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ABSTRACT

A class of *‘constrained minimum distance”” methods is considered for constraining household weights
to be consistent with auxiliary information on the number of persons in various age X race X sex
cells. The constrained weights are as close as possible to the initial weights based on the inverse pro-
bability of selection. This class of methods includes raking and generalized least square methods, as
well as multinomial maximum likelihood, (where the cells of the distribution are household types.)
The properties of the methods in the presence of systematic undercoverage of the household types are
studied through some simple models for coverage. Comparisons with the principal person method are
made and the paper concludes with the observation that it is necessary to know more about the nature
of survey undercoverage before deciding on which of the constrained minimum distance or principal
person methods is to be preferred in applications.
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Survey coverage.

1. INTRODUCTION

Post-stratification is commonly used to adjust survey weights to take into account indepen-
dent information about the number of units of certain kinds in the population. For exam-
ple, independent estimates of the population in various age X race X sex post-stratification
cells may be available from adjusting census counts for known changes in the number of
persons since the census. These independent estimates are often referred to as ‘‘control
counts”’. Prior to post-stratification, each sample person (or household) has an initial weight,
typically corresponding to the inverse of the selection probability. A post-stratification ratio
adjustment factor is applied to the weights of all sample persons in each cell, so that the
sum of the adjusted person weights equals the independent control count for the cell. This
adjustment is especially important when there is systematic undercoverage of households or
persons within households.

For most U.S. Census Bureau demographic surveys, post-stratification is used in assign-
ing weights to sample persons, but is not used directly in assigning weights to sample
households. This is due to the greater difficulty of obtaining independent estimates for
households. Instead, household weights for these surveys are assigned using some version
of the ““principal person’” method. In the basic principal person method, the household weight
is set equal to the final post-stratified person weight of the ‘‘principal’’ person in the
household. The rule for identifying this person will be described in Section 2. By using the
post-stratified person weight, the principal person method does incorporate the independent
estimates of persons into the weights assigned to households.

The most obvious problem with the principal person method is that when the resulting
household weights are used to calculate weighted estimates of the number of persons in each
post-stratification cell, with each person being given his or her household’s weight, these
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estimates do not agree with the control counts used in the post-stratification. Consequently,
there has been interest in methods of assigning weights to households which are constrained
to produce person estimates which agree with the independent control counts.

This paper considers a class of methods for assigning survey weights to households, con-
strained to be consistent with the ‘‘known’’ control counts in various person cells. The general
idea is to find household weights which satisfy the constraints and are as close as possible
to the initial vector of weights assigned to the households. The different methods within the
class correspond to different ways of measuring the distance between the initial vector of
weights and the adjusted vector of weights.

Section 2 describes six ‘‘constrained minimum distance” weighting methods of this type
plus a version of the principal person method. Three of the six methods have been investigated
previously, and the others are added in this paper to round out the picture. Section 3 describes
the computation of the weights. Section 4 discusses how the adjusted weight depends on the
composition of the household. Section 5 discusses results and examples which may help in
understanding what these methods do. Section 6 describes areas for further research.

This work has numerous antecedents. The general class of constrained minimum distance
methods is suggested for household weighting by Luery (1986). Extending Luery’s work,
Zieschang (1986a) proposes using one of these methods, generalized least squares, for
weighting the U.S. Consumer Expenditure Surveys. Another member of the class is the
““minimum discriminant information method’’, otherwise known as raking ratio estimation
or, simply, raking. Oh and Scheuren (1978a) specifically discuss the raking approach to the
household weighting problem, and give additional references to a rich literature on raking
and related methods. The idea of viewing raking as a constrained minimum distance pro-
blem dates back at least to Deming and Stephan (1940). The fundamental principles of this
approach are explored in Ireland and Kullback (1968). Applications to survey weight adjust-
ment are well covered in Brackstone and Rao (1979). The class of methods also includes
two criterion functions related to multinomial maximum likelihood. The relationship of this
to raking has been extensively studied; see, for example, Bishop, Fienberg, and Holland (1976).
Fienberg (1986) points out that the distance criteria considered in this paper may be viewed
as special cases of a parametric family of functions considered in Cressie and Read (1984).

