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Regression Analysis Using Survey Data
with Endogenous Design

ARIE TEN CATE!

ABSTRACT

This paper discusses the influence of the sampling design on the estimation of a linear regression model.
Particularly, sampling designs will be discussed which are dependent on the values of the endogenous
variable in the population: endogenous (or ‘‘informative’’) designs. A consistent estimator of the regres-
sion coefficients is given. Its variance is the sum of a sampling design component and a disturbance
term component. Also, model-free regression is briefly discussed. The model-free regression estimator
is the same as the model estimator in the case of an endogenous design.
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1. INTRODUCTION

The heart of any statistical model is the assumption that the value of one or more variables
is generated by drawing from some probability distribution; for example, a regression model
with normally distributed disturbances. In this paper a finite set of elements which behave
according to such a model will be considered. This set is called the population. Next, a sample
is drawn from this population, without replacement. The subject of this paper is the influence
of the sampling design on the estimation of the parameters of the model. This influence
depends mainly on whether the design is exogenous or endogenous with respect to the model.
In the case of an endogenous (or ‘‘informative’’) design, the sampling probabilities depend
on the value of the endogenous (‘‘dependent’’) variables. Then, the design should not be
ignored in the estimation of the model parameters. The nature of the problem is indicated
in Figure 1, where a stratified sampling design is shown. There are 3 strata, defined in the
endogenous variable of a regression model. The middle stratum has a higher sampling fraction
than the other two. The diagram shows that the slope of the regression line estimated using
the sampled data points only, is biased downwards if one ignores the design. This bias does
not vanish in large samples. This can be seen in an intuitive manner by imagining that every
white and black dot in Figure 1 denotes a large number of identical data points. Even if
this large number tends to infinity, the slope of the estimated regression line will be biased
downwards, because the shape of the scatter will remain the same.

There is a rapidly growing body of literature on the application of regression techniques
in finite population sampling. This literature deals with a variety of problems. One problem
is, how to use regression techniques in order to estimate a finite population total. Another
problem concerns the estimation of population parameters such as Lxy/Lx? where the
summation runs over all elements of the finite population. Reviews of the literature about
these problems are given by Nathan (1981) and Smith (1981). A third problem is the estimation
of the parameters of a regression model, using a sample from a finite population. This problem
can be solved relatively easily in the case of a exogenous design. See Porter (1973, Section
1.2), DuMouchel and Duncan (1983), and textbooks such as Cramer (1971, p. 143). Texts
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Figure 1. The Effect of Endogenous Stratification on the Estimated Regression Line

such as Kmenta (1971, Section 8.3) and Johnston (1972, Section 9.2) discuss the closely related
topic of stochastic regressors. See also White (1980a) for non-linear regression. Our topic,
regression analysis with endogenous design, is more complicated. Hausman and Wise (1981)
discuss stratified endogenous designs in a very simple case: two strata and a regression model
consisting of a constant term only. Jewell (1985) gives some iterative estimators for the case
of endogenous stratification.

Regression analysis with endogenous design is related to the problem of endogenous non-
response in regression analysis (see Heckman (1979)). However, we have a lesser problem
here, since the probabilities involved in the sampling process are assumed to be known: they
constitute the chosen design. On the other hand, as we shall see in Subsection 6.1, variance
estimation with an endogenous design is in general rather difficult.

Regression analysis with endogenous design may be compared with logit analysis with
endogenous design, also called logit analysis with choice based sampling or case-control
sampling. See Manski and McFadden (1981, Chapters 1 and 2) and Breslow and Day (1980,
Section 6.3).

