Survey Methodology, December 1988 327
Vol. 14, No. 2, pp. 327-330
Statistics Canada

A Brief Note on SQL

DAVID N. EMERY!

ABSTRACT

This note portrays SQL, highlighting its strengths and weaknesses.

KEY WORDS: Relational database management system; Database query language.

1. INTRODUCTION

A great deal of media attention has been focused on relational database management systems
and SQL (pronounced see-quel), the most popular of the associated database query languages.
To alarge extent, SQL has been cast in the role of panacea for all the ills associated with data
management. Unfortunately, this leads to a great deal of misconception on the part of poten-
tial users of SQL. These people are then sometimes disappointed with SQL when they even-
tually get a chance to use it.

The intent of this note is to clear up some of this misconception by providing a realistic por-
trayal of SQL, highlighting its inherent strengths and weaknesses. No attempt will be made
to elaborate the advantages of the relational data model itself. These advantages have been
adequately documented elsewhere (Date 1985).

2. SQL - WHAT IS IT?

The interaction which takes place between a user (whether systems developer or end user)
and a database management system can be broadly categorized according to the function taking
place:

e data definition;

e data control (i.e. authorization and control of data integrity);
e data retrieval; and,

¢ data modification (i.e. insert, update, and delete).

A database management system must provide interfaces for carrying-out each of these func-
tions. Depending on the particular system, these interfaces take the form of utilities, query
languages, and/or subroutine libraries for programming languages.

SQL addresses these four functions in a single well-defined, rigidly structured language.
SQL is the interface used to communicate, to the database management system, how relations
(i.e. logical files or tables) are to be subdivided and/or combined to create new relations.

The key to understanding SQL’s capabilities is an appreciation of the fact that SQL addresses
exactly these four roles - no more and no less. Any other functionality must be supplied by
the application which initiates the SQL statement.

Consider the following example. The table, DWELLING, contains information about
dwellings such as number of occupants, type of dwelling, where it is located, type of heating,

! David N. Emery, Statistics Canada, Research and General Systems Subdivision, Room 2405, Main Building, Tunney’s
Pasture, Ottawa, Ontario K1A 0T6.



328 Emery: A Brief Note on SQL

and age of dwelling. In order to impute the type of dwelling, one might want to obtain a set
of potential donor dwellings which are in the same geographic area, are the same age, and use
the same heating method. The following SQL statement could be issued to obtain a donor set:

SELECT DWELLING__ID, TYPE__OF _ DWELLING (Query 1)
FROM DWELLING
WHERE HEATING _ TYPE = ‘GAS’ AND
AGE = 20 AND
LOCATION__ CODE = ‘XYZ’;

SQL does not provide a mechanism for manipulating the set of retrieved donor records.
Selecting the n’th record, every second record, or a random record are all beyond the capability
of SQL. Similarly, SQL has no mechanism for manipulating a table to affect its appearance
on a terminal or printer. These are capabilities one would rightfully demand of a program-
ming language, and hence the term database query language. Calling SQL a fourth genera-
tion language (4GL), then comparing it to products which incorporate only the data retrieval
and data modification functions into a programming language, only adds to the confusion.
It is really an apples and oranges comparison since both are 4GLs, but of very different flavours.

Given this very focused functionality, the obvious question then has to be — why all the
fuss about SQL?

3. SQL — ITS BENEFITS

3.1 Implementation Transparency

A SQL query indicates nothing about how the data is actually organized and stored on the
database. The query states what is to be retrieved, modified, or stored; the database manage-
ment system determines the best way to do it. Issues such as:

¢ which data columns are indexed (a performance improvement feature);

e whether the table/column is actually stored or merely an execution time combination of
other tables; and,

e the data’s internal representation (i.e. floating point, packed decimal, binary)

have no bearing whatsoever on a SQL statement’s syntax. Consequently, the user is immune

to changes in the database’s organization and structure. Changes to the underlying structure

of the database can be made at will without changing the query. A query is immediately able

to take advantage of improvements in the database structure or optimization algorithms.
Similarly, when formulating a SQL query the user does not specify the order in which pro-

cessing is to take place to satisfy the query. That is the responsibility of the query processing

software’s optimization algorithms. This software evaluates the query against the current struc-

ture and organization of the database to determine the most efficient way of satisfying it.

3.2 Non-proprietary, Internationally Accepted Standard

Both the International Standards Organization (ISO) and the American National Standards
Institute (ANSI) have recently adopted a common standard for SQL (ISO 1987). The existence
of this standard, with a commitment to it by a number of relational database management
system vendors, gives software developers access to a much broader market without significantly
extra development effort. By building their applications on top of standard SQL, they have
removed their reliance on a particular database management system. As a result, the creation



Survey Methodology, December 1988 329

of software tools, built upon an interface to this standard version of SQL, has become a major
growth industry. For example, natural language interfaces, fourth generation programming
languages, data dictionary software, data entry/validation packages, and spreadsheet soft-
ware, all layered on top of ANSI/ISO SQL, are beginning to appear on the market.

