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A Regression Approach to Estimation
in the Presence of Nonresponse

CARL ERIK SARNDAL!

ABSTRACT

In the presence of unit nonresponse, two types of variables can sometimes be observed for units in
the ““intended’’ sample s, namely, (a) variables used to estimate the response mechanism (the response
probabilities), (b) variables (here called co-variates) that explain the variable of interest, in the usual
regression theory sense. This paper, based on Sarndal and Swensson (1985 a, b), discusses nonresponse
adjusted estimators with and without explicit involvement of co-variates. We conclude that the presence
of strong co-variates in an estimator induces several favourable properties. Among other things,
estimators making use of co-variates are considerably more resistant to nonresponse bias. We discuss
the calculation of standard error and valid confidence intervals for estimators involving co-variates.
The structure of the standard error is examined and discussed.
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1. INTRODUCTION

We consider a finite population U = {1, ..., k, ..., N} from which a sample s of size
n is drawn with a sampling design under which the £-th unit has the (strictly positive) pro-
bability 7 of being selected. The sampling weight associated with the £-th unit is thus 7 L
We may admit a complex sampling design, not necessarily self-weighting, for example, a
three-stage design with stratified selection of primary units. The probability under the design
of jointly including the units k£ and / is denoted =y, (m,; > O for all k& #/, and =, is inter-
preted as equal to m).

Given s, a certain unit nonresponse is assumed to occur. The responding subset of s is
denoted by r, its size by /. The variable of interest, y, is observed for k € r only. To counteract
the biasing effects of the nonresponse, we assume for the purpose of this paper that the widely
used adjustment group method is employed: the sample s is subdivided into H groups
S1s ves Sh» ..., Sp Of TESpECtive sizes ny, ..., Ay, ..., #y. The response set r is correspondingly
divided into the subsets ry, ..., Iy, ..., g, of respective sizes my, ..., my, ..., my. The
response rate in group 4 is denoted f, = my/n,. The method calls for attaching (in addi-
tion to the sampling weight) the ‘‘adjustment weight’’ f; ! to an observation coming from
group A. (The sizes and the composition of the adjustment groups at the population level
are here assumed unknown.) We have:

H H
n= Y mgm= Y m,
h=1 h=1
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Let = Iy ¥, be the unknown population total to be estimated. (If A is an arbitrary set
of units, we shall systematically write L, y; for L;4 ¥¢.). The usual adjustment class
estimator of ¢ then becomes

H
i= Ly .y
h=1

Th Ty

The adjustment group method is motivated theoretically by an assumption that units within
the same group respond with the same (unknown) response probability. (More formally, this
is expressed as Model 4 in Section 3 below.) The method clearly requires that group identity
can be determined for each unit kes. The (categorical) variables that permit this grouping
can thus be regarded as variables used for the estimation of an underlying response mechanism.

A different category of variable may be observable for each kes, namely, variables that
explain y, in the ordinary regression theory sense. These variables will be termed co-variates.
When incorporated in the estimator, such variables will not only reduce variance but also
make the estimator more resistent to nonresponse bias. (They are not auxiliary variables in
the usual sense of this term, since they are available not for the entire population U but only
for the intended sample s.)

We shall thus keep a firm distinction in this paper between two types of variables observ-
ed for kes, those that are used to estimate the response mechanism, and those that explain
the target variable y. Little (1983), in presenting a general framework for data with
nonresponse, distinguishes several types of variables. One attempt to describe our situation
in terms of Little’s setup would be to say that the set of complete item variables in Little’s
terminology are, in our case, further subdivided into one subset of variables used to model
the nonresponse mechanism, and another subset (the co-variates) serving as explanatory
variables for the incomplete item variable y. Our approach to inference is that of ‘‘quasi-
randomization’’ (Oh and Scheuren 1983), where ‘‘quasi’’ refers to the fact that the non-
response selection phase must be modelled, whereas the sample selection phase is controlled
by the sampler.

