Survey Methodology, December 1987 135
Vol. 13, No. 2, pp. 135-146
Statistics Canada

Estimates Based on Randomly
Rounded Data

C.S. WITHERS!

ABSTRACT

Methods are given to estimate functions of the cell probadbilities associated with a table of multinomial
data that has been randomly rounded to multiples of a given number, say /. We show that: (1) random
rounding causes only second order effects on bias and variance; (ii) the loss of efficiency in using the
natural estimates of cell probability is negligible provided that the cell entry is large compared with
(12 — 1)/ (6R) where R is the number of cells in the table; and (iii) estimates of apparently exponen-
tially small bias are available for moments of these natural estimates and for polynomials in the cell
probabilities.
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1. INTRODUCTION AND SUMMARY

This paper gives methods of estimating a function of the cell probabilities associated with
a table of multinomial data that has been randomly rounded. Random rounding is a widely
used method for preserving confidentiality in situations where an entry of 1 in a table might
identify an individual and so break a confidentiality requirement. Instead of tabling the value
of a table entry, say N, one rounds N to the nearest multiple of a given number / above
N with probability (w.p.) a or below N w.p. 1 — «, where « is chosen so that the rounded
value M satisfies

E(M|N) = N.

That is, if for some integer j, j/ < N < (j + 1)/, then

_(jlwop. 1 —«
M = {(j + )/ wop. « (I.1)

where o = r/land r = N — jl.

The rounding base / used by the Department of Statistics in New Zealand is / = 3, while
Statistics Canada reportedly uses / = 5. See Penny and Ryan (1986).

Random rounding should not be confused with grouping or non-random rounding of sam-
ple values to the nearest integral multiple of / (associated with Sheppard’s corrections for
moments). Nor should it be confused with intentional contamination, another method of
preserving confidentiality where one simply adds to N an independent random variable with
mean 0. (The main disadvantage of intentional contamination is the possibility of a negative
cell entry). For some references on these methods see Gastwirth et al. (1978) and Kendall
and Stuart (1977). Some references on random rounding for multivariate data and grouped
data are also given in Gastwirth et al. (1978).
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In this paper we confine our attention to problems of estimating a function of the
cell probabilities associated with a table of R values that have been randomly rounded.
For convenience we label these cell probabilities as p;, ..., pg rather than
wpl=i=slLl=<j=s J}, as is more usual for an 7 x J table.

Thus, 1 = £fp; and n = TR N is the sum of the entries in the table. Let {M}] be the
rounded values of {N]. Given n, we assume {N; has the multinomial distribution with
parameters # and {p]. This is true with p; = m;/L; m; if, unconditionally, [N, are indepen-
dent Poisson variables with means {m].

Two unbiased estimates of p, are

p; = Ny/n and p; = M;/n. (1.2)

The first is not a true estimate since N, is not made available. The second is the natural
estimate. (We assume 7 is reported. If it is not, there is negligible difference in replacing n by
LR M,.) However, other unbiased estimates exist, namely the “‘complementary estimate’’

b= - Y, M/n, (1.3)
J#l
and hence
pi(N) = (1 — N)p; + Ap; for any given A (1.4)

This raises the issue of what is the best A to use, and what loss of efficiency there is in stick-
ing to the natural estimate — that is, using A = 0. An answer requires the variances of these
estimators. These are given by

Theorem 1.1.

var(p)) = (py — pH) n~' + (2 = 1)/6 + A (p)in ™2 = vuy(py), (1.5)

where -1
A, (py) = E i(l — i) (P(Nymod I = i) — 71} (1.6)
i=0
Also,
var(p) = (o1 — phn '+ (R = D7 = 1)/6 + Y, Au(p)in ™ (1.7
Jj#=1
and
var(pi(\) = (p; — phn~! + (@) (P = 1)/6 + V,(p)in 2, (1.8)
where
a\) = (1 = N2+ (R — A2 (1.9)
and
Va(p) = (1 = N2 A (p1) + N Ziser An(D)). (1.10)

Proofs of the theorems in this paper are given in Section 2.
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In Appendix A we give evidence that for 0 < p; < 1, P(Nymod [/ = i) — 171 -0
exponentially fast as n — oo, so that A,(p;) — 0 exponentially fast as n — oo, and hence
Vv, (p) also, provided p; # 0 for all i.

