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ABSTRACT

Dual system estimators of census undercount rely heavily on the assumption that persons in the evalua-
tion survey can be accurately linked to the same persons in the census. Mismatches and erroneous non-
matches, which are unavoidable, reduce the accuracy of the estimators. Studies have shown that the extent
of the error can be so large relative to the size of census coverage error as to render the estimate unusable.
In this paper, we propose a model for investigating the effect of matching error on the estimators of census
undercount and illustrate its use for the 1990 census undercount evaluation program. The mean square
error of the dual system estimator is derived under the proposed model and the components of MSE arising
from matching error are defined and explained. Under the assumed model, the effect of matching error
on the MSE of the estimator of census undercount is investigated. Finally, a methodology for employing
the model for the optimal design of matching error evaluation studies will be illustrated and the form
of the estimators will be given.

KEY WORDS: Undercount; Dual system estimation; Capture-recapture; Nonsampling error; Processing
error.

1. INTRODUCTION

The use of capture-recapture methods for census evaluation and the evaluation of birth-
death registration was first suggested by Sekar and Deming (1949). For estimating census cov-
erage error, the method involves matching persons from a sample survey of the population
to the census in order to determine the number of individuals which were enumerated in both
the sample survey and the census. There are a number of difficulties which may occur in the
capture-recapture method to cause substantial biases in an estimate of the total population
size, N (see for example Burnham et a/. 1987 and Wolter 1986). A problem which occurs quite
often in applications of the procedure is the failure to accurately match persons from the sample
survey to the census. Seltzer and Adlakta (1974) demonstrated that matching error can result
in relative biases as large as 33% and may be positive or negative depending upon whether false
nonmatches or false matches predominate (see also Scheuren and Oh 1985). Wolter (1983) notes
that suspected matching errors in the 1980 Post Enumeration Program were a part of the reason
not to adjust the 1980 U.S. Census.

This paper provides a basic framework for evaluating the matching error in capture-recapture
studies (particularly for applications to human populations) and for assessing the impact of
the errors on the accuracy of the estimate of N. To provide a simple and familiar basis for the
discussion of matching error, we shall adopt the original Sekar-Deming capture-recapture
model. Extensions of the Sekar-Deming technique are given in Marks, Seltzer and Krotki (1974),
and Wolter (1986).

1 paul P. Biemer,Head, Department of Experimental Statistics, Director, University Statistics Center, New Mexico
State University, Las Cruces, New Mexico, United States.
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Consider a population U and let N denote the size of U. A census is conducted and N,
persons are counted. We wish to estimate N-N, (referred to as the coverage error of the census)
which is equivalent to estimating N. A post enumeration survey (PES) is conducted which
employs the same reference period as the census. We assume that: (a) both the census and the
PES contain no spurious events (i.e., duplications, fabrications, out-of-scope persons or uniden-
tifiable persons) or that the number of such events can be accurately estimated and subtracted
from N_; and (b) the event of being counted in the census is independent of the event of being
counted in the PES.

The PES persons are matched to the census in order to determine the number of PES persons
who were also counted in the census. Let x;; denote the design unbiased estimator of the total
number of persons in both the PES and the census populations and let NV, denote the design
unbiased estimator of the PES population size. The Sekar-Deming estimator (more recently
referred to as the dual system estimator or DSE) of N is

Ny

X11

Z

N = )

As we shall see, N is subject to two sources of error: sampling error and nonsampling error.
Although there may be several sources of nonsampling error, the source of the error of con-
cern here is matching error; i.e., the misclassification of PES persons as enumerated in the
census (false positive errors) or not enumerated in the census (false negative errors).

Using Taylor series expansions, general forms for the moments of N can be derived. It can
be shown that, to terms of order 1/n, where n is the PES sample size,

Bias (N) = — N[Relbias (p,;) — Relvar (5;)] 2)
x [1 + Relbias (p;;)] !

and

Var (N) = N?Relvar (5;;) [ 1 + Relbias (p;;) ] 2 3)

where p;; = x;;/ N, is an estimator of py;, the true proportion of the PES population falling
in the census population; Relbias (5;;) = Bias (f;;) /p;;; and Relvar (f;,) = Var(p)
E~%(p,,). Here we have assumed that N, the census counts, has a variance of zero. This is
a simplification since, as we mentioned, an estimate of the census spurious events may have
been subtracted from the census count to obtain N, and this correction may be subject to
sampling and other errors. Nevertheless, the assumption is consistent with our emphasis in
this paper on matching error and its effect on N. The last section discusses an extension of
the methodology which allows error in the estimator N,.