2. CONSTRAINED MINIMUM DISTANCE METHODS

2.1 Methods Based on Household Weights

Consider a sample of K households, whose initial weights are given by the vector
S = (S;...,Sk)’. In this paper, S, will be the inverse of the probability of selection of
the k-th household; in some applications other adjustments such as nonresponse factors may
be included in the initial weight.

Suppose that there are J post-stratification cells, and that the number of persons in the
population (N;) is known for each cell. For example, for the U.S. Consumer Expenditure
Survey, there are J = 48 cells corresponding to combinations of the two sexes, two races
(black, nonblack), and twelve age categories. In that survey, persons younger than 14
are not included. The control counts for these cells will be treated as a vector
N = (N,...,Ny’ .

The composition of the sample households will be described by a matrix A = (a;),
where g, is equal to the number of persons in the k-th sample household who are in the
Jj-th post-stratification cell. Summing over the post-stratification cells for the k-th household
gives a;_, the total number of persons in the k-th household. For household k, the vector
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(a1 - - ., agy) describes the composition of the household. For example, if the vector is
(2,1,0,0, . .., 0), then the household contains exactly two persons in the first cell and one
in the second.

Using the initial weights S, the weighted sample estimate of the number of persons in cell
Jj would be N; = I a;Sy or in general N = A’S.

Typically N #N, i.e., the initial weighted estimate of persons in the post-stratification
cells may not equal the known population of the cell.

The goal is to define a new vector of weights W = (W), ..., Wx)’ for the sample
households, so that N = A’W or

Eak,szN, forj=1,...,J. (1)
k

The solution to (1) is not necessarily unique. The idea of the constrained minimum distance
methods is to chose W so as to minimize some measure D (W,S) of the distance between
the vectors W and S , subject to (1). In this way, the initial weights § are changed as little
as possible in meeting the constraint that the adjusted weights should agree with the known
control totals. Note that, for certain possible values Ny, ..., N, it may be impossible for
any vector of weights W to satisfy the constraints (1). Practically speaking, this possible in-
feasibility does not seem to be a problem, provided the sample is large enough to include
a good representation of different types of households, since the controls N are generated
from the actual population and therefore can be expected to be ‘‘feasible’.

There are numerous ways of measuring the difference between two vectors. Three distance
criteria D(W,S) will be considered, corresponding to a household-level generalized least
squares (GLS-H) objective function, a minimum discriminant information (MDI-H) func-
tion, and a maximum likelihood estimation (MLE-H) criterion. The criteria are:

GLS-H: Y (Wi — S)?/Sk (22)
k
MDI - H: (S. - W) + Z Wi In( W, /Sy, (2b)
k
MLE - H: (W - 8) — Z Se In( W, /8). (2¢)
k

Throughout the paper, the dot notation is used to denote summation over a subscript.
In each case D(W,S) is nonnegative and is equal to zero if and only if W = S. This can
be shown, in the usual way, by examining the first and second partial derivatives of each
expression with respect to the W.
Algorithms for calculating W to minimize these three criteria, while meeting the constraint
(1) to the degree of approximation desired, will be discussed in Section 3.

2.2 Methods Derived from Person Weights

An alternative approach to this problem leads to a slight but important modification of
the three distance criteria. These modified criteria are given by (5a), (5b), and (5¢) below.
Although these criteria lead to weights for households, they are generated by an approach
which starts out by trying to define weights for persons. Accordingly, first consider the pro-
blem as one of defining person weights as close as possible to their original household weights,
subject to the constraint that the weighted estimate of persons in each post-stratification cell
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equals the known control. Let the persons in the k-th household be numbered i = 1, ..., ay,
and let S, be the initial weight of the i-th person in the k-th household; note that S,; = S;.