Since a(\) is minimised by Az = R™! and a(\g) = 1 — R™! so, asymptotically, is
var(p;(\)). Hence the loss of efficiency in using the natural estimate p; rather than the
asymptotically optimal unbiased estimate p;(Ag) when R is large, is

fvar(p;) — var(p;(\g))}/var(py(Ag)) = (F = 1)/[6Rn(py — pD)]  (1.11)

which is negligible provided M;(1 — M,/n) = n(p; — p?) is large compared with
(1> — 1) /[6R).

Generally M, (1 — M, /n) can be approximated by M. This then gives a convenient rule
of thumb as to when the natural estimates are efficient. (If one or more {p;] are zero, since
p; = Oimplies N; = M; = 0, £, must be interpreted as excluding cells for which p; = 0,
and R as the number of cells in the table for which p; # 0.)

Using (1.5) we can now make a brief comparison with the method of contamination. The
Australian and U.K. statistics departments reportedly round by adding to each cell entry
1 w.p. 174, 0 w.p. 1/2 and —1 w.p. 1/4, so that

var(p,) = (py — phn~' + 1/2n 2%

The factor 1/2 improves on 4/3 for the New Zealand system (/ = 3) and 4 for the Cana-
dian system (/ = 5). The cost is less protection (a maximum change of 1 as opposed to 2
for the New Zealand system and 4 for the Canadian system), and a possibly negative cell
entry if the procedure is applied to cells with zero entries.

Theorem 1.1 shows that random rounding has only a second order effect on the efficien-
cy of estimating p; — the variance is only increased by a term of magnitude n ~2. The next
result shows that this very important result is also true for estimating any smooth function
of p}J. Set r=R -1, p=(p, ...0), N= Ny, ...,N), M= (M, ..., M),
p* = N/n and p = M/n. Thus we have cov(p*) = V/n where V = diag(p — pp")-
Suppose now we wish to estimate f(p), a function with continuous second derivatives.

That is, f(p) = df(p)/dp is a continuous » X 1 function and F(p) = 8% f(p) /opop’
is a continuous r X 7 function.

Theorem 1.2. As n — o both E(f(p*)) and E(f(p)) equal
f(p) + B(p)n~' + O(n~?) where B(p) = trace (f(p)V/2). (1.12)
Also both var (f(p*)) and var (f(p)) equal
v(p)n~' + O(n™?) where v(p) = f(p) V/(p). (1.13)

This theorem shows that
(a) random-rounding increases the variance of the natural estimate for f(p) by only
O(rn™2); and
(b) random-rounding likewise has only a second order effect on the bias of the natural estimate
for f(p).
According to (1.12), the natural estimate of f(p), f(p), has bias of magnitude n 1 Wwe

now show how to reduce this to n 2.
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Corollary 1.1. If for some function f,(p), E(f,(p*)) = f(p) + O(n~2) then
E(f,(B)) = f(p) + O(n™?).

Two such choices for f, (p) are the ‘‘delta-estimate’’ for which
r
Ja(p) = f(p) — { E Si(p)pi — p'f(p)p} / (2n), (1.14)
i=1

where f;(p) = 3%f(p) /9p? and the “‘jack-knife estimate’’ for which
Ja(P) = nf(p) — (n — 1)f, (1.15)

where
S =L ipif([(np —e)/(n—1)]) + (1 = T p)f(lnp/(n — 1)]),

¢; = the i-th unit vector in R’,
and [x] - R" — R"is defined by [x];, = {x, 0 < x; < 1.