From (2) and (3) we note that the total mean square error (MSE) of N depends upon the
total MSE of p,;. In the following section, we consider some models for evaluating the effects
of matching error on p,;. Letting j (j=1,...,n) be the index for the j individual in the PES
sample, we define ; as the probability that individual j is misclassified in the matching process
and consider alternative assumptions regarding the probabilities «;.
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2. MATCHING ERROR MODELS

2.1 Uncorrelated Matching Error

Assume:

1. The event {unit j is misclassified} is independent of the event {unit j’ is misclassified )
for all j=j'.

2. o; = @ if unit j is truly in the census, referred to as the probability of a false negative
error, and «; = ¢ if unit j is truly not in the census, referred to as the probability of a
false positive error.

To fix the ideas, we assume simple random sampling for the PES and that # is small relative

to N, then

Epy) = pn(1-0) + (1-py)o, )
Bias(fy;) = —puf + (1—p11)¢ &)
Var(py;) = n~' E(pn) (1—E(p11)) (6)

n~ L (SV +SMYV),

where SV, denoting sampling variance, is given by
SV = pn(1-pi) (1-6-¢)* ()
and where SMV, denoting simple matching variance, is given by
SMV = p;6(1-60) + (1-pn) ¢(1-9) )

(proof in the appendix).

Readers familiar with the Hansen, Hurwitz, and Pritzker (1964) response error model will
recognize the correspondence of their simple response variance and SMV in this model. Hansen,
et al. define a measure I, referred to as the ‘‘index of [response] inconsistency,’’ to be the
ratio of the simple response variance to the total variance of a single response, i.e., the pro-
portion of variance which is response variance. For survey responses, / is an indicator of the
response reliability of the survey information. An analogous measure can be obtained for mat-
ching error to indicate the effect on the variance of p;; of matching unreliability. This
measure, denoted by Iy, is given by

SMV

= e ©)
SV + SMV

%

For some applications, assumptions (1) and (2) may be too restrictive. The independence
assumption (1) is violated, for example, when unit B in the PES is erroneously matched to unit
A in the census causing the correct match, unit A in the PES, to be erroneously classified as
a nonmatch. Since this implies that the errors for units A and B are negatively correlated, the
consequence is that Var(p,;) will be smaller than given by (6). However, E(p;) is not
affected by correlated errors. Another form of correlated matching error arises when matching
is performed by clerks who may vary in their tendencies to commit false positive and false
negative errors. The next section provides a model that describes these errors.
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Assumption 2 specifies that the misclassification probabilities «; are homogeneous across
the PES population. This too may be a simplification since some individuals, perhaps the
majority, may be classified with relatively little risk of error while other individuals are more
difficult to match. Basically, matching problems arise from inaccurate or incomplete infor-
mation about the characteristics of each individual in either or both systems. Therefore, if the
PES sample can be post-stratified on the basis of the completeness of the information to be
used for matching, the assumption may hold (at least approximately) within each stratum. The
overall matching error rate is thus an aggregation of the individual stratum error rates. The
last subsection explores this model.

Finally, the assumption of simple random sampling greatly reduces the complexity of the
formula for Var(p;,). Since PES samples are complex samples, the assumption is a simplifica-
tion, yet it still provides useful formulas for: (a) identifying which components of matching
error are likely to have the greatest impact on the total MSE of N; and (b) allocating resources
for and designing matching error evaluation studies. In many situations, an adjustment of SV
by a ‘“design effect’’ constant will account for most of the effect of complex sampling on
Var (py;). Further, E(p,;) is essentially unaffected by more complex forms of sampling than
simple random sampling as long as j, is appropriately weighted. Thus, the form of B(5,;)
does not depend upon this assumption.

2.2 Modeling Clerical Error

Suppose the PES is matched clerically to the census using k& clerks. Let m; denote the
number of PES individuals classified by clerk i, i=1,...,k. Let the double index (i,j) denote
the j* individual in the i clerk’s assignment.

Assume:

1. The event {unit (Z,/) is misclassified} and the event {unit (i’,j’) is misclassified} are
independent when / # i’ and conditionally independent given clerk i for i=i’; j#j’';
i=lL .., ki =1,...,m.

2. o = §;if individual (,j) is truly in the census, and = ¢;if individual (4,/) is truly not
in the census.

