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ABSTRACT

Most surveys have many purposes and a hierarchy of six levels is proposed here. Yet most theory and
textbooks are based on unipurpose theory, in order to avoid the complexity and conflicts of multipur-
pose designs. Ten areas of conflict between purposes are shown, then problems and solutions are advanced
for each. Compromises and joint solutions fortunately are feasible, because most optima are very flat;
also because most ‘‘requirements’’ for precision are actually very flexible. To state and to face the many
purposes are preferable to the common practice of hiding behind some artificially picked single purpose;
and they have also become more feasible with modern computers.
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1. INTRODUCTION

Most studies involve several purposes during the planning stages and then typically many
more purposes emerge later during the analyses of data and more during their interpretation
and utilization. However, the real multipurpose nature of most studies tend to remain hidden
under the surface of oversimplified, univariate discussions of study designs. This seems most
clearly evident for sample surveys, which I shall discuss here; but I believe that this discrepancy
also holds for other statistical designs, such as experimental and evaluation studies.

In practice, surveys are usually multipurpose. Why then are multipurpose designs neglected
in sampling theory? Because multipurpose theory would be too complex and difficult, and
sampling theory is rather complex already; specific exceptions will be noted later. Even the
descriptions we read of actual sample designs tend to follow and to borrow the prestige of
univariate and unipurpose sampling theory, rather than to portray faithfully the many com-
promises of complex reality. Many common designs (especially equal probability of selection
method) probably serve robustly a variety of purposes, explicit planning of multipurpose designs
seems to be rare, though much needed, I propose.

There are several aspects to the multipurpose nature of survey samples, and these are displayed
in a hierarchy of six levels in Section 2. Then ten areas of conflict between purposes are specified
in Section 3. Sections 4 to 9 deal with specific areas of conflict, presenting approaches to and solu-
tions for them. Some of these solutions are attributed to widely dispersed articles of survey sampling;
but others are more novel, hence less fully developed, derived, and referenced.

In this overall review I aim first and foremost to serve practitioners with handy references
on approaches, methods and procedures for multipurpose designs; to alert them both to the
importance and to the feasibility of such designs. Second, I also wish to provide a framework
for integrated, theoretical future work on the many problems and conflicts of multipurpose
designs. Imperfections of my methods can serve as stimuli to others for better derivations for
them, as well as for developing new methods.

! Keynote address at the International Symposium on Statistics, Taipei, Taiwan, August 1986; and also at a seminar
of Statistics Canada, October 7, 1987.
2 I eslie Kish, Institute for Social Research. The University of Michigan, Ann Arbor, MI 48104 USA.
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2. A HIERARCHY FOR LEVELS OF PURPOSES

To begin with, we need some clarification of the meaning of ‘‘multipurpose’’, because too
many concepts are confused under this term in our literature. To reduce the confusion, I classified
a score of purposes into six levels in Table 1. Most of the time either multiple variables or multi-
subject surveys (levels 3 or 4 in Table 1) are discussed and ‘‘multi-subject’’ (4) has sometimes
been distinguished from multipurpose (3) for the same or closely related variables (Murthy 1967).
Each of these six levels is shown in several specific manifestations, which can be usefully
augmented and discussed in more detail elsewhere (e.g., United Nations 1980; Lahiri 1963).

Integrated survey operations on level 5 are related to, but should be distinguished from multi-
subject surveys, because they refer to organizations and institutions that conduct many surveys
in diverse fields over longer periods of time (United Nations 1980; Foreman 1983). An earlier
name was ‘‘continuing survey operations’’, when it was recognized that most large-scale, wide-
spread sample surveys were conducted by continuing survey organizations like the U.S. Census
Bureau, Statistics Canada, or our Survey Research Center. Such continuity has large advantages
in costs and quality, with restraining effects on sample designs (Kish 1965).

Master frames or master samples on level 6 refer to further extensions and specializations
of multipurpose approaches. They may refer simply to using the same maps, or block listings,
or area segments for several different surveys; or to the large-scale example of the ‘“Master Sample
of Agriculture’” (King and Jessen 1945), where rural areas on the maps of all the counties of
the USA were divided into segments of about four farms each; or to the firm that sells current
listings of dwellings for most samples used in Western Germany. These very diverse examples
have common bases in the savings from sharing the ‘‘startup” costs (of design, stratification,
listing, etc.) for constructing sampling frames.