Let by; be a zero-one indicator variable showing whether the i-th person in the k-th
household is in the j-th post-stratification cell. Then the condition for consistency with the
controls is

Y Y by W = N 3)

k i

The three criteria for the person weighting problem would be

Y Y Wa—Sa)?/Su (4)
k i
S.=W.+ Y, Y Wuln(W/Sw), (4b)
k i
W.=5.-Y Y Suln(Wu/Sw. (40)
k i

These criteria could be used for defining person weights. In fact the criterion (4¢c) would
lead to the post-stratification weights which are used in person weighting for the Consumer
Expenditure Survey, as described in Alexander (1986). However, our problem is to define
weights for households. Household weights may be obtained from these criterion functions
by imposing upon the person problem the additional constraint that all persons in the same
household must have the same weight. Therefore, let W, = W, fori = 1, ..., a,. Under
this constraint, (3) becomes

N; = E (E bkij> W =Y ay Wi,
k i k

which is the same as the constraint (1) in Section 2.1. The distance criteria (4a), (4b), and
(4¢) now become:

GLS-P: Y a (Wi = 80%/8, (5a)
k

MDI-P: Z a, Sk — Y ar. Wi + 2 ap, Wi ln (W, /S,), (5b)
k k k

MLE-P: E a, W, — E ay. S, — E a. SeIn (Wi /5:). (5¢)
k k k

The criteria are now summations at the household level, but the household size ;. has been
brought into the criterion for measuring the distance between the initial and adjusted vector
of weights. These criteria will be seen to have advantages over the more direct approach which
led to (2a), (2b), and (2c).
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2.3 The Principal Person Method

In the basic principal person method, the post-stratified person weight of the household’s
“principal person’’ is used as the household’s weight. To determine the principal person,
it is first necessary to determine the household’s ‘‘reference person’’. The reference person
is identified by the interviewer as the first person mentioned in response to the instruction
“start by giving me the name of someone who owns or rents this house.” Household rela-
tionships are defined in terms of the other members’ relationship to this reference person.
“Reference person’’ has replaced the ‘‘head of household” concept for this purpose.

The principal person is the wife of the reference person if the reference person is a mar-
ried male with spouse present. Otherwise, the principal person is the reference person himself
or herself. The rationale for this choice is that the principal person should be a person who
is not likely to be missed due to within-household undercoverage. In general, women have
better coverage than men. Further, the principal owners or renters of the house or apart-
ment seem unlikely to be overlooked.

The basic idea of the principal person method is that there is exactly one principal person
in each household. Consequently, the number of households may be estimated by estimating
the number of principal persons. This basic method is used for the U.S. National Crime
Survey. Other surveys such as the U.S. Consumer Expenditure Surveys or Current Popula-
tion Survey, make additional adjustments based on assumptions about within-household
undercoverage of principal persons, as compared to other persons in the same post-
stratification cell (Alexander 1986.)

The principal person method is difficult to model theoretically because the designation
of the reference person is somewhat arbitrary. In the hypothetical examples of Section 5,
a simplified version of the principal person method will be used, in which the principal per-
son is the household member whose post-stratification cell has the best coverage, i.e., whose
post-stratification factor is closest to one. A similar idea is used in Scheuren (1981).

This simplified principal person method will be represented symbolically as follows. For
the k-th sample household, let j(k) be the post-stratification cell of the household’s prin-
cipal person. Then the household’s principal person weight is

W, = Sk(Nj(k)/Nj(k))-

3. COMPUTATION OF THE WEIGHTS

The two least squares methods, GLS-H and GLS-P, have closed-form expressions for W,
providing that there exists some solution to the constraints (1). For the GLS-H weights, the
adjusted weights are given by

W =5+ MAA'MA)~" (N - A’S) ©)

where § = (Sp, ..., Sg), N = (Ny, ..., Ny, A is the matrix (a;;) and M is the K X K
diagonal matrix with the elements of S on the main diagonal. The weights W for the GLS-P
method are also given by (6), except that M is the K x K diagonal matrix with the values
S,/ay., ..., Sk/ag. on the main diagonal.

A disadvantage of (6) for either method GLS-H or GLS-P is that the solution W may
include negative weights. Conceptually this is unsettling, and for practical users negative
weights are unacceptable. It is usually possible to incorporate additional constraints that the
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weights must be positive. Ways of doing this are given by Zieschang (1986a) and Huang and
Fuller (1978). However, the advantage of a simple closed-form solution is lost with these
additional constraints.

The raking method (MDI-P) has been used before for household weighting, e.g., by Oh
and Scheuren (1978a). A related method which has been extensively tested is described in
Pugh, Tyler, and George (1976), based on the approach of Stephan (1942). Luery (1986)
gives an iterative algorithm based on Darroch and Ratcliff (1972), which is proved to con-
verge whenever there is a solution to (1). This method is presented here, since the iterative
step has a simple interpretation. The iteration starts with “‘step 0’ weights

Wi(0) = Sy (N./N.)

