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Nonparametric Methods for Estimating Individual
Response Probabilities
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ABSTRACT

This paper deals with the nonresponse problem in the estimation of the mean of a finite population,
following an approach closely related to that of Cassel, Sarndal and Wretman (1983). Two very simple
methods are proposed for estimating the individual response probabilities; these are then used, in con-
nection with a superpopulation model, to construct estimators for the population mean. A first evaluation
of the properties of the proposed methods is given by a Monte Carlo experiment. The results shed
some light on their effectiveness.
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1. INTRODUCTION

Dealing with the estimation of finite population mean (or total, etc.) in the presence of
nonresponse, Cassel, Sdrndal and Wretman (1983) introduced a very general estimation
method based on the fundamental concept of individual response probability (IRP). The
authors proposed estimators which are in part determined by a superpopulation model and
in part by a response model, i.e., a model formalizing the response mechanism and by which
IRP can be estimated from sample data. The estimation of IRP is the crucial point of their
theory. In fact, if the superpopulation model is not correctly chosen, as is often the case,
only a correct choice of the response model may guard the estimators from design bias. By
a Monte Carlo experiment, Giommi (1985a) showed that a response model supplying a ‘‘good
approximation”’ of the ‘‘true’’ response model can restore virtual unbiasedness; but little
is known about the extent of a good approximation and in any case the choice of a response
model may prove cumbersome besides being arbitrary. A natural way of avoiding these dif-
ficulties is to estimate the IRP by nonparametric procedures. In the present paper we pro-
pose two very simple methods to estimate IRP when available auxiliary information (which
is assumed to be related to the response behaviour) is represented by a single continuous
variable. The methods which make use of some tools of the kernel estimation theory may
be viewed as an extension of the popular correction technique for nonresponse consisting
in reweighting units by adjustment cells.

In this paper some empirical evaluations of these methods are described and the results
regarding the bias and efficiency of the related estimators are presented.

2. ESTIMATION OF THE INDIVIDUAL RESPONSE PROBABILITIES

Let us consider a population of NV units labelled k¥ (k=1, 2, ..., N), and let Y be a variable
under study, of which we want to estimate the mean Y =X, y,/N from a sample s of n units,
the selection being based on a given design p(s). For the estimation, auxiliary informa-
tion is available, represented by known values x;, (k=1, ..., N), of a scalar continuous
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variable X (the extension of the procedures proposed for the multidimensional case is, in
principle, straightforward).

In the sample, Y is observable only in a subset r of », respondents and not on the n — n,
nonrespondents. After the selection of the sample, the available information can be represented
as follows:

(kr ]k) I/\’ykx Xk) k € S5 NJ n,

where 7, is an indicator random variable such that £(/;) =g, and g, is the IRP.
To estimate g,, a parametric model is generally assumed (Cassel ef a/. 1983) such that:

gk=q(0, xx),

where O is an unknown parameter (or vector of parameters) and g(-,.) is a functional form
to be specified. Estimated g, are then obtained replacing in the above parametric model
estimated values © of ©.

In this paper the estimates of g, (k € r) are obtained by avoiding any parametric
specification of the function ¢ (.,-); nevertheless, maintaining the hypothesis that the IRPs
depend on the values x;. Two procedures (methods (1) and (2)) are proposed.

In the first, g; (k € r) is estimated as the response rate (i.e. the proportion of
respondents) in a group of units centered on the unit k, corresponding to an appropriate
interval of x-values centered at x,. Assuming that 24, is the length of such an interval, g;
is estimated by the following ratio:

Gr = E D(x, = x;)/ E D(x, — x;), (1
Jer J€Ss
where
1 lf ]Xk — j' = hk
D(x; — x;) =

0 otherwise.

It is evident that the estimate §; depends on A or A if we adopt - as in this paper - a cons-
tant interval; the numerical specification of 4 is a main problem in applications.

In the second procedure, all the sample units, rather than a group, contribute to the estima-
tion of g,. By this method the possible limitation due to the classification of responding units
in groups is removed. In other words, one might consider overly restrictive the fact that in
the estimation of g, some units contribute with weight 1 and some others with weight 0.
With method (2), the estimate is given by:

r = E D*(x; — x;)/ E D*(xy — x;) )

Jer jes

where D* has to be specified. In this case, each value x; contributes towards the estimate
g, through D*, an amount inversely related to the difference [x; — x,|.