Diverse statistics based on single variable and diverse domains (levels 1 and 2) have been typically
neglected in the literature of multipurpose sampling, although they are the most common, but
they can have the most drastic effects and cause the most dramatic conflicts, as we shall see later.
The effect of designs can be very different for statistics like medians and quantiles or regression
coefficients than the effects for means and for aggregates (Kish 1961; Kish 1965; Kish and Frankel
1974). Furthermore, designing for period samples brings on new considerations (Section 8). But
most dramatic effects can be seen simply for the means of small ‘‘subclasses’ (e.g., as small as
0.10 or 0.01) of the entire sample, representing similar ‘‘domains’’ in the population (Section 5).

Each of the six levels of purposes presents different aspects for designs and each level can be
fruitfully explored for more specific meanings and examples, some of which are listed in Table 1.

The difficulties of multipurpose designs, which have caused them to be neglected and avoided,
are of several kinds. First, the different purposes must be formulated explicitly in statistical terms,
so that these may serve in formulas for their comparisons and for formulated compromises; but
obtaining a (complete) list of such explicit, formal terms may be the principal obstacle. Second,
estimates of variance and cost factors are needed for each purpose. Third, for some methods values
must be obtained for the assigned to the “‘required’’ precisions for all the purposes (Section 5).
Fourth, the above values and estimates must be combined in a mathematical formulation in order
to arrive at the solution of a single “‘optimal’’ design to be actually used. The computational tasks
for such solutions have been eased by electronic computers, but the conceptual and theoretical
tasks remain (Section 5).

The difficulties of these tasks help to explain why discussions of multipurpose designs have
been largely neglected designs in textbooks. However, note later references and bibliography here
and in Rodriquez-Vera (1982); also Cochran (1977), and Chatterjee (1967). Furthermore, also in
descriptions of actual surveys, often a single statistic (e.g. the mean) of a single principal variable
is presented as the only (principal) purpose for the study. In the framework of multipurpose design
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Table 1
Hierarchy of Purposes

1. Diverse statistics from the same variables v
- Totals or means or medians and quantiles, distributions
- Analytical statistics: regressions, categorical analysis
- Time aspects: static, macro-change, micro-change, cumulative

2. Diverse populations and domains (subclasses)
— Proper classes and crossclasses
- Comparisons of subclasses

3. Multiple variables on the same subject
- Alternative measures of one variable;
e.g. of income, or unemployment
- Diverse periods — per day, week, month, year
- Several aspects of one subject: income, savings, wealth

4. Multisubject surveys
- Several subjects on same schedule, interview, operation
- Health surveys of many diseases
_ Market research for several clients, many goods
- Agricultural surveys of many crops
- ““Omnibus’’ social surveys

5. Continuing, integrated survey operations
- NSS in India, CPS in USA, NHSCP of UN
- Separate surveys from one office and field staff
- Common source of surveys
_ Diverse methods, costs, operations, allocations, respondents

6. Master frames
- Several samples from one frame or set of listings
- Separate institutions, organizations
- Separate field staffs? Same PSU’s?

design this is equivalent to assigning zero importance to all other purposes. The unreality of this
pretense may be softened by assuming that other principal purposes would result in similar
allocations; but this pretense should be buttressed with calculations of the four steps above.

3. AN OVERALL VIEW OF TEN AREAS OF CONFLICT

A brief overall view of ten areas of conflict, listed in Table 2, should be useful before we look
at specific problems and possible solutions for each. The list will probably not prove exhaustive,
and readers may well find other areas. Even more likely, they may find within these ten areas other
problems and other solutions not explored here. It would be convenient if the ten areas of con-
flict should be linked rationally to the twenty purposes presented in six levels; we then could reduce
this presentation to say, twenty purpose/conflict nodes or to ten level/conflict nodes. Unfortunately
the areas of conflict denote a perpendicular dimension to the purpose and all (or most) of the
10 X 6 cells have meaningful contents.

Of this long list of ten areas of conflict fortunately not all need to be formulated for every actual
sample design. I believe that possible conflicts about a) the sample sizes m, and about b) the rela-
tion of biases to sampling errors should always be considered, at least informally, because they
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are ubiquitous. Also c) allocation among domains and d) allocation among strata should receive
at least a brief discussion, and often more. Computing sampling errors (j) should also be done
on most surveys. However, in the common case of one-time surveys, conflicts i) about design over
time need not be considered. On the other hand, in a continuing operation with a continuing
sampling frame, the decisions about ¢}, f), g), and h) (stratification, cluster sizes and measures)
may have been made a long time ago for a fixed design. However, the cluster sizes (f) used in
intermediate stages (blocks and segments) may be open to flexible operational changes.