The active interest in SQL has also had a very positive impact on the SQL standard itself;
it is continuing to evolve. The most recent draft revision to the ISO Standard for SQL incor-
porates the specification of referential integrity constraints into SQL’s data definition
statements. The significance of this extension to SQL is best illustrated by a further elabora-
tion of the DWELLING example. Assume that the database also has a table PERSONS which
contains detailed information about individuals including a dwelling code which indicates the
dwelling where they currently reside. One might define a integrity constraint stipulating that
each person must be associated with exactly one dwelling. Consequently, it would be an error
to delete a DWELLING record which still had any PERSONS records referencing it, or to add
a PERSONS record which referenced a nonexistent DWELLING record. Currently, logic to
detect and prevent these inconsistencies must be inserted into each application program capable
of deleting a DWELLING record. With the incorporation of referential integrity specifica-
tions into SQL, this program logic will no longer be required. The DBMS software assumes
responsibility for detecting and terminating any attempt to remove a DWELLING record which
still has associated PERSONS records.

3.3 Ease of Extension

One of the major differences between the various vendors’ versions of SQL is the number
and variety of supported functions. This is to a large extent due to the ease with which extra
functionality can be incorporated into SQL, without change to its overall structure. For
example, the SQL standard documents the grouping functions of average (AVG), maximum
(MAX), minimum(MIN), enumeration (COUNT) and aggregation (SUM) for unweighted data.
Referring again to the earlier DWELLING example, one could generate various summary
statistics about number of occupants, broken down by geographic location:

SELECT AVG (NO__OF _ OCCUPANTS), MAX (NO__OF_ OCCUPANTS),(Query 2)
MIN (NO__OF _OCCUPANTS), SUM (NO__OF_ OCCUPANTS),
COUNT (NO__OF_ OCCUPANTS)
FROM DWELLING
GROUP BY LOCATION _CODE;

Some Vendors have augmented these functions with others such as variance (VARIANCE)
and standard deviation (STDDEV). With these extra functions the identification of outliers,
more than one standard deviation from the mean, is a very straightforward exercise:

SELECT DWELLING__ID FROM DWELLING (Query 3)
WHERE NO__ OF__OCCUPANTS <
(SELECT AVG (NO__OF__OCCUPANTS) - STDDEV (NO__OF__ OCCUPANTS)
FROM DWELLING)

OR

NO__OF_ OCCUPANTS >
(SELECT AVG (NO__OF_ OCCUPANTS) + STDDEV (NO__OF _OCCUPANTS)
FROM DWELLING);

3.4 Single Interface to the Database

When interrogating a database from within a host language program such as PL/I,
FORTRAN, or C, one also uses SQL statements. These statements are virtually identical to



330 Emery: A Brief Note on SQL

those used when interrogating the database interactively via a SQL statement processor. The
only difference lies in the fact that the host language interface requires an additional INTO
clause to indicate the program variables receiving the results of the query.

By using an identical interface to a host programming language, one is able to separate the
program development and debugging exercise into two distinct activities:
e testing of the database retrieval storage statements (i.e. the SQL statements themselves), and

e testing of the program code which manipulates the data.

The first of these activities can be carried out using a SQL command interpreter even before
the host language program has been written. The optimal SQL statements can then be moved
directly into the host program where the testing effort can be focused on the logic associated
with manipulating the data.

Since the SQL statements embedded in the host language are interpreted at execution time,
any changes made to the database organization or structure are immediately reflected in the
program.

3.5 Suitability for Distributed Databases/Database Machines

One of the hottest topics in database management systems technology today is distributed
databases. In a distributed database environment, the data is spread across a number of dif-
ferent databases (often on physically separate machines). It is the DBMS software’s respon-
sibility to intercept a user’s query, translate it into appropriate queries to the various constituent
databases, and assemble the results of these queries for presentation.

As discussed earlier, a SQL statement is devoid of constructs associated with describing how
or where the data is stored on the database. Consequently, in a distributed database environ-
ment where SQL is used as the database query language, data can be moved between machines
with no change whatsoever to existing applications. SQL is therefore becoming quite popular
with the developers of distributed database management systems.

For similar reasons, SQL is gaining popularity as a query language for database machines.
These machines take advantage of relational (i.e. tabular) data structures’ inherent regularity
to partition them across a number of parallel processors. These processors have instruction
sets specifically designed to perform relational operations. The lack of representational detail
in SQL queries completely insulates users from an awareness of what these machines are doing
behind the scene.

4. SUMMARY

There is no question that SQL has quickly become the pre-eminent database query language.
The database management system which does not feature a SQL interface will soon be the excep-
tion. An interesting anomaly will however emerge. The user will, over time, see less and less
of SQL. Rather than trying to make SQL itself a user-friendly language, effort will be focused
on the devlopment of application specific tools which provide the user with an interface tai-
lored to the task at hand. SQL will be the common interface between these tools and the various
databases.

REFERENCES
DATE, C.J. (1985). An Introduction to Database Systems. Don Mills: Addison-Wesley.

INTERNATIONAL STANDARDS ORGANIZATION (1987). Database Language SQL. International
Standards Organization 9075.