2. SOME SIMPLE NONRESPONSE ADJUSTED ESTIMATORS
OF THE POPULATION TOTAL

A slight development of the often seen formula (1.1) leads to a (generally somewhat
““petter’’) alternative in which the sampling weights ;! can be said to be more fully used:

H
th_l Er 2k

. 1\ a=1 h Tk
faxp = <Es ;k> - .
-1 o

ra'k, -

The formula (which becomes identical to (1.1) for a self-weighting design) can be written
as an expansion of the response set mean:

fexp = NJ,,
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namely, if we let the expansion factor be N = I, 1/, and

Zﬂ‘E

'y 7rk

H 1
Z _12 o
h:1fh h e @1

The symbol tilde will be used to indicate a properly weighted mean statistic. The ‘‘tilde mean”’
¥,, being a response set mean, is calculated by attaching to the k-th unit the multiplicative
weight:

sample weight X non response adjustment weight = Lt

for each unit k in the A-th adjustment group.

The expansion estimator fgxp is appropriate for the nonresponse situation: it takes into
account the sampling design and it makes an effort to adjust for nonresponse. However,
fexp can be improved upon if more information is at hand. Suppose that a single (and
always positive) co-variate x is also observed for kes. In the image of the classical ratio
estimator, we can then construct

1 Yk
- Xk h§1 Erh Tk .
= (D) 5
T
}: S IE

><1 |"<1

-

Th Ty

say, where the tilde mean %, is formed according to (2.1) with x, instead of y,, and

Eﬁ

S7rk

E_

S7rk

Xy =

The tilde mean £,, being formed at the level of the intended sample s, employs sample
weights only. (This type of mean can be calculated for the x-variable, which is observed for
all kes, but obviously not for y-variable, which is observed for ker only.)

The classical regresson estimator formula corresponds, in our context, to

freg = N{J, + b(%; — %))
with
H
E fh‘IE e — I (X — X))/ 7p
rh

h=1
b =

H
LA, s - 50
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(Note: sample weighting as well as nonresponse weighting is used in b too.)
In summary, we have a series of three estimators

fexp = N, (2.2a)
. . _Jr

g = NX; -, (2.2b)
frec = N{J, + b(% — %) ). (2.2¢)

All three are properly sample weighted and nonresponse weighted. The obvious differences
have to do with the co-variate: fgxp uses no co-variate, whereas fz, and fzgg do. It is also
clear that 7z, appeals to an underlying relationship between y and the co-variate x in the
form of a line through the origin, the slope of which is estimated by 7,/%,. In the case of
freg, the relationship is a regression with a non-zero intercept. We shall further explore the
role of the co-variate.

If the population size N is known, it is in general better to replace N by N in (2.2a) to
(2.2¢), yielding

lexp = NJ,, (2.3a)

. 7

fea = N%=, (2.3b)
Xr

~% - - o

lReg = N{J, + b(%, — %) }. (2.30

For estimating the population total, N must be known in these three estimators, which
may not be the case. However, for estimating the population mean Y, they lead, by dividing
by N, to the convenient expressions

Yexe = Jr» (2.4a)

Yea = % -, (2.4b)
%

Yree = Jr + b (% — %,). (2.4c)

The three series of estimators (2.2), (2.3), and (2.4) are easy to accept on intuitive grounds
since all that is involved are elementary weighting principles, plus standard ratio feature or
regression feature. Somewhat less elementary is to draw the proper consequences for variance
estimation and the construction of valid confidence intervals. These questions are discussed
in Section 4. (Contrary to what the rather informal presentation of the estimators (2.2) to
(2.4) may suggest, the formulas are not ‘‘ad hoc’’ but the result of a formalized general estima-
tion procedure (with a multivariate regression) for two phases of selection; see Sdarndal and
Swensson (1985a). Most importantly, the variance estimators and confidence intervals follow
directly from this theory.)
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3. RESPONSE MODELS

The nonresponse weights in the estimators seen in Section 2 can be justified through a
response mechanism model involving individual response probabilities that are constant for
each unit in a given group. More formally, consider the response mechanism:

MODEL A:

(1) The probability of response is constant (and equal to an unknown constant 6,) for
all units kes,; h =1, ..., H.
(2) The units respond independently of each other.