It is also reassuring to know that compromises based on statistical methods can yield quite
acceptable results, for several reasons (Sections 5-8). First, because moderate departures from
optimal allocation result in only small or negligible increases of variance. Curves of efficiency tend
to be flat within broad areas around the optimal points; thus great accuracy for separate designs,
which would not be feasible, are not needed. Second, because wide departures from optimal
allocations can, on the other hand, cause moderate to large increases in variances. Thus, ignoring
important purposes can result in substantial losses of efficiency for them, and therefore those
purposes should be included in compromise designs. Third, compromise designs, in accord with
statistical methods, can reduce drastically the potentially large losses from allocations optimized
for other purposes, and with only small increases over the separate optimal designs for each purpose
(Section 5).

4. SAMPLE SIZES AND BIAS RATIOS (B/0)

These two areas of conflict, a and b in Table 2, should perhaps be considered most important
overall, because they can be most dramatic. We treat them together here only because they may
be closely related through the effects of subclasses. Let us begin with the familiar (simple random
sampling with replacement) sample size m = $2/V? needed to yield a “‘required” precision = V2
for a sample mean p, with element variance = S2. However, the Sf, depend greatly on the
variables and on the domains, indexed jointly with g for the year J,; and the “‘required”’
Vf, may vary even more. We also include design effects Df, that also vary, and thus
my = 8§ §D§/ Vf, expresses the sample size needed for the mean of the variable g. For the mean
J, of a domain g, comprising only the proportion P, in the population the overall sample size
needed for the domain becomes n, = m,/P,, and it is more practical to formulate the needed
sampling fraction f, = n,/N = S§D§‘/ V;PgN. The factor (1-f) may be neglected or included in
Dg. The P, become small and critical if high precisions are ‘‘required”” for small subclasses.

For comparisons of subclasses the variances increase even more: my = my' + myH ! =
n(P;' + Py ")~!, with the P, and P, denoting proportions in the sample # (assuming S2 = §2).
E.g., for the comparison of two subclass means of 0.01# and 0.10#n, we have the “‘effective size”’
m, = n(0.017! + 0.107")~! = n/110. For other statistics, such as medians and regression
coefficients, formulating ‘‘required”’ sample sizes would become complex. It is more than we may
discuss here, but some numbers may probably be specified.

Considerations for subclass statistics become greatly modified if, in addition to variances
o?, we also include biases B? in the Root-Mean-Square-Error = RMSE = V(o2 + B2)
for measures of accuracy. Figure 1 is meant to portray a common tendency in the accuracy of
survey data, although great differences in the relations of biases to sampling errors are possible;
reading the legend is urged here. It occurs commonly that potential biases B; are greater than the
measurable sampling and variable errors o, for the entire sample. However, on the horizontal
axis the standard error o is shown to increase by a factor of about 3 for o, of a subclass of about
1/10 of the total sample. For comparisons (differences) of two such subclasses o5 increases by
about 1.4 more. ‘
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Table 2
Ten Areas of Conflicts (a-j)

a.(4)' Sizes m, or rates f, are needed for purposes g
2 212 _ 22 2 o 22 2
Ve = S;Dg/my and m, = S;D,/Vyorf, = S; D,/ VgP,N

where m, denote subclass sizes and f, = n,/N = m,/P,N denote sampling rates

b.(4) Relation of biases to sampling errors in RMSE = V(o2 + B?)
- The bias ratio B/o decreases as o increases for subclasses
- For comparisons B/o tends to be small as B decreases, ¢ increases

c.(5) Allocation of the m, among domains

m, = L,m

4
d.(6) Allocation of m,, among strata &
m

. = LMy,

e.(6) Choice of variables for stratification
Multivariate stratification

f.(7) Optimal cluster sizes
D% = [1 + py(b,—1)1b, = Pyn,/a for crossclasses
g.(7) Measures for cluster sizes

h.(7) Retaining sampling units (PSU’s) for changed subjects, measures and strata and
for diverse subjects.

i.(8) Design over time
How much overlap? Panels? Change versus cumulation.

j.(9) Computing and presenting sampling errors.

! The numbers (4) to (9) refer to sections with treatments.

However, the hypotenuses denoting the RMSE are shown to increase much less. In RMSE,
the bias B, is shown to dominate, and this may happen for some variables in large total samples.
However, the subclass RMSE,, because the bias was kept constant at B, = B, increased only
moderately and is dominated by 5. This is even more true for RMSE;, where the o3 has increased,
but the biases — assumed to have the same sign, because that is a common tendency — decrease
By in the difference of means.