3. E(6)) = 6; E(¢;) = ¢; Var(¢;) = o5, V(¢;) = 0%; and Cov(6;, ¢;) = 04

For the subset of individuals in the i clerk’s assignment, 1 and 2 are analogous to assump-
tions 1 and 2 for the model of the last section. Assumption 3 specifies that clerk matching error
probabilities are independent and identically distributed random variables. This assumption
is analogous to the assumptions made for interviewer errors in interviewer effect models (see
for example Kish 1962, Hartley and Rao 1978 and Biemer and Stokes 1985). The assumption
is appropriate if our interest lies in estimating the parameters of a much larger pool of clerks
of which the & PES clerks are a representative sample.

It is shown in the appendix that, assuming simple random sampling, E(p;,) is still given
by (4). The general formula for Var (;;) is given by (A.3) in the appendix; however, a useful
simplification results if we can assume that the assignment sizes m; are approximately equal
to m, the average size, and that each clerk’s assignment has the same expected number of
matches (i.e., clerk assignments are interpenetrated). Then

m—1

1 1
Var(py) = - (SV + SMV) + — - CC an
n m k

where CC, denoting the correlated component of matching variance, is
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CC = p} o3 + (1—-p11) 20l — 2p11(1—p11) o4 (12)

and SV, SMV are given by (7) and (8), respectively.

Note that CCis a consequence of the between clerk variability of the misclassification pro-
babilities 8; and ¢;. Further, by noting that CC is the variance of —p;, 6; + (1 —p;;)¢; and
the similarity of these terms with (5), we see that CC is the variance of the net biases among
clerks. This latter fact proves that CC must be positive. Therefore, the effect of clerk variance
is to increase the variance of py;.

Borrowing again from the response variance literature, we can define a parameter p,, which
is analogous to the intra-interviewer correlation coefficient, p, defined by Kish (1962). We shall
refer to pys as the intra-clerk correlation since it is the correlation between the match classifica-
tions of any two units in the same clerk assignment. Under the model,

cC

PM =SV sMy

is the ratio of the correlated component of variance to the total variance associated with a single
classification. It may be interpreted as the degree to which clerks “‘influence” the match rates within
their assignments. Now, an alternative formula for Var (4;;) which is equivalent to (11) is

SV + SMV
Var(py) = "+T“ [1 + (n—1)py] (13)

2.3 Post-stratification

Both the model for uncorrelated error and the model for clerical error assume (essentially)
that individuals in the PES sample do not differ in the degree of difficulty of determining their
true match classification (assumption 2 for both models). For example, for the clerical error
model, the misclassification probability vector (8;, ¢;) is the same for all units in the { h clerk’s
assignment. In reality, however, some individuals are much more difficult to classify than others
depending upon such factors as the completeness of the matching information, whether a mover
or non-mover, whether in single family home or apartment, etc.

A simple approach for modeling this situation is to stratify PES sample according to some
variable, say Z, which is correlated with the misclassification probabilities «;. The variable Z
may be an indicator of the completeness of the information, the type of unit, etc.

Suppose there are L such strata indexed by 4. Let (i,h,j) denote the j* unit in the ™
stratum in the i clerks assignment where i=1,...,k; h=1,...,L, j=0,...,my,; and my, is
the number of units in stratum # for the i clerk. We shall again assume (1) as for the clerical
error model; however, in addition assume:

2. ay; = 0y if individual (i, 4,/) is truly in the census.

= ¢, if individual (i, h,j) is truly not in the census.

3. E(0ip) = 045 E(din) = &
Var(@y) = ok Var(om) = oons
Cov(0y’, i) = oppn if h=h’

=0ifh = h’
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Under these assumptions, we have Bias(p;;) = L, Bias (5;,) and Var (p;) = Lx3 Var
(Puin) + Ty [E(Prp) — E(P11)]1% where Bias (Py1,), E(P11s), and Var (pyy,) are given
by (5), (4), and (6), respectively, indexing the clerk error parameters and p,, by # and where
n, = E(n,/n), the proportion of the population in the h™ stratum.

3. DEMONSTRATION OF THE EFFECT ON TOTAL ERROR

The models of the previous section can be useful for demonstrating the effect.of matching
error on the total mean square error of N and py;. In the illustrations that follow, we shall
assume values of the model parameters which are typical given our experience and which are
consistent with current 1990 PES design parameters.