In other words, the initial weight S, is adjusted by an overall inflation factor equal to the
known population N, divided by the initial weighted total population. At subsequent iterative
steps, the adjustment is

Wi = wili = D ] (NJ/ Y ay Wili — 1)> ! .

J

Note that W, (i — 1) is multiplied by the geometric mean of the post-stratification factors
for the persons in the k-th household, where the post-stratification factors are calculated
using the weights after iteration i — 1.

The other three methods, MDI-H, MLE-H, and MLE-P, have not been extensively studied.
The following iterative algorithms have worked successfully in small hypothetical examples
such as those given in Section 5. In each case, a system of equations, which the weights must
satisfy in order to minimize the distance criterion subject to the constraints, can be found
by the use of Lagrange multipliers. The equations cannot be solved directly, but if an iterative
method produces solutions of the proper form, then the solution minimizes the criterion.
If the algorithms converge, the solutions will satisfy the equations. However, the author has
no general proof of convergence. A possible alternative approach for the ‘‘maximum
likelihood”’ criteria would be to apply the approach of Haber and Brown (1986). Other related
work is Fagan and Greenberg (1985).

3.1 Method for MDI-H

The equation for the weights is
Wi = S I/I Y )

subject to (1). If values v, ..., v, can be found so that the weights calculated according
to (7) satisfy (1), then those weights minimize (2b) subject to (1). An iterative algorithm for
generating such a vector W is as follows.

Initialize W, (0) = S, and v;(0) = 1. Then at the i-th iteration let

i) = v = 1) [1 - (Nj(i = 1) = N))/ Y aiwii -1 ]

N

where N;(i — 1) = E ay; We(i — 1). Then let W, (i) = SkH (v, (i) .

N
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3.2 Method for MLE-H

The solution is of the form:

Wk = Sk/ <1 + E 'yja,\j)
J
subject to (1).
An iterative solution is

W/\(O) = ‘SI\' and 'yj(O) = 0,

y() =G = 1) + N = 1) = N,)/( Y (ag Wili — 1>>2/Sk>,

s

W, (i) = S/ (1 + E v (1) akj)-

J
3.3 Method for MLE-P

The solution is of the form:

Wy = Sk/( DIRT akj/ak.>-
J
subject to (1).
An iterative solution is

W/\(O) = Sk and 'YJ(O) - 1,
vi(h) = v (i = 1) N;ti = 1)/N,

W, (i) = S/ < E v; (D) akj/ak.>'

J
4. THE ROLE OF A HOUSEHOLD’S ‘¢COMPOSITION TYPE”

For the six constrained minimum distance methods, the ratio of a household’s initial weight
to its adjusted weight depends on the number of people in the household in the different
post-stratification cells. To discuss this further, the notion of a household’s “‘composition
type’” will be introduced. Two sample households, say k and m will be said to ‘‘have the
same type’’ if they have exactly the same number of people in each of the post-stratification
cells, i.e., if

ay;

= @y forj=1,...,J. ®)
As an example, one household type would be a ‘‘household consisting of a white male 35-39
and a white female 30-34.”’ Note that the composition type does not depend on family rela-
tionships.

The ratio of the adjusted weight to the initial weight, W, /Sy, is the same for all house-
holds with the same type. In other words, if k and m satisfy (8), then W, /S, = W, /S,
This fact was used in Ireland and Scheuren (1975). A formal proof is given in Alexander
and Roebuck (1986).
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A useful consequence of this fact is that, in calculating the weights for the constrained
minimum distance methods, the calculations may be done using the household type as the
unit of analysis rather than the individual household. A simple example may make the im-
plications of these results clearer. Suppose that there are two post-stratification cells, j = 1
for females and j = 2 for males. The sample consists of K households. For household &,
the vector (a;;, ay;) describes how many females and males are in the household: a
household with vector (2,1) has two females and one male.