In (2), the problem is twofold: i) to specify the functional form D* and ii) to define the
values of its parameters. In this paper we adopt a function D* of the normal type:
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D*(z) = (h2m) " exp (—22/2R%);  Z =X — X, ©))

in which the standard deviation, indicated by A, plays a role analogous to that of the parameter
A in the expression (1). In both (1) and (2), when /4 increases, ¢, approaches to the constant
value n,/n. In (1), it reaches n,./n when h covers the whole range of the x-values.

An empirical study was designed to evaluate the properties of the proposed procedures,
using a very wide range of A values. In the present paper we have limited ourselves to repor-
ting results for only three (constant) values of 4, equal to 1/10, 3/10 and 5/10 of the range
of the x-sample values. Finally, we must observe that both expressions (1) and (2), apart
from a normalizing factor, show themselves as the ratio of two probability density kernel
estimators (in the approach of Rosenblatt (1956)) over different sets of x-values. Therefore,
as suggested by Giommi (1985b), the value of 4 may be selected considering proposals put
forward in that theory.

3. SUPERPOPULATION MODEL AND ESTIMATORS

For the choice of the estimator of Y, we assume a superpopulation model & in which the
population values y;, k=1, 2, ..., N, are considered to be a random sample such that:

Eg(Yy) = me = B,
4

Varg(Yy) = of = o’xg,

where 8 and ® unknown and x; is the known value of the auxiliary variable X. It is apparent
that the superpopulation model employed here is mainly applicable to quantitative rather
than qualitative variables; other models should be employed in such cases. We further limit
ourselves to the consideration of simple random samples. Providing the variance of Y may
be specified as in (4), Cassel et al. (1983) have shown that the following estimator:

T=X (Eryk/ qk> / (Erxk/Qk> .

where I, indicates the sum over the set r and X=t¥x./N, is approximately unbiased,
thanks to the g, correction, even if the first equation in (4) fails to specify the true relation-
ship between X and Y. This may happen, for example, when the ‘‘true’’ model has an in-
tercept or has two regression coefficients (see (5) below), etc.

Unfortunately, in practice the estimator 7 cannot be used since g, is unknown. The pro-
blem is, therefore, to evaluate its properties when g, is replaced by its estimate derived either
from method (1) or (2).

We shall examine such estimators, for the three chosen values of 2. We denote the
estimators by TD; and TD¥ where i=1, 3, 5 as in Table 1.

Table 1

Definition of Estimators

Estimators
h Method (1) Method (2)
0.1 TD, D}
0.3 7D, TD;
0.5 TD: TD?
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In addition, also the following estimators are considered in the Monte Carlo study:

TC = X(Esyk/zsxk) and TI = X’(Eryk /E’xk> .

TC is the full sample estimator, that is, the ratio estimator under the hypothesis of complete
response and 77 is the same estimator based on the set of respondents, on which no g;-
correction is made for nonresponse. Note that 77 is also an estimator derived from a well
known procedure of imputation (by regression) of missing values (Cassel ef a/. 1983) and
equals 7D when 4 covers the whole range of the x-values. 77 is approximately unbiased only
if (4) is true. The bias, as we shall see, depends on the divergence between the conditions
in (4) and those of the population under study. As in the experiment of the next section model
(4) will be a “‘false”” model (that is, the study populations are specified by models different
from (4)), the simulation also contributes to the knowledge of this very simple and widely
used imputation method.

4. THE MONTE CARLO EXPERIMENT

In the Monte Carlo experiment two populations, POP1 and POP2, were generated follow-
ing the same procedure as that of Sdrndal and Hui (1981). POP1 and POP2 are both com-
posed of two strata, say S1 and S2, 500 units each and satisfy the following equations:

Eg(Yy) = Bixp + Boxpos
&)

2 2
Varq,(Yk) = 01Xy + 05Xk

where Xk = Xkak and Xy = Xk(l - ak) , with 3k = 1if k € S1 and ak = 0if k € S2. The
difference between (4) and (5) simulates one of the many errors which one can incur in speci-
fying the superpopulation model. The numerical characteristics of POP1 and POP2 are shown

in Table 2.
The simulation procedure can briefly be described in the following steps:

1) A simple random sample s of n (n=150, 100) units is selected from each population.