The contents of the rest of the paper are as follows. In Sections 2 and 3 the main theorems
are given. These theorems give a consistent estimator of the parameters of a linear regression
model, using a sample with an endogenous design. Consistency is defined here in a similar
way as in the discussion of the bias in the example above, though slightly more subtle: the
x-values are replicated a large number of times and the y-values behave according to the
regression model. In Sections 4 and 5 the variance of the estimator of the regression coeffi-
cients is studied. Section 6 discusses the estimation of this variance. Section 7 deals with model-
free regression, Section 8 discusses the various motives for weighted regression and finally,
Section 9 concludes the paper.
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2. THE MODEL, THE SAMPLE AND A
REGRESSION ESTIMATOR

In this section the asymptotic properties of an estimator of a regression model are studied
within the framework of finite population sampling without replacement. Asymptotic theory
for samples drawn without replacement from a finite population may seem a contradiction
since such a sample must be bounded. This contradiction is solved by increasing both the
population size and the sample size, without bound, at the same rate. The dependence between
the inclusions of population elements in the sample constitutes another problem, especially
in the case of complex sampling designs. Here we use an idea of Brewer (1979). In Brewer’s
system, limit theorems on sequences of independent variables can be used, while the results
may still be applied to complex designs. Basically, this system consists of the replica idea
already introduced informally above. This replica idea will be used extensively throughout
the rest of this paper. For another approach, see Robinson (1982).

First, the structure of the population and the model are given. Consider a finite set of
Ny elements. Each element has r real-valued exogenous non-stochastic characteristics,
together forming an (N, X r)-matrix Xj. One of the fundamental assumptions of this paper
is the following. fihe population consists of K replicas of this set of N, elements, having
N = KN, elements. Its matrix of exogenous variables is X, with

X = ® X, 0

Here, 1 is the K-vector with all elements equal to unity and ® denotes the Kronecker
matrix product. Aymptotic results will be derived by aillowing K to tend to infinity.

The model assumptions describe the standard linear model. Each of the N elements of
the population has a score on a stochastic, endogenous, variable. Together they form an
N-vector y. It is assumed that

E;(y) = X8 @

for some fixed, unknown r-vector 8. E; denotes the expectation over all y€RN. Next we
define

e =y — XB. 3)

It is assumed that the N elements of ¢ are i.i.d. It follows from (2) that all elements of
¢ have expectation zero. Their variance is o2, that is,

E;(ee’) = o*I. 4)

Sampling is done without replacement here, as is common practice. The sample is described
by a diagonal (N X N)-matrix T, such that

; 1 if population element i is in the sample
* L 0 otherwise
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foralli = 1, ..., N. Obviously, T is idempotent. The sample space S is the set of all such
matrices 7. This set is finite. The sampling design is some probability distribution over the
elements of the sample space S. The sampling design is endogenous here, meaning that it
depends on y. Hence, the sampling design itself is stochastic. (A design which does not de-
pend on y is called exogenous, or uninformative.) Let T be partitioned in a square K X K
array of (Np X Np) blocks. Let T} be the k-th diagonal block, related to the k-th replica.
Similarly, let y be partitioned in K Ny-vectors, such that ¥y’ = (¥{, 3, ..., Vis> «+vs VE)-
It is assumed that the sampling design depends on y in the following sense: the K pairs
(Tu,»)s ..., (Tg,yk) are i.i.d.

The expectation over all elements of S, conditional on y (or €), plays an important role
in this paper. It is denoted by E,. Then we define

Il = E(T). )

It is assumed that IT is known. The diagonal elements of IT are called inclusion probabilities:
the probabilities that the population elements are included in the sample. The matrix II is
partitioned in a square K X K array of (N, X Np) blocks. Let II; be the k-th diagonal
block, related to the k-th replica. Note that each II; is stochastic because it depends on yy.
By the above assumption, the I1;, ..., IT; are i.i.d. The dependence of the II; on y is denoted
by a function F, such that

I, = F(y) ©6)

forall k = 1, ..., K. It is assumed that F (y;) is non-singular for every y,. In other words,
the inclusion probabilities are always positive.

This framework and Brewer’s (1979) differ in somewhat. Brewer has no endogenous
variables and therefore all his II, are nonstochastic and equal. One may also compare this
approach with the idea of ‘‘constant in repeated samples’’ in the econometric literature; see
e.g. Theil (1971, p. 364).