Examples of these phenomena abound everywhere and for all purposes are listed in Table 1.
We choose the best known, critical statistics of unemployment, where admitted measurement biases
may completely swamp the low values (e.g., 0.1 percent) of measurable fluctuations. However,
for small subclasses (e.g. Black teenage boys) the sampling errors for small sample bases over-
take the biases. For periodic comparisons the sampling variations become even more critical.

These relations among biases and variable errors assumed here are not logically necessary,
but empirical and common. Neglect of these simple relations leads to a great deal of confusion
concerning the need for sample surveys of adequate precision, i.e. with small sampling errors,
o. 1 propose Figure 1 as practical answers to some common questions, such as: Why do we spend
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Figure 1. Variable errors (o) and biases (B) in root mean square errors (RMSE)

The bases represent sampling errors and other variable errors (o). For example o; may be the ste(¥,) for the mean
J of the entire sample and ¢, may be a larger ste(y,) for a subclass mean, and o3 may be the ste(y. ¥ 3,) for the dif-
ference between two subclass means.

the bias By may be large compared with the variable error oy, thus taking larger samples would not decrease the RMSE,
by much. (2) However with the same bias B), but with a smaller sample in the subclass, the ratio changes and the o,
dominates the RMSE,; and this is not much larger than for (1) despite a much smaller sample. (3) Furthermore, for the
difference of means, the net bias B; may be much smaller; so that even with a larger o5, the RMSE,; for the difference
is but little greater than RMSE,. This drastic change in the bias ratio B/o tends to appear not only for differences between
subclasses within the same sample, but also for differences between repeat surveys.

money for large samples and on rigorous sampling methods in the face of large measurement biases?
Why bother computing sampling errors when response biases dominate the total error? The implicit
answers come from the domination of sampling errors in the subclasses, and even more in their com-
parisons. Let us make these implicit answers more explicit in future sample designs.

5. ALLOCATION AMONG DOMAINS

This most important and frequent area of conflict has several aspects. First, consider the
allocation of total sample size (or effort or cost) among the domains that constitute a partition
of the total population. A common example is allocation among the several (5, 10, 20 or 50) pro-
vinces or regions or states of a country; those domains typically have very unequal populations
N, with ranges of 1 to 100 perhaps in relative sizes, though they may cover roughly equal sur-
face areas. Often the question takes this form: Should the sample sizes n; be roughly equal; or
should the n, be proportional to the N, with constant sampling rates f; = f? Equal n, tends to
yield roughly equal errors, ste(y;) for the means. On the other hand, constant f; = ftends to
yield the lowest ste(y,,) for the overall mean y,, = LWy, because it yields lower errors for the
larger domains. This error may be lower than ‘‘required”’ for y,, especially in view of potential
biases (Figure 1), and may not justify large total sample sizes and costs. This is the contention of
proponents of equal sizes n, for provinces. However, increased sampling errors for y,, are also
suffered by most other subclasses, especially ‘‘crossclasses” like age, sex, socioeconomic classes,
etc. whose sizes tend to proportionality to the total. Those are common disadvantages of the highly
unequal f; = ny/N, for provinces that result from the equal 7, values.

For example, in the Current Population Surveys of the USA, larger f, are assigned to the
smaller states. The resulting weighting increases the variances (for a fixed total cost) of the overall
means and also of “‘crossclasses’’, such as young men and women, and especially of Black teenage
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boys and girls (with critically high unemployment rates). Similar conflicts between national and
provincial needs occur in all countries, because provinces have widely different populations. The
need for better provincial data, for fixed total cost, conflicts with greater precision for national
and for ‘‘crossclass’’ statistics.

To reduce the usual confusion, I distinguish ‘‘domains’’ to denote partitions of the popula-
tion, from “‘subclasses,”” the corresponding partitions of the sample. Then I distinguish “‘design
domains”’ (and subclasses) to refer to partitions (like provinces and regions) that are contained
in strata defined by the sample design, from “‘crossclasses’” (like age, sex, occupation, income,
etc.) that cut across the sample design, both clusters and strata, often almost randomly. The design
effects differ for these two types of subclasses (Kish 1961, 1980, 1987).