The theoretical response probabilities 6, may vary considerably between groups. (An in-
dication that large differences in response propensity may exist between different subsets
is, of course, an incentive to set up adjustment groups, and to weight accordingly.)

Consider a fixed sample realization, s. The group frequencies #ny, ..., 1y, ..., ny are then
fixed. Let us also consider a fixed value of the vector of group response frequencies
m = (my, ..., my, ..., mg). With s and n fixed, the ‘‘selection’’ under Model A of a
response set 7, can be shown to conform to a simple random selection of m,, from n;,. The
conditional response probability of a unit k& in the A-th group is therefore

my
Tk|sm = n— =fh, all kESh. (31)
h

(This consideration underlies the weight f;, ! used in the estimators.) Similarly one can show
that given s and m, the probability under Model A that units k£ and / respond is

Jn ifk=1
Ju(my — 1)
Wk/‘s,,!! = hnh4 if k¥ # lESh (32)
-
Jufn if kesy;lesy (B # h')

(T xk|s,m is by definition equal to g, .) These quantities (which remind us of stratified
random sampling with m, units chosen from 7, in the A-th stratum) are important for the
calculation of variance estimates and standard errors; see below.

In practice, the analyst decides how to set up his groups s;,. The decision is crucial, for
it will determine the adjustment weights f;,', and thus the numerical value of the estimate
of ¢, the variance estimate, and the confidence interval. Two different groupings may lead
to widely different point estimates and confidence intervals.

The analyst is not so naive as to think that response probabilities exist that are exactly
equal within the group that he has identified. He does, however, believe (and usually with
good reason) that more valid point estimates and confidence intervals will result with these
groups (and thereby the weights f; ') than without them. The adjustment group approach
is a sound and firmly established practice.

On closer scrutiny, several things may be wrong with a response model such as Model
A: the response probability is perhaps not constant within groups. And, even if it were, the
particular groups postulated by the model are perhaps wrongly defined; there should have
been more groups than assumed, etc. Two cases must therefore be distinguished for the con-
tinued discussion:
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(a) The assumed response mechanism (ARM; here in the form of Model A) is true. In
practice, this is unlikely to be exactly the case.

(b) The ARM is more or less false. This is the unpleasant truth in the majority of all prac-
tical situations, and it leads to nonresponse bias. In the case of Model A, the groups
may be formed more or less incorrectly.

As is usual in statistics, the statistical analyst will formulate the model corresponding to
the best of his judgement; accordingly, he will draw certain inferences (confidence statements,
for example). Then he will wonder about the robustness of these conclusions, that is, how
well do they hold up if the model is false? In the same order of things, let us consider these
questions in our particular situation.

4. VARIANCE ESTIMATORS BASED ON A CERTAIN
ASSUMED RESPONSE MECHANISM

Model A, with a specified set of groups, is assumed to hold. The response rates, f, =
my/n,, b = 1, ..., H, have been established. With this as a starting point, let us examine
the variance estimators needed to construct a confidence interval at a specified 100(1 — o)%
level. If 7 is one of the estimators in Section 2, and Model A really holds, we have:

(a) £ is unbiased (except for a usually unimportant technical bias)
(b) an approximately 100(1 — )% confidence interval for 7 is:

[+ 2i_4pNV(1),

where the constant z;_,/, is exceeded with probability «/2 by the unit normal variate.

Under repeated draws of samples s and, for each fixed s, repeated realizations (obeying
the assumed Model A) of response sets r, the interval will contain the true population total
100(1 — )% of the time.

The variance and the estimated variance will be determined by two sets of selection pro-
babilities:

1. =, and 7y, the probabilities of inclusion (first and second order) that accompany the

sampling phase;

2. Tisms Tkijsm the conditional response probabilities (first and second order) associated

with the response Model A (‘‘the nonresponse phase’’).