The stage is now set for the estimation of 8. The stochastic properties of estimators will
be considered over all pairs (y, T) € (RN x §). The corresponding expectation will be
denoted by E;E,. We shall consider a generalized least square estimator of 3, say 3, with
weights equal to the square roots of the inclusion probabilities, as follows,

f=[(I"X) T(I "X)] " (I™"X) ' T(II™"y)

(x’n-'txy “x'n-lry. M

Recall that the matrix IT is known. Note that X and y relate to the population, but 7 ef-
fectuates summation over the sampled elements. As an alternative to considering Basa
generalized least squares estimator, assume that all elements of 11! are integer numbers.
Then, if each observation i in the sample is copied 7; ! times, B is the ordinary least squares
estimator applied to this inflated sample. In this view, no square roots of the probabilities
are involved. See also Hausman and Wise (1981, p. 373). The main theorem of this paper is:

Theorem 1. Under the assumptions made above ((1), (2) and the distribution of £ and T),
the generalized least squares estimator 3, defined in equation (7) is consistent for K —> 0.

The rest of the section is devoted to the proof of this theorem. The following lemma will
be used in this proof and the proof of subsequent theorems.
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Lemma 1. Consider an N-vector z, such that z = 1, ® z,, where 2, is some fixed Ny-vector.
Consider also an N-vector 7, partitioned such that * = (9], %3, ..., nx). Each o, has N,
elements. Assume that each 7, is a function of Xj, 8 and ¢, all functions being the same.
Then

. 1 _
plim <I—<Z'H lTn) = 20E¢ (n0),

e ®)
where E; (1) is the expectation of any n, being equal for all k.
Proof of lemma 1: Consider the expectation of II; ! Tyn,:
Eng(nk_]Tk"lk) = E; [T 'E, (T m] = Eg(mi), ®)
for all k. Since the distribution of 7, is the same for each k, one may write
EE, (I 'Tyne) = Eg (mo) (10)

for all k. Also, the K vectors z{II ~Tyn, are i.i.d. Thus, Khintchine’s theorem applies as
follows,

. 1 ) 1 _ _
plim (—Z’H"Tn> plim (— Y, 215 'Tknk> = EE, (zI0j 'Tyny)
koo \K k= \K =

WEE, (I 'Tyyy). (1
Substitution of (10) in (11) gives the lemma. The proof of theorem 1 is now straightforward.

Proof of theorem 1: The generalized least squares estimator of the theorem can be written as
B = (XTI 'TX) ' X'~ 'Ty =8 + (X'I'TX) ' X'~ 'Te. 12)

Thus,

. 1 -1 1
limB =8 + | pli - X'u'rx lj - X'0'T:
pim 8 =3 + [pim (Grn=7x) | pim (Lxnom)

K-+o K=o K-+
=B + (X§X0) "' X0 = B. 13)

The expression X§X, is formed by repeated application of lemma 1, substituting the col-
umns of X for both z and 5. Notice that E;(X,) = Xj since Xj is a constant. The expres-
sion X0 is formed by repeated application of lemma 1, substituting the columns of X for
z and ¢ for 7.
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3. THE ESTIMATION OF THE DISTURBANCE VARIANCE

The regression model described in Section 2 has two parameters: 3 and o2. Theorem 1
considered estimation of 8; in this section the estimation of ¢ will be considered. The result
of this section is given in the following theorem.

Theorem 2. The disturbance variance o? is estimated consistently by the weighted sam-
ple variance of the residuals of y if these weights are equal to the inverse of the square root
of the inclusion probabilities.