In the PES, estimates of N will be made for a number of census strata. We assume that the
desired coefficient of variation of the estimates is 1% . Matching will be conducted in a number
of processing sites by teams of clerks. (More details on the matching operation are given in
the next section). To illustrate the effect of matching error on the DSE, we consider a ‘‘typical’’
PES stratum. For this stratum, let p;, = .85 and k, the number of matching clerks in one pro-
cessing site, be 10. In our analysis, we considered values of § which varied from 0 to .10 and
a number of typical values for the ratio vy = /¢, i.e., the ratio of the probability of false
negatives to the probability of false positives. Little information exists which would indicate
the typical range of p,, since no study has ever measured p,, for matching error. However, if
we assume that the clerk error probabilities 6; and ¢; follow a unimodal beta-distribution and
are uncorrelated, we can obtain a maximum value for p,, corresponding to given values of the
expected error probabilities § and ¢. Algebraically, the maximum value of p,, is given by

pir = CC* / (SMV + SV) (14)

where CC* = p3, 6% (1—6)/(1+60) + (1—p;)2¢*(1—¢)/(1+¢) (see Johnson and
Kotz 1970, for the underlying theory). If 8; and ¢; are positively correlated, then the assump-
tion of zero correlation further exaggerates the effect of CC. Thus, the illustrations which follow
indicate the maximum impact of matching variance on the estimates.

To illustrate the maximum effect of correlated variance on the precision of gy, the coeffi-
cient of variation of p,;, denoted by CV(5,,), was graphed as a function of § for various
values of v. For these calculations, p 4 was substituted for p,; in (13). The range of 6 was
O0<f6=<.l0and ywas .5 < y < 5;i.e., ¢ = .20 to ¢ = 20. This range of values of v seems
reasonable since, typically, ¢ is smaller than 6. Figure 1 shows the function for y = 1. There
was no discernible difference for other values of v in the range of interest. Thus, it appears
that the size of ¢ has negligible effect on CV(p;;). In fact, we see from the expression for
CC * that when p;; = .85, no more than 3% of the correlated variance is contributed by the
variance of ¢; even when ¢ is the same size as 6. Figure 1 also suggest that CV(p,;) may be
increased two-fold to 2% for values of § as small as 5%.

In Figure 2, the relative bias of §;;, denoted by RB(5,,) is illustrated for the same range of
0;i.e.,0 <6 = .1, and vy; i.e., .5 = v < 5. The graph clearly indicates that bias is smaller for
smaller values of v. In fact, the bias is zero wheny = (1—py;) /py, or .18 assuming p,; = .85
as in this example. For 6 as small as 5%, the relative bias is between — 2% and — 4%, depending
upon the size of v. Comparing this with the maximum increase in C¥(5;,) of one percentage
point, we see that bias has the potential to be much more serious than correlated variance.
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Figure 2. Relative Bias of p,, as a Function of © for Selected Values of v
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To indicate the potential effects of matching error on N, the increase in total error as a func-
tion of # and for selected values of v was computed. Let M (8,7y), V(6,v), and B(6,7y) denote
the mean square error, variance, and bias, respectively of N for given values of § and v. M (0,v)
is the mean square error of N without matching error (i.e. § = ¢ = 0) and thus M (0;v) ** is
approximately the standard error of N. Define RM(8;y) = (M(6;v) /M (0;y) —1)%;
RV(6;y) = (V(8;v) /M (0;v) —1)"; and RB(6;v) = (B*(6;v) / M(0;v)) "

Thus, RM (8,7) is the square root of the increase in the total mean square error of N for
given 6 and v relative to the root MSE of N with no matching error. RV (6,v) is the contri-
bution of this increase due to matching variance while RB(6;v) is the contribution due to
matching bias. Hence, we have RM (6;y)? = RV(8;v)% + RB(6;v)*. Figures 3 and 4 show
these functions for two extreme values of vy, ¥ = .5 and 5, respectively, and for 0 < 6 < .1.
Again, the maximum value of the correlated variance, CC*, was used for the variance compu-
tations. Thus, the contribution of matching variance to total error is probably substantially
exaggerated.

These figures indicate that for these values of 8 and vy, most of the error is contributed by
bias, although the contribution to variance can be non-trivial. Further, as suggested earlier
for Figures 1 and 2, the matching bias dominates the total matching error whenever false
negative error dominates over false positive error.