Practically speaking, there is some upper limit on the size of a household, and there are
only finitely many household types. For the example, assume that no household has more
than three people. Then there are T = 9 household types corresponding to the vectors: (1,0),
0,1), (2,0), (1,1), (0,2), (2,1), (1,2), (3,0), (0,3). These types will be numbered consecutively
t = 1,...,9. The types will also be labelled mnemonically, F, M, FF, FM, MM, FFM, FMM,
FFF, MMM. Hypothetical sample data and control totals are given in Table 1. Note that
S, is the total initial weight given to households of type ¢.

The constrained minimum distance adjustments effectively may be calculated from the
total weights for the household composition types, S, ..., Sy, without actually looking at
the individual household weights. Adjusted weights W), ..., W, may be calculated using the
algorithms from Section 3 replacing summation over k£ by summation over ¢. Then for any
type ¢ household, the adjusted weight given by the method is W,/ S, times the initial weight
for the household. (The potentially confusing notation of using S for the household weight
and S, for the total weight for a t household type is adopted to emphasize that the formulas
of Sections 2 and 3 apply equally well to households or household types. In doing calcula-
tions, the meaning will be clear from the context.)

The reduction of the problem from individual households to household types is extremely
convenient for presenting small examples. Even when applied to the full 48 post-stratification
cells, the household-type approach may still be practical: despite the astronomical number
of possible household types, the actual number of types in the sample can never be larger
than the sample size and often is substantially smaller. This was found to be the case for
related cells of households in Ireland and Scheuren (1975). Simply reducing the size of the
computational task by combining the weights for single-person households of the same type
may be useful; this has been done at the U.S. Bureau of Labor Statistics in applying the
generalized least squares method to the Consumer Expenditure Surveys.

The simplified version of the principal person method also depends only on the household
type. If two households have the same composition, then their principal persons will be in
the same post-stratification cell, the one with the post-stratification factor closest to one.
Consequently, the same ratio adjustment factor would be used for both households. In the
actual principal person method, the principal person depends in part on who happens to
be designated as reference person, so the adjustment factor is not completely determined
by the household’s composition type.

Note that the MLE-H method corresponds to calculating multinomial maximum likelihood
estimates (subject to the constraint (1)) of p, ¢ = 1, ..., T, where p, is the population pro-
portion of households with type 7. The MLE-P method has a related interpretation. Neither
of these models, which also pertain to the corresponding GLS and MDI methods, allows
for systematic undercoverage.

5. DISCUSSION OF THE METHODS

This Section begins with some speculations about properties of the constrained minimum
distance methods, based on the results of Section 4, and follows with some simple hypothetical
examples, which generally appear to support the speculations.
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The first conjecture is that MLE-H, GLS-H, and MDI-H will tend to give similar results,
and also that MLE-P, GLS-P, and MDI-P will tend to be similar to one another, at least
for large samples. This is based on the observation that these are all best asymptotic normal
estimators under the relevant multinomial sampling model, where the cells are the household
types. For small or moderate sample sizes, greater differences between the methods might
be anticipated, especially if there are a large number of household composition types, so
that the sample in individual ‘‘cells”” of the multinomial may be small.

The examples given below tend to support this conjecture; the ‘‘household”’ methods all
give very similar results, as do the “‘person’’ methods. This is true even in some cases when
the hypothetical data do not fit the model very well. However, these examples involve only
a small number of household types and post-stratification cells, and so are illustrative rather
than conclusive.

The second conjecture is based on considering the nature of the sampling models under
which the constrained minimum distance methods may be viewed as maximum likelihood
estimates, or asymptotic approximations thereto. In these models, perfect coverage is assumed.
The models assume a distribution corresponding to probabilities which are the actual pro-
portions in the population, and these probabilities are consistent with the “‘true’” control
totals used in the constraints (1). According to these models, for sufficiently large samples,
the initial sample estimates would approach agreement with the control totals. This would
not be true when there is substantial undercoverage in the sampling frame. Such undercoverage
is an important reason for using post-stratification. Coverage considerations may be especially
important for telephone surveys where there is no supplemental frame to include households
without telephones. If there is no special adjustment for noninterview ‘‘nonresponse’’, such
as refusal or inability to provide the requested information, then nonresponse may be a fur-
ther departure.

Based on these remarks, the second conjecture is that without adjustment the constrained
minimum distance methods may not perform well in adjusting for systematic undercoverage,
even for large samples. The methods are optimal under models which assume perfect coverage;
one would expect that they might be less than optimal when this assumption is violated.