In addition, other sources of conflict may arise from domain differences other than their sizes:
in the distribution of variables, also in the variances D3S3 precisions; but we need not enter into
those complexities here. Beyond calling attention to the problems, we refer to two distinct tech-
nical methods for the joint solution of the conflicts in allocation, (the fourth step noted at the end
of Section 2). One approach uses iterative nonlinear programming in order to satisfy for minimal
cost the “‘required”” precisions jointly for all stated purposes. These elegant solutions to diverse
problems exploit modern computers and have been published in many articles since 1963 (see
reviews and references in Bean and Burmeister 1978, Rodriquez-Vera 1982, Cochran 1977). The
“required minimal’’ cost often turns out much too high, because the ‘‘required”” precisions were
unrealistic. Then the solutions are drastically rescaled downwards. But such rescaling exposes the
false pretensions (in my view) of this elegant approach that depends on unrealistic ‘‘required”’ preci-
sions. Principally, I question the reality of *‘step functions’” for ‘‘required”” precisions that assign
a constant value to any variance below the required V2 and zero value to variances above it.

A very different approach calls for some form of averaging between all the *‘optimal’ (pre-
ferred) allocations for various purposes, by minimizing the combined (weighted) variance either
for fixed cost or fixed sample size. Of course, if the resulting combined variances turns out to be
too high (or low), the solutions can be scaled up (or down) in total fixed cost or sample size. I prefer
this solution, which compromises between different allocations, each of which would optimize for
only one purpose (Yates 1981; Dalenius 1957). It involves assigning relative values of importance
I, to all the list statistics and this may seem difficult (but an ‘‘ignorant” decision-maker can assign
equal I, to all of them). But the other two alternatives are more extreme and they are bound to
prove even more difficult: either to specify the *‘required” precisions of all statistics for the first
approach, which then assigns arbitrarily equal weights of importance to all of them; or to specify
one statistic for the total weight of one, and thus zero weights for all other statistics.

Furthermore, compromises for the average can be shown to be generally feasible and wor-
thwhile, because the allocations are insensitive to moderate changes of weights of important (as
is often true in statistics). After all, changing the relative importance by ratios of e.g., 2 or 5 should
be less drastic than assigning the total weight 1 to one variable and 0 to all others, a process that
implies infinite ratios of importance.

First, denote with Z; Vf,i/ n; the variance attainable for a statistic g with the allocations of sample
sizes n; for the ith component of variation. Then let 1 + Lg(n) = (E,-Vé,»/ n)/ Vg(min) = E,»Cé,-/ n;
denote the ratio of increase (with the allocation #,) in the variance of the gth statistic over its own
minimal variance, both for the same fixed Zn;. Thus L,(n) is the relative loss over the minimal
value of 1, and accepting the relative variances Cﬁ,-/ n; as the functions to be minimized is a critical
decision; those functions seem to me more reasonable than any others that I can imagine for the
functions to be combined in (1) below. For example, I prefer them to the V§,- which depend on
arbitrary units of measurement, which are removed by the Vf,,- (min). But in rare cases we may be
faced with 2(min) = 0 or very small and this may make C% widly large and unstable; in these
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Table 3
Loss functions (1 + L) for two populations (Kish 1976)
A) (B)
(1 +L) for 133 countries:
(1+L) for W,/W, = 4 0.2 to 100 mm
Allocations m; ; :
Joint with
weights
LWy, Ly/2 Joint LW,y Ly;/133 1 N 5 3 |
MW, 1 1.56 1.28 1 6.86 3.93
M/H 1.36 1 1.18 3.34 1 2.17
xV (W, 1.08 1.125  1.102 1.35 1.54 1.44
oc\/(WlZ + H-2) 1.116  1.080  1.098 1.31 1.28 1.295
«V(0.5W2 + H-2 147 117 (1.32) 127
xV (2 W2+ H-2) 1.20 1.44  (1.32) 1.28
&N (4W2 + H-2) 112 1.66 (1.39)  1.23

In (A) there are two strata and domains (W; = 0.8 and W, = 0.2); note that the allocation m; = VW, does almost
as well for the joint loss as the optimal.

In (B) we have the populations of 133 countries, ranging in size from 0.2 to over 100 millions, a range of 500 in relative
sizes. From this problem of allocation (for the World Fertility Survey) we omitted, for practical reasons, the four largest
countries and a few under 0.2 millions. Their inclusion would raise the variance of relative sizes, W;, from 2.5 to 12, and
would make the results more dramatic. Note that the \/V_V, allocation reduces losses quite well. Some compromise is
better than none. But the optimal allocation, \/(Wf + H-2), is considerably better. Different values of 1./I;(= 1/2,2/1
and 4/1) increase slightly the variance of the joint loss function with (1:1) weights; but they remain steady for joint loss
functions with their own weights 1,./1;:1.