4. ESTIMATION FROM REMATCH STUDIES

Methods for estimating the components of response error in sample surveys have been well
documented in the literature (see for example Hansen, Hurwitz and Pritzker 1964, Hansen,
Hurwitz and Bershad 1961). The techniques for estimating the components of matching error
are essentially the same. For example, to estimate the correlated component of matching
variance, CC, the assignments of the clerks must be ““interpenetrated.’’ This procedure, which
is described in detail in Kish (1962), randomizes the assignment of PES cases to clerks so that
each clerk’s assignment has the same expected number of matched persons. Then, an estimator
of CCis formed by the difference between the between clerks and within clerks mean squares
from the analysis of variance of clerks. For more details of this procedure, refer to Bureau
of the Census (1985).

In this section, the focus is on the analysis of data from rematch studies, the most common-
ly used method for evaluating matching error. There are two types of rematch studies. One
attempts to replicate the original match operation for a sample of cases using the same pro-
cedures, training, match rules, etc. This type of rematch has the objective of estimating SMV,
the simple matching variance or, equivalently, I, the index of match inconsistency. The
second type of rematch aims at obtaining the most correct match possible and, therefore, uses
more extensive procedures, highly qualified and expert clerks, and adjudication, i.e., resolving
disagreements among the original and rematch classifications by a third, expert matcher. This
type of rematch as the objective of estimating the matching bias. Further, as we will see, an
estimate of SMYV is also possible from these data.

The (unweighted) data collected in a rematch study can be displayed as in Table 1. Assume
that the rematch sample is a simple random sample of r persons from the PES. Further we
may assume either the uncorrelated error model or the clerical error model of the last section
for both the match and rematch. Let i, (¢ = a, b, ¢, d) denote the mean observed proportion
of the cell corresponding to ¢ in Table 1.
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Figure 3. RM(0;v), RV(8;¥), and RB(O; ), as a Function of © for y = .5
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Figure 4. RM(0;v), RV(6;v), and RB(O;v), as a Function of © for y = §
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Table 1
Rematch Study Data

Rematch Classification

Original

Classification Matched le:tlc?ltled

Matched a b

Not Matched c d

Then

pe =P (1—04) (1-6p) + (1—=p11)dads 15)
pp =p11 (1=04) 0 + (1=p11)é4 (1—¢p) (16)
pe = P11 04 (1-0g) + (1—=p11) (1-0¢4)0p a7
pa=p11 040 + (1=py1) (1—6,4)(1—¢p) (18)

where the index A denotes original match and B denotes the rematch.

Define
o =E(¥) =1 (1=64) + (1=p11) 64 (19)
and
s =E(‘i}c) = pu(1=6 + (1=p1y) 0. 20)

Note that p4 and pp are expected values of the estimates of p;; based upon the original and
the rematch classifications, respectively. The difference of these two estimates of pyy, i.e.,
(b—c) /ris referred to as the net difference rate (NDR). Its expected value is

E(NDR) = py — pp = —p11(64 — 0p) + (1—p1y) (¢4 — ép). @2n

Finally, the proportion of the r sample individuals having rematch classifications which
disagree with the original match classification is (b +c) /r, referred to as the gross difference
rate (GDR). Its expected value is

E(GDR) = pp + pe

=py [84 (1=85) + (1—-64)05] + (1—p1) [(1—d4)dp + b4 (1—0p)]. (22)

We shall now consider the estimation of the components of Var () and Bias () under
three sets of assumptions for the rematch study. In the first case, we assume that the rematch
study is conducted under the same general conditions as the original match so that the error
parameters associated with both classifications are very nearly the same. For example, the clerks
for both operations received the same training, have the same skill level, and use the same
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procedures. The second case assumes that the rematch is perfect, i.e, the rematch classification
may be considered the true classification. The third case falls somewhere between case 1 and
2. More extensive and improved matching procedures are used in the rematch; however, we
are not willing to assume that the rematch classifications are without error. Instead we assume
that fewer errors are made in the rematch than in the original match.

Case 1. Same General Conditions for the Match and Rematch

Assume that 8, = 8 = f and ¢4, = ¢ = ¢, i.e., the expected rates of misclassification are
the same for both trials. Then, from (21), E(NDR) = 0 and no estimate of Bias (f;;) can be
computed from the data. However, from (22) and (8)

Y E(GDR) = SMV (23)
Further, an estimator of I, in (9) is
Iyy= GDR/ [2p (1 =P11)] (24)

where py, is the PES estimator of p;, as defined for (2). Alternatively, an estimator of E(fy1)
can be obtained from Table 1; for example, see the estimators in (19) and (20).