The examples given below partly support this conjecture. The constrained distance methods
do not do as well as the simplified principal person method under certain assumptions about
undercoverage. Under other assumptions, some of the methods may do quite well. The author
concludes that it is necessary to know more about the nature of survey undercoverage before
judging that any of these methods is superior to the principal person method. Oh and Scheuren
(1978b) raise some related issues about mean square error of the raking estimator when there
is undercoverage.

Two examples will be presented, representing two extreme forms of undercoverage. The
first (‘‘household undercoverage example’’) will assume that there is a uniform 10% under-
coverage of all households, but that there is no within-household undercoverage. The se-
cond example (‘‘within-household undercoverage example’’) assumes a 10% undercoverage
of males due to within-household undercoverage in households where there are both males
and females, and undercoverage of all-male households. For single-person households, any
“‘within-household undercoverage’’ means that the whole household is missed.

In example 1, there is a 10% under-representation of all types of households in the sam-
ple. For a sufficiently large sample, this would obviously be due to systematic undercoverage,
rather than sampling error. Applying the constrained minimum distance methods and the
principal person method to this example gives the total adjusted weights for each household
type shown in the last four columns of Table 1.

Note that the GLS-P, MDI-P, and MLE-P methods all bring the adjusted weight up to
the actual population value. Thus, these methods give ‘‘unbiased’’ weights. Since all per-
sons have a second-stage factor of 1/.9, the principal person method also achieves this result.
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Table 1

Household Undercoverage Example:
Description of Population and Sample

Total Weight (W,) for Methods:

GLS-P
MDI-P
Total MLE-P
Type & Actual Initial Prin.
description Population Weights GLS-H MDI-H MLE-H Pers.
1: F 25,000 22,500 23,785 23,745 23,704 25,000
2: M 15,000 13,500 14,120 14,097 14,075 15,000
3: FF 7,000 6,300 7,020 7,016 7,013 7,000
4: FM 40,000 36,000 39,708 39,672 39,632 40,000
5: MM 5,000 4,500 4,913 4,906 4,900 5,000
6: FFM 12,000 10,800 12,529 12,506 12,594 12,000
7. FMM 12,000 10,800 12,408 12,428 12,449 12,000
8: FFF 0 0 0 0 0 0
9: MMM 0 0 0 0 0 0
Total 116,000 104,400 114,483 114,370 114,367 116,000
Control Totals: Number of Females = 115,000
Number of Males = 101,000
Initial Weighted Females = 103,500
Person Counts: Males = 90,900

The other methods, GLS-H, MDI-H, and MLE-H, all give substantially too little weight
to one-person households and too much to the three-person households. Intuitively, this makes
sense; since these methods do not allow for systematic undercoverage and must explain the
shortage of sample persons as sampling error, the obvious explanation is that the sample
has a below-average number of large households, due to chance. The better performance
of MLE-P makes some sense, since it starts out with a multinomial sampling model which
allows sampling of persons without regard to households.

Practically speaking, this example reflects very poorly on the GLS-H, MDI-H, and MLE-
H methods. Even uniform undercoverage would cause these methods to distort the distribu-
tion of household sizes. Worse, the distortion goes opposite from what is commonly assum-
ed about differential household coverage, namely that small households are more likely to
be missed than large ones, so that small households need relatively higher weights, not relative-
ly lower weights.

The second example will emphasize within-household undercoverage of males. The situa-
tion is more complicated than in the previous example, because a household may have an
apparent composition type different than its actual type. For example, a household which
actually consists of a male and a female may appear to be a single-person household. The
actual and apparent type will be indicated by modifying our previous notation. For exam-
ple, a FM household in which the male is missed will be denoted F|[M|. A [M] household
or [MM] household is missed entirely. Table 2 describes the hypothetical data. The actual
population is the same as in the previous example.
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Table 2

Within-household Undercoverage Example:
Description of Population and Sample

Actual Total
Household Apparent Actual Initial
Type Type Number Weights
1: F F 25,000 25,000
2:' M M 13,500 13,500
M| 1,500 0
3. FF FF 7,000 7,000
4. FM FM 36,000 36,000
F|M| 4,000 4,000
5: MM MM 4,500 4,500
IMM| 500 0
6: FMM FFM 10,800 10,800
FF[M] 1,200 1,200
7: FMM FMM 10,800 10,800
FM[M]| 1,200 1,200
8: FFF FFF 0 0
9: MMM MMM 0 0
116,000 114,000
Control Counts: Number of Females 115,000
Number of Males 101,000
Initial Weighted Females 115,000
Person Counts: Males 90,900

Note that there is a 10% undercoverage of males, due to missing males within households,
or missing all-male households. Each male has a 10% chance of being missed.