Two examples in Table 3 illustrate the surprisingly good compromises between conflicting allocations yielded by the
method of weighted averaging: its results on the fourth row of Table 3 compare very favorably with the others. The
reasons for the excellent results come from the very broad flat surfaces for the optimal allocations, as discussed in Sec-
tion 2 and shown elsewhere (Kish 1976; Kish 1987). For example, in Canada the 10 provinces vary seventy-fold from
smallest to largest population sizes, and thus resemble B in Table 3; they serve as a graphical illustration in Figure 2.
(See also Fellegi and Sunter 1974.)

cases assign arbitrary values to the Cﬁ,- or to the I, below. These and the following including
Table 3 are developed and discussed by Kish (1976).

Then with the weights I, assigned for relative importance of the gth statistic for any set of
allocations n; of the sample sizes,

1 + L(n) = E,1,(1 + Ln)) = L, L,E,C5/m;

= 5L, Ch/n; = L,Z/n;. )

After changing the order of summation, we created the new variables Z% = E[,C%. This
function may be minimized to give compromise solutions for fixed total cost X¢;n;. For the con-
flict between n; = n/H of equal sample sizes for domains versus n; = nW, proportional
to domain sizes Wy, the optimal compromise allocations are found to be proportional to
V(W3 + H-2), with equal values for I,.

An important example was provided by the (otherwise excellent) World Fertility Surveys,
which used roughly equal sample sizes for small and large countries: actual sample sizes
varied only within the range of 3 to 10 thousand and with no discernible correlation with
population size. Consequently, there were two- or three-fold increases of variances in the
continental averages of national surveys, their ‘‘main contributions to knowledge’’:
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Figure 2. Five Alternative Allocations of Sample Sizes n,, of Fixed Total In,

The ten provinces of Canada illustrate graphically the usual conflicts from major domains with unequal
sizes, also the feasible successful compromises.

1 Allocation proportional to domain sizes n, o W), is diagonal.
2 Equal allocation n, o 1/H is a horizontal.
Divergences of the two allocations are large near the ends.
3 The square-root allocation, n, o v W), yields compromises at both ends.

4 The “optimal’’ allocation n,oc V(W2 + 1/H?) improves both ends, and especially with an
appealing “‘floor’’ near the lower end.
5 A ““weighted”’ optimal n, o« V(.8W?2 + .2/H?2) improves the upper end considerably.

“So far, the main contribution to knowledge has been to confirm the downward trend in
fertility that characterized much of Asia and Latin America in the 1970’s and to highlight
the contrast with Africa where both fertility and the desire for large numbers of children remain
high’’ (Macura and Cleland 1985).

6. ALLOCATIONS TO STRATA AND CHOICE OF STRATIFIERS

Domains and strata often get confused in discussions, but the two aspects should be kept distinct
in practical work on designs. Domains refer to subpopulations for which separate estimates are
sought, whereas strata are usually smaller partitions created for decreasing variances. For example,
within provinces as domains more strata may be created to reduce province variances; but cross-
domains like age, sex and economic status tend to straddle across the strata. Allocations of sample
sizes to strata, though often not as crucial as allocations to domains, may be important in case
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of efficient disproportionate optimal allocations. The two methods of Section 5 for allocating
sample sizes to domains can also be applied to allocations to strata, although the aims differ. Some
of the references on nonlinear programming refer to domains and others to strata, and some
confuse the two.

.The presence of several survey variables and statistics among the purposes have clear implica-
tions for using more stratifying variables. Different survey variables will tend to have diverse
optimal relations with the stratifiers; then it is best to use many stratifiers, even if each stratifier
is used with only few stratum divisions (categories). Multipurpose design is the best reason for
multivariate stratifiction (Kish and Anderson 1978). It may also best justify the need for ‘‘con-
trolled selection’” methods. The choice of stratum boundaries, called ‘‘optimal stratification”’,
is a related topic, but of less importance in this condensed presentation.

7. CLUSTER SIZES; MEASURES OF SIZE; RETAINING UNITS

In descriptions of sample designs we find sometimes that the design effect has been approx-
imated with Df, = [1 + pg(E, — 1)1, where p stands for a synthetic intraclass correlation of the
‘““most important’’ variable g and b, = n/a, the average cluster size. This would yield the effec-
tive element variance S gz,Df, and the variance S §D§ /n for the mean of the variable g. However,
we must question the contents of # and of b,. If our population consists of married women of
childbearing age, they may be only 10 percent of total persons and found in only 30 percent of
dwellings; and much fewer than that for some rare populations. This situation has been treated
in sampling for rare traits (Kish 1965). ‘‘Ordinarily we avoid large clusters, because of their adverse
effects on the variance. But even large clusters of the entire population will yield only small clusters
of a rare trait, if this is widely spread. For example, entire blocks may be sampled for persons
over 65 years of age; entire villages may be searched for persons with an identifiable disease. If,
on the contrary, the trait is concentrated in small areas, those areas often can be recognized and
stratified accordingly.”