Case 2. Perfect Rematch

Assume that 85 = ¢ = 0, i.e., the rematch is conducted without misclassification error.
Then, from (21),

E(NDR) = —py 04 + (1 —=p11)o4

= Bias (/). (25)

Further, the probability of false negative error, 6,4, is estimated by

6=c/(a+c). (26)

and, the probability of false positive error, ¢4, is estimated by

~

¢ =0b/(b+d). 27
An estimator of SMV is
shrv =1 <“—c + ﬁ) (28)
r\a+c b+d
and, thus, an estimator of I, is
L= SMV/py, (1=pn) (29)

where py; is an estimator of E(p;;) obtained either from the PES or from Table 1.
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Case 3. Rematch Has Smaller Error But is Not Perfect

Assumethat 0 < 85 < 6 4 and 0 < ¢p < ¢4, i.e., the misclassification probabilities for the
rematch are smaller than for the original match but are not zero. Then no unbiased estimator
of Bias (p,) exists. However, | E(NDR)| will be smaller than |Bias (f,;) | if u4 — p1; and pp
— p;; both have the same sign; i.e., the estimator of p;; based on the match and the rematch
data are biased in the same direction. Thus, under these conditions, | NDR| is a lower bound
estimator of | Bias (5,,)].

Further, there is no unbiased estimator of SMV. However, it can be seen from (22) that

E(GDR)—-25MV = py1(0p—04) (1=264) + (1 —p1)(dp—d4) (1 —2d,).

Thus, whenever 6 4 and ¢4 are both less than .5, which is true in most practical applications,
we have

E(GDR) < 2SMV

and [y, defined in (24) will underestimate I,,.

5. APPLICATION TO THE 1990 CENSUS

In the 1990 Census, the PES sample will consist of about 5000 ‘‘blocks’’ or groups of about
30 contiguous housing units and attempts will be made to match each person in every block
to the census. The variables used for matching will include Name, Address, Relation to Head
of Household, Sex, Birthdate, Marital Status, Race, and Hispanic Origin. The matching process
will involve four separate stages as follows:

Stage 1. A computer match operation using the Fellegi and Sunter (1969) technique. Each PES
person will be classified as either matched to the census, not matched, or possibly
matched (i.e., requiring clerical review) by computer.

Stage 2. A first clerical review to correct any mismatches or erroneous non-matches made by
the computer. In addition, a standardized set of matching rules will be applied to each
possible match. Thus, each PES person will be classified as either a match, a non-
match, a possible match or an unresolved case.

Stage 3. A second clerical review to reconsider, by applying greater human judgment, the
classification made at the two earlier stages. The clerks for this stage, referred to as
the special matching group (SMG), may also decide that for some households further
field follow-up is required.

Stage 4. An “‘after field follow-up’’ review. Cases are reconsidered on the basis of any addi-
tional information obtained in the follow-up. The final classification codes are
matched (enumerated), not matched (not enumerated) or unresolved (match status
to be imputed in the final processing stage).
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The procedures for imputing ‘‘matched”” or ‘‘not matched”” for unresolved cases are described
in Schenker (1987). These cases which account for about 1% of the PES sample are not included
in the tables which follow since the imputed match statuses of the unresolved cases were not
available for this test. Nevertheless, imputation error can be an important source of matching
error — one which poses special problems for the evaluation. For example, it is likely that some
of the PES unresolved cases will also be unresolved in the rematch and no direct estimate of
misclassification error can be computed for these cases. In the test described below, 83% of the
unresolved PES cases remained unresolved in the rematch. Conversely, 41% of the cases which
were unresolved in the rematch, were resolved in the PES match. If one assumes that imputa-
tions for those cases which were unresolved in the rematch are erroneous, an upper bound on
the imputation error can be obtained. Likewise, a lower bound can be obtained by assuming
all these imputations are correct. However, unless the proportion of imputations is very small,
this ‘‘worst-case, best-case’” analysis may yield bounds which are too wide to be useful.

In 1986, a pretest of these PES matching procedures was conducted in Los Angeles. A sample
of about 4000 persons were matched to the Los Angeles test census and then rematched by
census professional staff to evaluate matching bias. Special procedures were used in the rematch
to ensure a very accurate match classification. Table 2 displays the rates of disagreement among
the four stages of matching and the rematch. Note the improvement of the classifications at
each higher stage indicated by the decreasing disagreement rate in the rematch column. The
data also indicate that few classifications are affected in the ““after follow-up’’ stage (.68%
disagreement with stage 3). Further, the GDR for the final stage (relative to the rematch) is
very low, less than 1%.