In our case, as a consequence of Model A, (s, and my s, , are given, respectively,
by (3.1) and (3.2). As for 7, and my,, full generality is assumed; any design may be used
for the sampling phase.

A detailed analysis will show that the total variance of any one of the estimators f seen
in Section 2 can be broken down into two components:

V(i) = Vi(D + Va(D)

where V; (f) may be termed the sampling variance and V,(f) the nonresponse variance. The
exact formulas given in Sirndal and Swensson (1985a) are not reproduced here, but one notes
that the components have some reasonable properties:
1. V,(f) = 0 if the whole population U is observed (a census rather than a sample
survey);
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2. V5(f) = 0 if the response is complete (r = s);
3. V,(f) is greatly reduced in the presence of a strong co-variate, but V,(f) is not af-
fected by the co-variate (naturally enough, since it is observed for k € s only).

Let us examine somewhat more closely the variance estimators. If V;(f) denotes the
estimator of V;(f), i = 1, 2, the total variance V() will be estimated by an expression of
the form

Vi) = Vi) + V(.
Here, the estimated sampling variance component is

1 1

no= L L (s )

T, T s
ker ler kA ki

1

Tkl|s,m

Uy,

where my| s, is given by (3.2), and m;, m, are the inclusion probabilities of the sampling
design. The estimated nonresponse variance component is

H 1 1
V() = )] i (— - —)S%w,,
el my s
with

1
2 2: — w )2
Swrh - Y — 1 r (Wk th)

The quantities u;, and wy differ from one estimator 7 to another. Let us look first at the
estimated nonresponse variance, V, (7). This component is of ““stratified form’’: the factor
ng(1/my — 1/n,) is characteristic of a stratified simple random selection with m;, units
chosen from 7, in the A-th stratum. The reason for this structure lies in the conditional
response probabilities s, given by (3.2).

The quantities w;, have the following appearance:

yk_yr

Tk

]

~ ~%
For tEXP and tEXP: W, =

Ve = (/%)%

Tk

~ ~%
For tRA and tRA: W, =

Ye = ¥ = b(xe — %)

Tk

~ A%
For frgg and fgpg: wy =

The expressions for w, are sample weighted regression residuals. Consequently, if x, is a
powerful explanatory variable for y,, one will ordinarily have that the variance of the w,
(and thus V, (1)) is smaller for the RA and REG estimators than for the EXP estimator,
where the quantity wy is just a deviation of y, from the response set mean §,. Consequent-
ly, in fortunate circumstances, the part of the standard error that is due to the nonresponse
will be reduced to near-zero levels, namely, when x and y have near perfect correlation.

The estimated sampling variance component ¥, (7) is of less interest in this discussion,
since it is not directly influenced by the co-variate. It should be mentioned, however, that the
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u,, are determined as follows: fexps fra» and fgpg, U = Yi, while for the “‘starred’ series
of estimators Fpxp, 7ra, and FrEG, Ux = Vi — Js» where Js = (Zg /) / (Eg1/my) is
the mean of the predicted values from the regression fit, so that for r ;Xp, Y = J, for all
k; for faa, Je = (,/%)xc; and for frec, Ji = Jr — b(xe = %). o

A special case arises when m;, = ny, for all 4 (that is, no nonresponse). Then V;, (f) = 0
(as is reasonable), and my,,, = 1 for all k and /, leaving the non-zero component

1

nan =Y Y <— - i)ukuz

Ty T T
ker ler kA ki

which is the well-known variance estimator for the case of full response.

5. ROBUSTNESS PROPERTIES WHEN THE ASSUMED
RESPONSE MECHANISM IS FALSE

Unbiased estimates and valid confidence intervals can be obtained with the aforementioned
estimators, provided the ARM (given by Model A) holds. The presence of a strong co-variate
brings about a reduction of the nonresponse component of the variance.