These estimates were derived in Withers (1987a and 1987b). In particular, if f(p) is only
a function of p;, say f(p) = g(p)), then f,(p) = g(p;) — &(p1)(p1 — p})/(2n) and
S=pgl(npy — 1)/ (n = 1)]) + (1 — py)g(lnp,/(n — 1)]). For example if
f(p) = p? then the delta-estimate uses f,(p) = pi {1l — (1 — py)/n}.

We now illustrate that if f(p) is a polynomial we can in fact find an estimate of f(p)
based on the natural estimate with bias apparently exponentially small. We do this for the

case f(p) = pi.

Theorem 1.3. X, = (p} — n™'p; — n72(12 = 1)/6} (1 — n~') ! estimates \, = p?
with bias A, (p;) (n? — n) ~ L.

Similarly if f,(p) is a moment of p then we can also find an estimate of f,,(p) with bias
apparently exponentially small. We illustrate this for the case f,(p) = var(p,).

Theorem 1.4. 7\2,, =n"'(p, — N\) — n"%(? = 1) /6 estimates Ny = var(p;) with
bias — A, (p) (n? — n) "L

These results may be generalised to higher order polynomials and moments using the ex-
pression for moments and cumulants of p given in Appendix B. We now show that for the
special case of f(p) collinear, an unbiased estimate exists.

Theorem 1.5. Set f;(p) = II/_, p, where 1 < I < R and

ay=n"nl/(n-—D'= A —-n"Ha -2n"YH...1 - (I-1}n"". (1.16)

Then
E(fi(B)) = E(f1(p*)) = fi(p)a,,. (1.17)

Hence an unbiased estimate of f(p) is f;(D) / a,,.
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Corollary 1.2. cov(p,,p,) = —p,p,/n. lts unbiased estimateis —p;p,/ (n — 1). More
generally for 1 <= I < R, E(IT!_, (p; — p»)) = c,dI/=,p; with unbiased estimate (II._,5;)
@,/ coywhere ¢, = Ef:o( —-1) ’_f(j’-)anj. (The same result holds with p replaced by p*.)

From (1.16) one may derive unbiased estimates for other special polynominals in p such as
pi pip2(p1 + py) and L pj - but not for pip, or pi.

Corollary 1.3. For 1 = I < R an unbiased estimate of

I+1

I R
LY o s fz(ﬁ){l -m =Y fa,-} [an i (1.18)
1

In particular an unbiased estimate of p? is
P —nHa —n"hHh (1.19)

We empbhasize that the results of this paper are based on the assumption that table entries
are independent Poisson’s, or at least multinomial conditional on the total. The Poisson and
multinomial models are appealing as they have a ready interpretation, and because sums
of Poisson variables are Poisson. But sums of multinomials are multinomial only if they
share the same cell probabilities p. This suggests that conclusions drawn from such models
may be less accurate if the populations modelled are composed of two or more inhomogeneous
groups.

2. PROOFS

Proof of Theorem 2.1. Set r = N, mod /. Then (1.1) holds for N = N|, M = M, with
Jl =N — rand

EM}|r)y = (N, =21 —r/ly + (N, —r+ D%/l =Ni +Ir = 1.

Hence
E(p?) = E(pi®) + n"*A,(p1), @2.1)
where
-1
Au(p) = E(M} = NY) = E(r — 1) = Y3 (li = )P(N = i)
i=0
= (1= 1)/6 + A (p1)
since
1—1
1! Z il —i) = (> - 1)/6. 2.2)
=0
But

E(p;*) =pt+ (pp — pDn~, (2.3)
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so (1.5) follows. Now p; = Py —E(J\/Ij - N;)/n,

so E(pf) = E(p) — 2n~2 Y E(My(M; — N))) + n™2 Y3 E((M; = N))(M; — N)))
= E(pf) — 2n72A,(p1) + n72 Y An(p)
since E(IL;fi(M)|{N}) = ILE(f;(M;)IN). 2.9

Hence var(p,) = (p; — pH)n~' + n72L;.; A,(p;) so (1.7) holds.