In multipurpose designs, the crossclasses of the sample will be of variable sizes that are portions
of the total sample size n,, with M, as their different proportions in the populations. Thus we
want to estimate in the design not only [1 + pg(E, —1)] for diverse variables g for the total
sample #,, but also [1 + pg(E, —1)] for many crossclasses. Here, as in Section 6, the index g
is made to serve both variables and subclasses, in order to simplify notation. Then we make use
of some conjectures that have been shown to be good approximations in thousands of empirical
computations for scores of samples:

[1 + pg(by = D] = [1 + p,(Myh,—1)] = [1 + p (M5, ~1)] )

That is, we use b, = M,b, and p, = p, as rough approximations. True that this somewhat
underestimates the average values of D§ for crossclasses, because of variations in cluster sizes
of crossclasses. But that is a small factor compared to the large variations of p, between variables
(Kish 1987; Verma et al. 1980; Kish ef al. 1976), and that underestimate has small effects on the
efficiency of designs. It is important to consider efficiencies of estimates for subclasses as well
as for the entire sample; these considerations point to considerably higher efficiencies for larger
clusters than would be shown for b, and #, for the total sample only.

Measures of size are related to cluster sizes, but differ because of errors in the available measures,
due especially to different population contents and to obsolescence. We must also note problems
concerning measures of size for multisubject surveys and for ““integrated survey operations’’ for
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different populations, which may especially need drastic compromises. Those two levels of
purposes (Table 1) should be distinguished because multisubject surveys use single samples in
one operation; but integrated survey operations may use different sizes of sampling units for
different surveys (United Nations 1980). For example, consider integrated designs for total
populations and for agriculture; also perhaps for ethnic subpopulations; also perhaps for indus-
trial or business activities: the measures of size for each of these may differ greatly. Yet some
compromise solution may be found to yield reasonable efficiencies for each.

Measures of size are also closely related to problems for ‘‘Retaining units after changing strata
and probabilities” (Kish and Scott 1971). Those methods were designed to deal with changes
over time of sampling units, both in measures of size and in stratifying variables; but the methods
are also relevant for differences between survey variables:

“‘Unequal selection probabilities are often assigned to sampling units. Our methods, though
more generally applicable, are especially needed for the selection of primary sampling units for
surveys. Often these are selected separately from many strata, with one selection from each stratum.

““After the initial selection the units may be used for many surveys over several years. But
as time passes, the needs of new surveys may be better served by new strata and new selection
probabilities, based on new data, than by those used for the initial selection. The difference
between initial and new data may be due to differential changes among the sampling units as
revealed by the latest Census. Or the differences may be due to changes in survey objectives and
populations; for example, a sample initially designed for households and persons may later be
required to serve a survey of farmers, or college students. Obviously our methods are also
applicable to designing simultaneously a related group of samples with differing objectives.”

This method allows for using the best measures (for size and for strata) separately for each
sample purpose, but maximizing the retention of the overlap of sampling units between the samples
for separate purposes (especially PSU’s). However, it would be possible to design a compromise
that would average the measures in order to achieve a complete overlap of units, but sacrificing
some efficiency for each of the purposes. A compromise between the two techniques may be even
better than either: increase the overlap with small sacrifices of separate efficiencies by recognizing
only differences of measures that surpass some arbitrary minimal criteria (Kish and Scott 1971).

8. PURPOSES AND DESIGNS FOR PERIODIC STUDIES

Periodic studies provide areas of conflict with great and growing importance as their numbers
and sizes increase. It is wrong to assume that those expensive and influential surveys have only
one of the five purposes listed in Table 4, because usually they are needed for several or all, if
the design permits their use.

