, ACTR maintains a list of database phrases which
have already been evaluated. After a database phrase has been evaluated, it will not be re-
evaluated in a subsequent iteration for the currently executing matching effort. This ensures
that a database phrase which contains more than one of the known words will not be evaluated
more than once.

As a further search optimization, ACTR makes use of the user supplied matching
parameters. With these, it constructs a table of optimistic scores for each iteration of the word
based search:

1. For the first known word, the optimistic score is based on the possible occurrence of a
database phrase with the same number of words as the number of known words and with
all of its words in common with the subject phrase’s known words.

2. For the second word, a similar assumption is made, but since the first word has already
been used in the preceding search iteration, we know that any phrase containing the first
word has already been evaluated. So, the optimistic score is based on the presence of the
second and subsequent words only.

3. Optimistic scores for succeeding iterations are based on the presence of the current and suc-
ceeding unsearched words only.

The formula used to calculate the optimistic scores is based on: a, the number of known
words in the subject phrase; &, the number of words in the subject phrase already searched;
¢, the total number of words in the subject phrase; and d, the number of known words not
yet searched, calculated as ¢ — b;

From the preceding, optimistic phrase scores are calculated as: (d* x LY, w;)/c.

With the table of optimistic scores in place, ACTR evaluates the potential score at each itera-
tion before performing a database access. Thus, hopeless searches are never attempted.

To summarize, the search for an indirect match is terminated when any of the following
conditions are met:

1. The maximum potential score for the current iteration does not meet or exceed the threshold
defined for possible matches.

2. At least one match has been found and the maximum potential score for the current itera-
tion cannot produce another.

3. The maximum number of possible matches requested by the user has already been found
and the maximum possible score for the current iteration does not exceed that of the lowest
scoring phrase.
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5. SUMMARY

A flexible and efficient automated coding methodology, embedded in a generalized soft-
ware system has been presented. The system can be used to perform automated coding for any
application in English or French or both, using any classification scheme. In doing so, it makes
use of a powerful generalized parsing strategy and significant performance optimizations. For
further information on ACTR, the interested reader is directed to Connor, Salloum and
Wenzowski (1988).
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