Under the assumption that the rematch process yields the true match status, Table 3 gives
the estimates of 6, the probability of false negative error, and ¢, the probability of false positive
error, for each stage of matching. It appears, that for the computer match and the first level
clerical match, the false nonmatch rate predominates. However, the opposite is true for the
final two stages of matching.

Table 2
Comparison of Disagreement Rates for Stages of Matching (%)
Stage 2 Stage 3 Stage 4 Rematch
Stage 1 2.9 4.4 4.7 5.5
Stage 2 0 3.3 4.0 4.8
Stage 3 3.3 0 .68 1.6
Stage 4 4.0 .68 0 .87
Table 3

Estimates of 8 and ¢ for Stages of Matching

Stage of matching Estimate of 8 (x100%) Estimate of ¢ (x100%)

(false nonmatch rate) (false match rate)
1 6.2 2.3
2 5.1 3.3
3 1.5 2.1
4 .1 3
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Table 4
Results of the Rematch Study (weighted)

Original Match Rematch Classification

Classification Matched Not Matched

Matched 16690 9

Not Matched 85 2178
Table 5a

Rematch Results For Cases With Agreement On All Four Stages.

Original Match Rematch Classification

Classification Matched Not Matched

Matched 14458 0

Not Matched 64 1775
Table 5b

Rematch Results For Cases With Disagreement On at Least One Stage.

Original Match Rematch Classification

Classification Matched Not Matched
Matched 2223 9
Not Matched 21 403

Using the methodology of the previous section, we can estimate Relbias (p;;), Relbias
(N), and I, the index of match inconsistency. Table 4 gives the results of the rematch study,
weighted for the rematch sample probabilities of selection. For this table, the estimate of Relbias
(P1;) is —.4% and therefore, the estimate of Relbias (N) is .4%, computed from (2)
assuming a 1% coefficient of variation for p;, and replacing Relbias (5,;) by its estimate. Iy,
is estimated to be .49% which is in the very low range. The false positive rate is ¢é = .004 and
the false negative rate isf = .005.

As mentioned in the second section, the probability of matching error may depend upon
the completeness of the PES or census information, among other things. To indicate the extent
to which match error rates vary, the rematch sample was partitioned into two subsamples. The
first subsample was composed of cases which were classified as ‘‘matched’” or *‘not matched”
consistently across all stages of matching, i.e., for which all four stages agreed. The remainder
of the sample made up the second subsample, i.e., cases for which at least one of the stages
disagreed. This division approximates a division based upon completeness of the matching
information since most of the cases having no disagreement between stages are those where
information is the most complete. The weighted results are shown in tables 5a (complete cases)
and 5b (incomplete cases).
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For “‘complete”’ cases, the false negative rate is .44% while the false positive rate is 0. Thus,
none of the cases were erroneously matched although a modest number were erroneously called
nonmatches. These data may provide evidence of the greater skill of the rematch staff at finding
matches for PES cases. The estimate of I, is .39%, very low. For ‘‘incomplete’’ cases, the
false negative rate is .93% while the false positive rate is 2.18%. The estimate of 7,,is 1.1%,
still quite low. However, these data indicate a much higher risk of false matches for the
“‘incomplete’’ cases.

The data from this study indicates that matching error causes a small negative bias ( —.4%)
in N which amounts to an underestimate of approximately one million persons (assuming
N = 250 million persons). Even for the more difficult cases the bias is only —.7%. It would
be interesting to look at certain demographic subgroups of the population — movers, proxy
respondents, and apartment dwellers — to see the extent of matching error for these domains.
Unfortunately, the information that would allow this analysis is not currently available.

6. SUMMARY

The models and MSE formulas developed in this paper can be useful for evaluating the
impact of matching error on estimates of census coverage error. In the context of the 1990 U.S.
census matching error bias appears to be the largest and most important component of the
MSE (N). Preliminary studies of the magnitude of matching error bias for the 1990 Census
indicate that this component is small, less than one half of one percent. This estimate does
not reflect imputation error which affects about 1% of the PES cases. Moreover, estimates
of bias depends heavily on the assumption that the rematch process yields the true match
classification. More work is needed to check the validity of this assumption.