Proof: The variance estimator of the theorem is

0% = (W™ 'Twyy) ~lé'e (14)
with
ée=N""Ty — XB). (15)
Let
J=1""Ty, (16)
X =10 "Tx, an
and
£ =1I""Te. (18)
Then
E=y-XB=7-RXX)'Xy 19
and

€e=J [y~ XX'X)'X)7=(XB+ &) [Iy— X(XX)"'X']1(XB + ¢)

I
m
)

!
M
>
o~
P
>
S’

i

]
)

(20)
The first term in the right-hand side (RHS) of (20) converges in probability as follows
lim IE’Z lim ! T lim ! JI 71T diag (¢)
- = ph —c ) = =t £)e
fm \K kmm \K pagil Vo ®
— ,7 2 _ 2
= 1, (0%y,) = Nyo™. (21)

Here, diag(e) indicates the diagonal matrix with as the diagonal. Lemma 1 has been applied
with ¢y substituted for z and diag(e)e for 4, using model equation (4). Next, consider the
second term in the RHS of (20).
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| S
plim [EZ'X(X'X)-’X'E]

K=o

1 ’ 1..\1"" 1,
= |plim { —X'E plim { - X'X plim { - X’'¢
K= K K-~ K K=o K
1 & YA T B2
plim { - X'II™"T¢ plim { - X'TI7'TX plim { - X'II™'T¢
kK=o \K k- \K ko \K

0’ (X$X,) "0 = 0. (22)

In the derivation of (22), use has been made of lemma 1 in the same manner as in the
derivation of (13). The combination of (20), (21) and (22) gives

1
plim (1—(5'5> = Nyo?. (23)

K=

Finally, lemma 1 is applied to the first factor in (14), with 1, substituted both for z and
n. This gives

1
plim (I}LIQH"ITLN> = N,. (24)

K-> o

With (23) and (24) we have

plim (8% = o2 (25)

K=o

which proves the theorem. Finally it may be useful to note, as a corollary of (23), that

(%}) &'é (26)

is also a consistent estimator of ¢2.

4. THE VARIANCE OF 8

In this section the asymptotic variance of the estimator § is given.
Theorem 3. The asymptotic variance of 8 is given by

Var (8) = (X'X) "' X' VX(X'X)"}, Q27
with

V = E;[diag(¢) 11 'PII ~'diag (¢)], (28)
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and
P =E,(TuwT). @9

The elements of P are the so-called second order inclusion probabilities: the probability
for any pair of elements of the population of being included in the sample. The diagonal
of P is equal to the diagonal of II. The rest of this section is devoted to a proof of this
theorem.

Proof: Consider the asymptotic distribution for K=o of
K*(B - ) = K*[(X'I7'TX) "' X'II"'Ty — B]
= K2 (X'I'TX) "' xX'0 " 'Te. (30)

Since

1
plim (;{X’H‘ITX) = X4 Xo, 31

K=o

the asymptotic distribution of K" (8 — B) is equal to the asymptotic distribution of &,
with

8= K~ "(X§Xo) '\ X'TTI ™ 'Te = K~ (X4X,) ~! E X0 'Tye, = K% Z o, (32)
k k

and

8 = (X4 Xo) X4 ' They, (33)

forall k = 1, ..., K. (See e.g. Rao (1973), p. 122). Since the vector §; (kK = 1, ..., K) are
i.i.d. and also

EE, (&) = (X§Xo) T\ XGEE, (I ' Tier)

(X§X0) ~'XGE; [T 'Ep(Ty) &)

(X5X0) "' XGE: () = 0, (34)

the variance of 8, say Var(8), is equal for all K and also equal to the variance of the asymp-
totic distribution of § for K—> . This variance can be written as

Var (8) = E.E,(8;04) (35)

for any k€ {1, ..., K}. Since the vectors &; are i.i.d. this may be rewritten as
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1
Var (8) = ¢ ; E.E,(5:8;)

1
= I—((X(;XO)-I [Eng( Y XOUi Theres Tka'lXo)] (X§Xo) ™!
k

= K(X'X) V[EE,(X' T Tee’ T 'X) ] (X' X) !

K(X'X) X’ (EE, [diag (¢)II™'Tw’ TTI "' diag (£) ] } X (X' X) ™!
= K(X'X) "'X’ (E; [diag (e)[T 'E,(Tuw'T)II " 'diag(e) 1 } X (X' X) ~'.  (36)

Division of Var(8) by K gives Var(B8) and completes the proof.