In Table 4 we note five purposes and six designs. The first four are paired with similar letters
on the same four lines. These pairings call attention to designs that best serve, with reduced
variances, each of the four purposes. Most periodic studies have several purposes and thus we
should face, and perhaps solve, the difficult problems of multipurpose designs. Actually cur-
rent levels (A) and net changes (C) can be served with any of the six listed designs, but with some
increase in variances or in costs. However, individual (gross, micro) changes (D) need panels;
and cumulations (B) need some changes of samples, and are fastest without any overlaps. For
current levels (A) variances can be somewhat reduced with estimators using correlations from
partial overlaps. Net changes (C) benefit from correlations from any overlap, and most from
complete overlaps (Cochran 1977; Kish 1987; Kish 1965). Reasonable compromises often become
possible, when purposes can be defined. However, extraneous considerations may rule out some
designs (e.g., overlaps may be either prohibited or enforced) and thus force the use of less effi-
cient — but still valid — designs.
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Table 4
Purposes and Designs for Periodic Samples
. Rotatio
Purposes Designs Scherlnen
A. Current levels A. Partial overlaps 0 < P < 1 abc-cde-efg
B. Cumulations B. Nonoverlaps P = 0 aaa-bbb-ccc
C. Net changes (means) C. Complete overlaps P = 1 aaa-aaa-aaa
D. Gross changes (individual) D. Panels same elements

E. Multipurpose time series E. Combinations, SPD
F. Master Frames

The chief variation in these six designs concerns the amount (and kind) of overlaps between
periods. The rotation scheme of complete overlaps shows, with aaa-aaa, that the periods have
all common parts; the nonoverlap with aaa-bbb shows none; and the partial overlap abc-cde-
efg shows c and e as 1/3 overlaps between succeeding periods only. This section concentrates
on the effects of varying proportions of overlaps P in diverse designs on different purposes; in
complete overlaps P = 1, in nonoverlaps P = 0, and in partial overlaps 0 < P < 1. The pur-
poses are discussed in terms of variances for estimated means, because means (and percentages,
rates, proportions) are both the most used and the simplest estimates. Effects on other estimates
will not be entirely different but they are too many, diverse, and difficult to be explored here.

More discussions of panels is also available elsewhere, with its advantages, disadvantages,
problems and solutions (Duncan and Kalton 1986; Kish 1987). I call attention to SPD, or Split
Panel Designs, that I am trying to promote for multipurpose designs. These would combine a
panel sample P with new rotating or “‘rolling’’ samples, so that Pa-Pb-Pc-Pd would symbolize
the periodic samples. The rolling samples a,b,c,d etc., could be cumulated into larger samples.
The panel P serves primarily to provide micro (individual gross changes). But it also serves as
the partial overlap for better estimates of both current levels and macro (mean, net) changes
Sfor any pair of periods.

9. COMPUTING AND PRESENTING SAMPLING ERRORS

It seems questionable to include this topic under design, but I have no doubt that this is a
multipurpose problem. The strategies for computing and presenting sampling errors deserve sep-
arate listing as an area of conflict among the many statistics given generally for the results of
surveys. It is not enough to present standard errors for only one or a few of the most important
statistics: they are too many and too diverse. Because of that diversity, the practice has grown
up to compute from the variances other expressions of sampling variability, especially estimates
of the ““design effects’’ dﬁ; also sometimes from the df, =1+ pg(b_g — 1), estimates of the syn-
thetic intraclass correlation p,.

Briefly, I advise: a) Compute sampling errors for many variables, because the variances, the
design effects (df,), and the intraclass coefficients (o,) can and do differ greatly between
variables. b) You may have to do some averaging of sampling errors, because it may be inconve-
nient or confusing to present them all. ¢) It may be neither feasible nor necessary to compute
sampling errors for all subclasses, because they can often be approximated with reasonable
models. d) It is necessary to present sampling errors for subclasses and for other statistics to
guide the readers of the reports (Kish 1965; Kish 1987; Verma et a/ 1980). I hope that this topic
will receive in the future from theorists and methodologists some of the attention it needs.
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10. CONCLUSIONS

For the ten areas of conflict of Section 3 approaches and solutions are proposed in Sections
4 to 9 that are very diverse. Averaging allocations among domains in Section 5 seems to give
surprisingly good compromise solutions. The advice in Section 6 to use more stratifiers can also
yield worthwhile gains. In Sections 4 and 7 considerations for subclass estimates lead to drastically
different decisions for sample designs. In Section 8 we note how periodic designs can be best
suited to purposes, and best compromise for multipurpose aims. We looked at the different levels
of purposes and at the various areas of conflicts jointly. Asking the right question is the core
of most problems. I propose multipurpose design as a new paradigm, to replace “‘optimal’’ solu-
tions to artificially partial questions such as: What is the optimal allocation for the mean y or
the total Y of “‘the most important’® variable?
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