More interesting in a real-life situation is the case where the ARM breaks down. This case
must be considered, because even the most careful judgement in setting up adjustment groups
is bound to be less than perfect. The extent of the departure of the true response behaviour
from that of the ARM will now determine behaviour of the various estimators. The statistical
properties (bias, coverage rate achieved by confidence intervals, etc.) are in other words func-
tions of the extent of model breakdown.

In Sirndal and Swensson (1985a), a small scale Monte Carlo experiment was carried out
to study the impact of certain types of breakdown in Model A. For purposes of illustration,
we cite a few results from this study.

The true ARM in the experiment had H = 4 adjustment groups, with different response
probabilities between groups (but constant response probability for all units in the same
group). 1,000 simple random samples were drawn, and each sample was exposed to simulated
nonresponse according to the true ARM (which is taken as known, since this is a controlled
experiment).

As expected from theory, when the ARM underlying fexp and iz was true, there is
essentially no bias, and the empirical coverage rates of the confidence intervals agree essen-
tially with the nominal 95% rate. The advantage of fra lies in a smaller component of
variance due to nonresponse. (See ““ARM is true’’ in Table 1.)

False ARM’s were created by joining together groups of the true ARM. The estimator
and the confidence interval (based on the false ARM) will then be calculated on the basis
of fewer groups than ought to be the case. The case ‘““ARM is false’’ in Table 1 represents
the extreme situation where all four groups of the true ARM were joined into one, meaning
that one acts in the estimation process as if all units throughout the population had the same
(unknown, but estimated) response probability. The table shows that the co-variate estimator,
fxa, when compared to the no-co-variate estimator, Zexp, has the following (not unexpected)
advantages: (a) strong resistance to nonresponse bias (1.26 versus 4.85); (b) much better preser-
vation of the nominal 95% confidence coefficient (92.6% versus 46.3% empirical coverage
rate). In addition, fz, has a variance advantage, and therefore shorter confidence intervals
on the average.
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Table 1

Comparison of fpyp and iz,

Absolut Mean of the Empirical

Estimator bsi(;u € variance coverage rate

§ component V, (95% nominal)
ARM Fexp 0.00 1.99 95.2%
is true fan —0.01 0.78 95.5%
ARM Fexp 4.85 2.55 46.3%
is false fra 1.26 0.78 92.6%

6. CONCLUSION

In summary, we have argued in this paper that two different categories of variables (observ-
ed for k in the intended sample s) are of importance:

(a) variables suitable for estimating the response mechanism (in the case of Model A, these
variables allow the construction of the adjustment groups);

(b) variables (here called co-variates) that are powerful predictors of the y-variable; when
used in the estimator formula, they reduce variance and improve the robustness pro-
perties.

Whenever possible, one should thus be on the outlook for suitable co-variates. One should
also note that when several y-totals are to be estimated,the appropriate co-variates may dif-
fer from one y-variable to the other, whereas the weighting classes would probably be set
up to apply uniformly for all variables of interest.

REFERENCES

LITTLE, R.J.A. (1983). Models for nonresponse in sample surveys. Journal of the American Statistical
Association, 77, 237-250.

SARNDAL, C.E., and SWENSSON, B. (1985a). A general view of estimation for two phases of selec-
tion. Part I: Randomized subsample selection (Two-phase sampling). Part II: Nonrandomized sub-
sample selection (Nonresponse). Promemorior fran P/STM no. 20, Statistics Sweden.

SARNDAL, C.E., and SWENSSON, B. (1985b). Incorporating nonresponse modelling in a general
randomization theory approach. Bulletin of the International Statistical Institute (45th session), 51:3,
15.2.1-16.

OH, H.L., and SCHEUREN, F.J. (1983). Weighting adjustment for unit non-response. In Incomplete
Data in Sample Surveys, Vol. 2, (Eds. W.G. Madow, I. Olkin, and D.B. Rubin), New York: Academic
Press, 143-183.