5. A DECOMPOSITION OF VAR ()
The variance formula (27) can be rewritten as
Var(8) = 2(X'X)"" + (X' X) T X' V*X (X' X) ! (37
with
V* = E;[diag(e) (II7'PIL " — v/ ) diag(e) ], (38)

using (4). The first term in the RHS of (37) might reasonably be called the £-component
of the variance of 3. This component would contain all the variance of § if the whole popula-
tion was sampled. It is entirely due to the variation in the disturbance £ and it is the familiar
expression for that case. The second term in the RHS of (37) might be called the p-component
of the variance of 8. This component contains the matrices Il and P, which describe the
sampling design. This component looks like the variance formula of the estimator of a total
or average of a finite population. The theory of such estimators will be discussed briefly
in the rest of this section, as an aid in the interpretation of the p-component of Var(B).

Consider a finite population of N elements. (No replica structure is assumed here). Each
element of this population has a score on some real non-stochastic variable, collected in an
N-vector x. From this population a sample without replacement is taken. The sample is describ-
ed by the diagonal matrix 7, as before. Also as before,

Il = E,(T) (39)
and

P =E,(Tu'T), (40)

the first order and second order inclusion probabilities, respectively. There is no regression
model here, so IT and P are fixed known matrices. Horvitz and Thompson (1952) suggested
to estimate the population total X'« by

X =x0"'T 41)
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Obviously this is an unbiased estimator, in view of (39). The variance of X is
Var(X) = E,(X*) — [E,(X)]? = E;(x’TI7!'Tw/' T %) — x'u'x

=x"(II7'PII1! - o' )x. 42)

The last member of equation (42) is the variance formula of the Horvitz-Thompson
estimator, which can be found in textbooks on sampling, such as Cochran (1977), though
usually not in matrix format. The expression in parentheses in the last member of (42) is
equal to the expression in parentheses in (38), the definition of V*. The latter is contained
in the formula of the p-component of Var(8). Thus, the diagonal elements of the Dp-component
of the variance matrix Var(8) can be considered as the £-expectation of the p-variance of
the Horvitz-Thompson estimator of the row totals of (X’'X) ~! X’ diag (¢). These totals
are the elements of the vector (X’'X) ~!X’e.

- 6. THE ESTIMATION OF VAR(B)

6.1 The General Case

In this section the estimation of the asymptotic variance Var (8) is considered. Consistent
estimation of Var () is rather difficult, since this requires knowledge of the relationship F
between y and the sampling design, as it appears in the matrix V. In practice, only the sampling
design for the actual values of y will be known. In general, it is difficult to tell from this
design only, what the design would be like if y took on different values. In a sense not only
a regression model is involved, but also a model of the designer himself!

For the moment we assume that the function F is known, and therefore V is a known
function of X and the parameters of the model. (See Subsection 6.2 for a special case). This
is expressed as follows.

V = V(B,0%X), “43)

It is assumed that V(B, 0% X) is a continuous function. For the sake of brevity, V is defined
as

V= V(BsX), (44)

where and 3 and 42 are consistent estimators of 8 and o? respectively. The rest of this sub-
section gives a theorem on consistent variance estimation, and its proof. Consistent estimation
of Var(f) by var(B) is interpreted here as follows:

plim Kvar(8) = lim K Var(8). (45)

K-> K—~> o

Theorem 4. Under the assumptions made above, the asymptotic variance Var(3) is estimated
consistently by

var (8) = (X'II‘ITX)“IX’T<£) TX(X'I 'Tx) 1, (46)
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where (V/P) denotes the matrix consisting of the elements of ¥ divided by the correspon-
ding elements of P.