Neither column of numbers in table 2 is observed, since there are no household controls.
Also the actual household type is not known for the sample units. Thus, the [FM| households
appear to be the same as the F households. The data which would be observed are given
in Table 3, along with the total initial weight for households which appear to have a given
type. The adjusted weights are given for three methods, MLE-H, MLE-P, and principal per-
son. The results for GLS-H and MDI-H are fairly close to MLE-H, and GLS-P and MDI-P
are similar to MLE-P, so these other methods are omitted.

The last three columns of Table 3 show the total adjusted weight assigned to each actual
household type by the MLE-H, MLE-P, and principal person methods. The principal per-
son weights for each actual household type agree with the population counts for the actual
types, shown in the third column of Table 1. In this sense, the principal person weights are
unbiased.

This example corresponds to assumptions upon which the simplified principal person is
based. The principal person adjusted weights for each actual type of household coincide with
the population counts. The one difference is that totally missing [M] or [MM] households
are given no weight; however, the weight of the non-missing M or MM households is in-
creased accordingly. The total weighted number of households for the principal person method
is equal to the number in the population.
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Table 3

Within-household Undercoverage Example: Observed Types and Weights,
with Adjusted Weights from Three Methods

Weight Assigned to Weight Assigned to
Apparent Type Actual Type
Total

Household Initial Principal Principal

Type Weight MLE-H MLE-P Person MLE-H MLE-P Person
F 29,000 27,450 26,973 29,000 23,664 23,253 25,000
M 13,500 14,997 16,338 15,000 14,997 16,338 15,000
FF 8,200 7,368 7,626 8,200 6,290 6,510 7,000
FM 37,200 38,887 39,128 37,200 41,419 41,586 40,000
MM 4,500 5,623 5,446 5,000 5,623 5,446 5,000
FFM 10,800 10,661 10,885 10,800 11,739 12,001 12,000
FMM 10,800 12,605 11,878 10,800 13,859 13,140 12,000
FFF 0 0 0 0 0 0 0
MMM 0 0 0 0 0 0 0
Total 114,000 117,591 118,274 116,000 117,591 118,274 116,000

In this example, the constrained minimum distance methods overestimate the total number
of households, but give too little weight to the households without males. In general, too
much weight is given to households with males.

It should not be concluded that the principal person method always outperforms the con-
strained minimum distance methods when there is within-household undercoverage. Under
other assumptions about coverage, the principal person method may not do so well. In fact,
different versions of the principal person method are used for different surveys, based on
various assumptions about coverage. Note also that combinations of the principal person
method and raking methods are possible; see Scheuren (1981).

Even in this example, the biased weights assigned by the constrained minimum distance
methods could be beneficial for estimating some characteristics. If the households in which
males are missed tend to under-report the variable of interest, then giving these households
too high a weight may tend to counteract response bias associated with the within-household
undercoverage.

The most extreme example of this effect is estimation of the total number of males, in
which case the MLE-H and MLE-P weights give estimates which agree with the control totals
while the principal person weights do not. However, for household characteristics where there
would rarely be reporting errors because of the missed male, such as form of tenure
(renter/owner), the biased weights would not be desirable. The performance of the weighting
methods in situations like these clearly depends on the nature of the survey undercoverage,
and its relationship to the variable being estimated. This is discussed further, with additional
examples, in Alexander and Roebuck (1986).

Pending further research on survey coverage and its effect on weighting, what recommen-
dations can be made? Among the constrained minimum distance methods considered in this
paper, GLS-H, MDI-H, and MLE-H seem unattractive because of their failure to adjust
correctly for uniform undercoverage of households. This is in spite of the fact that, if there
were no undercoverage, MLE-H seems to be based on a more sensible model than MLE-P,
since households rather than persons are the ultimate sampling unit.