Also,
E(Bip) =p —n2 Y, E(M\M) =p, — Y E(pip))
i#=1 i#1
=p - Eplpi(l —n Y =p —p(1 —p) (1 —-n"h,
i#1
SO
cov(pnpy) = (p — pi)n~ L. (2.5)

Hence var(p; (X)) = (p1 — pH)n™" + (1 = N)?4,(p1) + N2 Ly A,(p))n~?and (1.8)
holds.

Proof of Theorem 1.2. This was proved for p* in Withers (1987a). Also since fis finite
in a neighborhood of p,

f(B) = f(p*) + (b — p*)"f(p*) + O(|p — p*?).
E((B — p*)IN) =0, E((p; — pD3N) = 2n 2I(N; mod [ # 0),

where I(A) = 1 or O for A true or false, that is, 7(-) is the indicator function
Hence E(f(p)) = E(f(p*)) + O(n~?) and var(f(p)) = var(f(p*)) + O(n~?).

Proof of Theorem 1.3. This follows directly from (2.1) and (2.3).
Proof of Theorem 1.4. This follows from (2.1) and (1.5).

Proof of Theorem 1.5. The first equality in (1.16) follows from (2.4), and the second
from the multinomial theorem. Corollary 1.2 follows immediately.

Proof of Corollary 1.3. From (1.16), for 1 < I < i <R we have

E(fi (D)D) = fi(p)Dian1+1
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o) R
E(fi() Y Pi/anrs) = fi(p)(1 — T p)

I+1

= E(fi(B) /a.) — f1(p) Tips
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APPENDIX A

One expects that for f a smooth function
E(f(p)I(N; = jymod /..., Ny = jomod 1)) — f(p)I™° (A.1)

asn —ooprovided 0 < p; < lforl =i=<s =R

If E(f(p)) = f(p), one expects the rate of convergence to be exponential, O(e ™M) for
some \ > 0. If f(p) is biased, then its bias is O(n "), so that one would expect this rate
also to apply to (A.1). Convergence will in general break down as p approaches the boun-
dary of [0,1]", since

E(f(MIN, = j,mod ..., N, = j,mod I))

_{fIiGi=n=...=j=0)ifp=0
fp)I(j, = nmod /) if p, = L.
To test these expectations we considered the case s = 1, / = 3, j = 0 and the functions
@ f(p) = 1, ®)f(p) = py, and (€) f(p) = exp{p;). Computations were done in quadru-
ple precision on a VAX11/780, giving a precision for

A = E(f(P)YI(N, = jymod /,..., Ny = jymod /)) — f(p)/™*

of 112 bits - nearly 34 decimal places. Figures 1a, 1b and 1c plot A versus p,forn = 6, 18,
54. Since n mod 3 = 0, A is symmetric about p; = 1/2 for (a).

Since A = 2/3f(0) at p; = 0, and is equal to 2/3, 0 and 2/3 for (a), (b) and (c) respec-
tively, convergence breaks down at p, = 0 for (a) and (c), but not for (b). At n = 18, A
is already negligibly different from O for p, in (.2, .8) for (a) and for p, in (.1, .8) for (b)
and (c). At n = 54, these ranges have grown to cover (.1, .9) for (a), (.02, .95) for (b), and
(.07, .95) for (¢).