Table 2
Characteristics of Simulated Populations

Population POP1 POP2

and strata Mean SD Ccv SK Mean SD Cv SK

Stratum 1 X 19.305 12.71 .66 1.30 20.037 14.50 72 2.25
¥y 7.612 5.38 71 1.62 1.961 2.21 1.13 3.03

Stratum 2 X 50.325 21.32 .42 77 49.775 23.28 47 1.21
y 30.325 13.38 .44 .72 44.862 21.31 47 1.04

Total X 34.815 23.42 .67 .90 34.906 24.44 .70 1.32
y 18.969 15.26 .80 1.06 23.411 26.25 1.12 1.15

SD = population standard deviation; SK = skewness (3rd moment/(2nd moment)3/?); CV = coefficient of
variation.
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2) The full sample values are recorded and nonresponse is then generated by each of the
two following parametric models:

Model A: g, = exp(—96x;),
Model B: g, = 6 0}~%; 9y = 1 (0) if k € S1 (S2),

where the parameters ©, ©,, O, are chosen in such a way that the average response rate g
over the whole population is alternatively 0.6 and 0.7. In practice, sets of respondents are
obtained by performing a Bernoulli trial for each unit £ € s, with probability g, for ‘‘suc-
cess’’ (response) and 1—g, for ‘‘failure’’ (nonresponse).

3) The IRP is estimated by method (1) and (2) and, for each sample, the values of TC,
TI, TD, TD* are calculated.

4) Steps 1 to 3 are repeated 1000 times and at the end we calculate: bias, variance (VAR)
and mean squared error (MSE) of the estimators for each sample size (50, 100), response
model (A, B), average response rate (0.6, 0.7) and population (POP1, POP2).

The experimental results are reported in Tables 3 and 4.

5. RESULTS OF THE MONTE CARLO EXPERIMENT

Some interesting elements emerge from the examination of Tables 3 and 4.

1. As expected, TC is approximately unbiased in all of the experimental trials.

2. In this experiment the bias of 77 is always larger than that of 7D and TD*. Therefore,
at least in the situations of the experiment, the adjusted estimator is to be preferred over
the non-adjusted one, which corresponds to a procedure of imputation by regression.

3. For the same # value, the bias of 7D is always smaller than that of 7D*. The dif-
ferences are negligible for #=.1. As h increases, TD* tends toward 77 faster than TD; for
/#=.5 the differences between TD* and T7 are irrelevant for practical purposes.

4. The reduction of the bias we are able to obtain using 7D instead of 77 is always signifi-
cant, varying from 55% to 82% for model A, from 67% to 92% for model B. TD* also
experiences a notable reduction of the bias: from 51% to 68% for model A, from 61% to
84% for model B.

5. TD and TD* are equivalent in terms of MSE for #=.1, even though TD; is slightly
more stable (i.e. has a lower variance). For #=.3 and £ =.5, the lesser stability of 7D in
comparison with 7D* is generally compensated by the smaller bias, more than enough to
make TD preferable to TD* in terms of MSE.

6. The estimators adjusted by the estimated IRP are not very stable but, in terms of MSE,
must be preferred to 71.

7. As expected, the bias is directly related to the increase of the nonresponse rate and
to the divergence between the true superpopulation model and the one assumed (i.e. the false
model on which the estimators are based). No relevant differences are revealed due to the
response models considered in this paper (see Giommi (1984) for the effect of alternative
models).

8. The increase of the sample size seems to reduce the bias slightly for all the estimators
considered. TD, and TD} are exceptions: in this case, the reduction of the bias cannot be
attributed to experimental fluctuations but to the actual improvement of the estimate g,
when # increases.
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In the end, we may conclude that, in situations similar to the ones considered in this paper,
the two methods suggested can be used, with a certain preference for method (1) given its
simpler application. The problem of determination of the best value for # (or A, in the
general case) remains to be examined. We found that, within certain limits, small values for
h reduce the bias but also reduce the stability of the adjusted estimator. We have found that,
for our experimental examination, the optimum value of 4 is in the neighbourhood of 0.1.
Results obtained from the same experiment but not reported in this paper indicate that a
further reduction of /4 tends to increase the bias. This is to be expected since making / get
closer to O results in a collection of estimates g, (k=1, ..., n), equal to 1 and 0 respective-
ly for the respondents and nonrespondents.
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Table 3