Survey Methodology, December 1987 195

The possibility of negative weights raises questions about the appropriateness of GLS-P,
even though in some practical applications (such as Zieschang 1986b) there are very few
negative weights, so that they could be replaced by positive weights with little effect on the
estimates. That leaves MDI-P and MLE-P. Our results give little basis for choosing between
these methods. Computational considerations tend to favor the ‘‘raking’’ method MDI-P.
Based on limited experience with the algorithms of Section 3, the MLE methods converge
more slowly than the MDI methods. Further, there has been considerable research into ways
to improve the efficiency of raking for large-scale applications, such as Ireland and Scheuren
(1975). Taking all this into account, the raking method, MDI-P, seems to be the most pro-
mising of the constrained minimum distance methods.

The constrained minimum distance methods give household weights which are consistent
with control totals for person, unlike the principal person method. However, the superiority
of the constrained minimum difference methods over the principal person method as an ad-
justment for undercoverage is far from obvious. Undercoverage is an essential part of the
survey weighting problem. The principal person method is an ad hoc solution to the under-
coverage problem, based on some very simplistic assumptions about coverage. However, as
seen in Section 4, the constrained minimum difference methods may be viewed as ‘‘optimal”’
(i.e., maximum likelihood or the asymptotic equivalent) estimators under models which assume
perfect coverage. The choice is thus between an optimal solution to the wrong problem and
an ad hoc solution to what may or may not be the right problem. Clearly more research
is needed.

6. SOME AREAS FOR FURTHER RESEARCH

6.1 Household Control Totals

If independent estimates of the number of households of different kinds were available,
then ordinary post-stratification could be used for household estimates. Household controls
by size of household are being investigated, based on updating 1980 census results (Das Gupta
et al. 1986). The availability of household controls would fundamentally change our ability
to deal with the household weighting problem.

Even with household controls, it might be beneficial to also incorporate person controls.
The household controls are not likely to include detailed information on the age, race, and
sex of the household members. The use of raking to simultaneously control the estimates
to independent controls for persons and households is developed by Scheuren (1981), using
an estimate of the total number of households. Zieschang (1986a) describes how similar ad-
justments may be made using generalized least squares.

Household controls clearly have great potential for adjusting for differential coverage of
various types of households. There still may be problems is dealing with within-household
undercoverage, since this may lead to errors in determining the true household size, which
would cause sample households to be placed in the wrong post-stratification cell.

6.2 Research Concerning Coverage

Coverage of persons is measured fairly well by comparing the initial survey estimates 1\7/
to the control totals N;. It is difficult to determine how much of this undercoverage is due
to missing entire households and how much is due to missed persons within households. Ad-
ditional information could be obtained by comparing initial weighted household estimates
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to household controls, once these controls become available. In the meantime, 1980 survey
estimates by type of household could be compared to the corresponding 1980 census counts.

Even with this additional information, it is not possible to completely distinguish household
undercoverage from within-household undercoverage, without making additional assump-
tions. Alexander and Roebuck (1986) present some preliminary suggestions about how a range
of coverage models might be fit to census and survey data. An alternative approach would
be to include coverage parameters in a multinomial sampling model such as those described
for the MLE-H or MLE-P weighting methods. Other approaches to modelling coverage are
presented in Wolter (1986).

6.3 Estimation of Variances

Methods for estimating variances of the weighted estimators have not been investigated
for most of the constrained minimum distance methods. For raking estimators, some methods
are available; see Arora and Brackstone (1977), Bankier (1978) and Fan er al. (1981).

For any of the methods, replication methods for estimating the variance could be applied.
These methods have been shown to give reasonable results under fairly general conditions;
see for example Krewski and Rao (1985). It remains to be determined whether these condi-
tions can be applied to the constrained minimum distance methods.

6.4 Computational Issues

Zieschang (1986b) has applied the generalized least squares methods to the U.S. Consumer
Expenditure Surveys. Scheuren (1981) describes a large-scale application of the raking method
to household weighting. The maximum likelihood constrained minimum distance algorithms
(MLE-H and MLE-P) have not been tried on large-scale problems of this kind. If they were
to be used in actual survey weighting, research may be needed to improve their computa-
tional efficiency.
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