Figures 2a and 2b plot Y = log (—log | A |) versus X = log(n) for (a) f(p) = 1 and
(b) f(p) = p;. As expected, except for small #n, the curves are roughly parallel to ¥ = X
(except for (b) with p; = .01), consistent with A = O(e~M) for some \> 0. The curves
are not smooth, as A has only been calculated at n a power of 2(n = 2/ for 0 < i <7).
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Figure 1a. Evidence for (A.1) When f(p) = 1.
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Figure 1b. Evidence for (A.1) When f(p) = p;.
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Figure 1lc. Evidence for (A.1) When f(p) = exp(p;).
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Figure 2a. Evidence for Exponential Convergence in (A.1) for f(p) = I.
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Figure 2b. Evidence for Exponential Convergence in (A.1) for f(p) = pr-

y = ~log|A|
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Figure 3. Evidence for Convergence at Rate ~n~1in (A.1) for f(p) = exp (r).
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Figure 3 plots Y = —log | A | versus X = log(n) for (c) f(p) = exp(p;). For n large
the curves are parallel to Y = X for p; = .5 and .1 consistent with A = O(n~'), but for
p1 = 0.1 the increase is much faster than linear. The graphs generally confirm our expec-

tations on the rate of convergence in (A.1). To obtain analytic proofs would appear to re-
quire some sophisticated number theory.
APPENDIX B
Here we compare the moments and cumulants of p* = N/n and p = M/n. Set
gy =1 — p, n; = N;mod /, and m;(j) = E(p{I(n; = j)) =pi/l as n —oo, assuming
p1 # 0 or 1. Elementary calculations yield
() = pu(p*) = p,

pa(Py) = wa(p}) + Mpn™? = pigin™' + O(n™?),

where
/-1
My = A (py) = Y, il = ym(i) —= (I = 1)/6
i=0
as n — oo,
/-1
N _ * -2 . .2 . . 2 .
pP) = mpy) + 3072 Y (= jHIm() — 2pimi () + pime())]
Jj=0
-1
+n7? E aymg(j)
Jj=0
= ws(p)) + o(n7?) = pgi(1 = 2pn~2 + o(n?),
and
ay = =721 —j/0) + (I =)/l
Similarly p4(p;) has the form u,(p7) + L4 Myn~" = O(n~?%) and «4(p,) has the form

Y4 kyn ' where kg, = M, does not converge to 0 as n — oo. Hence x;(py) ~ n 2%, not

n 3. Hence p does not satisfy the Cornish-Fisher assumption that &, () = O(n'~") for
r = 1: see for example Kendall and Stuart (1977).

Moments and cumulants may also be obtained from the m.g.f. (moment generating func-
tion), which we now obtain.

E(exp(tyM/n) | Ny) = exp (4N, /n)S(t,ny)

where

S(t,n) = (1 — ny/l) exp(—nty/n) + (ny/!) exp(!I — ny)t,/n.
Hence by (2.4), the m.g.f. is

E(exp(t’'p)) = E(exp(t’'N/n))S(¢) where S(t) = IIf S(¢;, n;).
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Alsoat? = 0, S; = 0Oandso S; = 0if a subscript occurs exactly once. For example,
setting

S = S(t), 3,» = 6/6t,, Si = 6,-S, SU = 8,615,

gives

i

E(p? exp('P)) = E(exp(t'N/n){pi* S + 2p1 Si + Sp)),

E(exp(t'N/n)pi* (0,2 S + 2p3 S, + Sp) +

E(p? p3 exp(t'D))
2051032 Sy + 2p3 Sip + Sim) + (037 S+ 203 Siz + Sua)))-
Hence E(p}) = E{p;? + S;;(0)] and
E(pp?) = Elpi*py” + pi° $u(0) + p3* $11(0) + Siuzn(0)].

where S;(0) = 8,,(0,n;) = n~3( — nyn; = n" 2 iy (I — K)kI(n; = k) and S1,(0)
= 5,,(0) S»(0). Some further simplifications can be obtained using N, | Ny ~ Bi(0, n — Ny)
where § = p,/ (1 — p;). From the multinomial m.g.f. one obtains

E(pi?p3%) = n~*pipo{(n)apip2 + (n)3(py + p2) + (1))

where (n); = nl/(n — ! =n(n — i) ... (n — i+ 1).
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