Performance of Different Estimators under Response Model A

e

Estimators TC TI TD, TD; TDs TD| TD; TD;

Average response rate §=.60

POP1
n=50 BIAS .015 .861 .349 420 .669 .380 .620 .765
VAR .405 973 1.115 1.036 1.007 1.041 .995 .989
MSE .405 1.714 1.237 1.212 1.455 1.185 1.379 1.574
n=100 BIAS .007 .805 .164 .323 610 227 .544 .686
VAR .186 416 .443 .429 412 415 .404 .402
MSE .186 1.064 .470 .533 .784 467 .700 .873

POP2
n=>50 BIAS .090 3.125 1.433 1.682 2.544 1.544 2.378 2.887
VAR 3.952 8.744 9.821 9.823 9.743 9.390 9.233 9.118
MSE 3.960 18.510 11.874 12.652 16.215 11.774 14.888 17.453
n=100 BIAS .056 2.959 .749 1.387 2.337 1.004 2.104 2.566
VAR 1.710 4.144 4.515 5.122 4.819 4.238 4.632 4,518
MSE 1.713 12.900 5.076 7.046 10.281 5.246 9.059 11.102

Average response rate §=.70

POP1
n=>50 BIAS .015 581 .226 271 418 .249 415 .439
VAR .405 .765 .794 .750 .738 754 752 753
MSE .405 1.103 .845 .823 913 816 .924 .946
n=100 BIAS .007 531 .099 .205 .396 .143 357 457
VAR .186 .328 323 .307 327 313 .327 .336
MSE .186 610 333 .349 .484 .333 454 .545

POP2
n=>50 BIAS .090 2.130 813 .939 1.542 .887 1.453 1.822
VAR 3.952 6.996 7.122 6.827 6.991 6.708 6.753 6.871
MSE 3.960 11.533 7.783 7.709 9.396 7.495 8.864 10.191
n=100 BIAS .056 1.966 473 .953 1.541 .658 1.406 1.732
VAR 1.710 3.071 3.005 3.062 3.027 2.926 3.008 3.040

MSE 1.713 6.937 3.229 3.970 5.402 3.359 4.985 6.040
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Performance of Different Estimators under Response Model B

Table 4

133

Estimators TC TI TD, TD; TDs D TD; TD:
Average response rate ¢ =.60
POPI
n=>50 BIAS .015 1.086 .290 .383 716 .323 .688 .992
VAR .405 .966 1.208 1.011 937 1.050 .907 .928
MSE .405 2.145 1.29 1.158 1.450 1.154 1.380 1.912
n=100 BIAS .007 1.079 120 349 732 .196 .668 .902
VAR 186 422 513 .429 420 447 .401 .403
MSE .186 1.586 527 551 956 .485 .847 1.217
POP2
n=>50 BIAS .090 4.046 1.362 1.757 2.826 1.562 2.749 3.562
VAR 3.952  10.285 12.519 12.089 12,010 11.605 11.046 10.994
MSE 3.960 26.655 14.374 15.176 19.996 14.045 18.603 23.682
n=100 BIAS 056 3.897 .454 1.531 2.707 .853 2.521 3.284
VAR 1.710 4.151 5.432 5.121 5.103 4.798 4.541 4.381
MSE 1.713  19.338 5.638 7.465 12.431 5.525 10.896 15.166
Average response rate §=.70
POP1
n=>50 BIAS .015 .584 179 221 .409 .196 376 .499
VAR .405 751 .826 425 716 .769 .723 .743
MSE .405 1.092 .858 474 .883 .807 .864 .992
n=100 BIAS .007 .536 .046 173 .365 .087 317 436
VAR 186 .307. 318 .295 .295 .299 .295 302
MSE 186 .594 .320 .325 .428 307 .395 .492
POP2
n=>50 BIAS .090 2.057 .682 .891 1.477 .804 1.392 1.822
VAR 3.952 6.199 6.788 6.165 6.232 6.340 6.093 6.270
MSE 3.960 10.430 7.253 6.959 8.414 6.986 8.031 9.590
n=100 BIAS .056 1.918 157 755 1.311 .374 1.175 1.562
VAR 1.710 2.826 2.897 2.884 2.867 2.796 2.836 2.923
MSE 1.713 6.506 2.922 3.454 4.586 2.936 4.217 5.363
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