In the development of the formulas for the total mean square error of N, we assumed that
N, was not prone to error. However, in actual practice, an estimate of the numbers of census
spurious events (or erroneous enumerations), denote by EE, may be subtracted from /V,. Since
this estimator is obtained from a match of a sample of the census units to the PES, EE is also
subject to sampling error and matching error. For example, a person may be classified as an
erroneous enumeration when they were correctly enumerated (false positive error), or they may
be classified as correctly enumerated when they are erroneously enumerated (false negative
error). The model and methodology formulated for evaluating the effect of false positive and
false negative errors for x;; can be easily extended for the estimator of erroneous enumera-
tions. Note that the Taylor approximation formulas for the bias and variance of N, (2) and
(3), will now contain terms for the bias and variance of EE.

For future research, studies of matching error correlated variance are needed to inform us
of the extent to which the clerk variance contributes to the total error of N. We suspect that
CC * , the maximum effect of correlated error, substantially over estimates the impact of clerks.
Research is also needed from rematch studies to identify the characteristics of persons or
households prone to matching error. Perhaps then special efforts could be directed toward
these cases. For this objective, the use of logistic models should be explored for predicting the
probability a case is misclassified from the various characteristics of the case.
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APPENDIX

Derivation of the MSE Formulas

Let U denote the population of size N to be enumerated. Let U, denote the subset of U
which is enumerated in the census. Let S denote the PES sample and S, denote SN U, the set
of PES persons enumerated in the census. Denote the n units in S as uy, . . .,u,. Define the
variables

'r;,-=1ifu,~£SC

=0ifu, ¢S,
and

y; = 1 if u; classified (by the matching process) in S,.
= 0 if u; not classified in S..

Model for Correlated Error

Assume: (1)y;is a random variable with P(y; = 1|9, =0) = ¢and P(y; =0|n; = 1) = 0,
and (2) y; and y; are independent given »; and 7, for i#/. Let E(- | S) and V(- | §) denote con-
ditional expectation and variance, respectively, given S. Then, p;; = Ly;/nand E(py;| S) =
(1-0)py; + ¢(1—py;) where p;; = Ln;/n. Taking expectation with respect to S yields the
result in (5).

Further, V(y;| 7; = 0) = ¢(1—¢) and V(y;| 3, = 1) = 6(1—80). Therefore, V(p,;| S) =
¢(1=¢)(1=py)/n+ 6(1-0)Dyy/n.

Taking expectation with respect to S yields SMV in (8).

Finally, combining VE(p,,| S) and EV(p,,| S) yields the result in (6).

Model for Clerical Error

Let (i,j) denote the j person in the i clerk’s assignment. Let y;; and n; be defined in
analogy to y; and 5;. Assume (1) — (3) for the clerical error model. Let E,, V5, and C; denote
conditional expectation, variance, and covariance with respect to the clerk error distributions
holding the sample of clerks fixed. Let E;, V;, and C), denote the corresponding expectation,
variance and covariance with respect to the random selection of the k clerk parameter vectors,
as per assumption (3), holding the sample S fixed. Then

EiEz () = £y { ¥ ora-e)" s @-"f]}
= (1 - 60pu + (1 —pn)

where n;; = E 7y and ny; = E (1 — ;). Hence, (4) follows upon taking expectation
of (A.1) with rjespect to S. g
Consider the variance of p,;. We have Var(p,;) = VE(p,;|S) + EV(py;| S) where
E(,| S) is given by (A.1). Further n2 V(5111 S) = Y3 Y V| $) + Y Y] Coviyy.yy-| S)
i

i j#j
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where V(y;| S) = Va(yy) + ViEa () and Cov (¥;,35| S) = C1 [Ex(3), B2 (vy)1, the term
E\Cy(y;,;) being zero. Since E,(y;) = ¢;, for n; = 0, and E(yy) = 1—0; for q; = 1, we
have V,E,(y;) = 03, if 5; = 0, and = o} if n; = 1. Further V5(y;) = ¢;(1—¢;) forn; = 0
and V,(y;) = 0,(1—6;) for ; = 1. Thus
E\Va(yy) = ¢(1-9) — a5 if 7; =0
=6(1-60) — U%if'qij =1

Similarly, it can be shown that, for j#,’,

o3 if (. my’) = (L,1)

Ci {Ey(»y)s Ex(yy) )

— Oy if (nus nu,) = (1,0)

o if (ny,m;") = (0,0).

Therefore,

V(pi! S) = (Em? — n)/n? CC + SMV/n. (A.2)

Finally, combining (A.1) and (A.2) in the identity
V(p) = VE(Pu|S) + EV(py1]S), we have
V(py) = 1/n(SV+SMV) + (Em? — n)/n* CC. (A.3)

If we further assume that m; = m for all i we obtain the form in (11).
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