Proof: First the structure of V will be considered. Let V be partitioned in a square K X K
array of (Ny X Np) blocks. The (k, r)-th off-diagonal block of V is equal to

Ef [dlag (sk) I_Ik_ lEp( Tk“’ ’ Tr) 1—Ir— ! diag (S,) ]

E; [diag(ex) 17 'E, (Ti) v E,(T) 1L, ' diag(e,) ]

E; (g¢/) = 0, @)

using the assumed replica structure of the population and the sampling design. The diagonal
blocks of V are identical and depend on X,. Thus, V (8, 0% X) can be written as

V(B,0%:X) = Ix® Vo(B,0%X0), (48)

where V, (8, 0% X,) is an Ny x N, matrix function. Together with (1), equation (48) can
be used to rewrite K Var(3) as follows.

KVar(B) = (X§Xo) ™' X4 VoXo(X§X0) ™', (49)

where V,, denotes Vy(B8, 0% X,). The RHS of (49) is independent of K and therefore equal
to its limit as K tends to infinity. Next, the LHS of (45) is considered.

-1 -1
Kvar (B) = (}{X’H“TX) [}(X'T(;—:) TX] (}(X’II‘ITX) ) 50

Earlier, in the derivation of (13) and (22), use has already been made of

1
plim (;{X’H‘WX) = X4 Xo. 1

K-+

It follows from the assumption that V (8, o2 X) is a continuous function, that

plim 170 = Vo, (52)

K=o

where V, denotes V, (8, 4% X,). Using (1), (48) and (52) gives

1 14 1 Vo
lim -X'T( = ) TX = plim — XTe [ = ) TeX,
Ko K ( ) pim gk L [ ‘ (P) ]

- P
K=o k

1 Ve
= plim — XoTi { — ) T.X, = X Vo Xy, 53
p E [ 0 k(PO) 2 0] 0 VoXo (53)

-0 K
K=o &
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Here P, denotes E, (Tyit” Tj), which is the same for all k = 1, ..., K. The last equality
sign results from the application of Khintchine’s theorem, since the terms in the second
summation over k in (53) are i.d.d. with p-expectation equal to X; VyX,. Finally, the com-
bination of (50), (51) and (53) gives

plim Kvar(8) = (XgXo) ~'X§VoXo (X5Xo) ~', (54)

K—+ o
which is the same expression as the RHS of (49).

6.2 Stratified Sampling

In this subsection the computation of the matrix T(¥/P)T is given for a special case:
(1) the disturbances are normally distributed, and (2) the sampling design is an endogenously
stratified sampling design, such that the inclusion probability =; of element i of the popula-
tion is a function f of only the i-th element of y, say y(;. Thus,

i = (V). (55)

fori = 1, ..., N. As an example, consider the stratified sample which was shown in Figure
1. The design contains three strata there. The elements in the middle stratum have the highest
inclusion probability. Figure 2 shows the corresponding function f.

f(»)

A

L 4
~<

0
|

Figure 2. The Probability Function f Corresponding to Figure 1

In general, let there be H strata, indicated by # = 1, ..., H. Let the boundaries of these
strata be Ly, L, ..., Ly. Typically, Ly = — o and Ly = + o. Let 74, be the inclusion
probability of the population elements in stratum 4. More formally, the function f(-) is
such that f(v) equals 7, if L,_; = y < L,. The values of 7,y and L, are usually known
in practice, since the actual sampling design depends on their values.
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In stratified sampling, the second order inclusion probability of any two population
elements not in the same stratum equals the product of their respective first order inclusion
probabilities: their inclusions in the sample are independent. For any two population elements
in the same stratum this holds approximately. Thus, approximately the off-diagonal elements
of P are equal to the off-diagonal elements of II:.'II. The diagonal of P is equal to the diagonal
of II, as before. Thus, approximately,

P =M - I + II. (56)
Then
V = E; [diag(e)(’ — I + 17 ")diag(e)]
= E;[ec’ — diag?(e) + diag?(e)II7'] = E;[diag?(e)TI '], (57

in view of assumption (4). Thus ¥V is a diagonal matrix here. Then

T(g)r= TIL~'E, [diag? () 171, (58)

which is also a diagonal matrix. Now consider a population element i, which is included in
the sample. Then, using (58) and assuming normally distributed disturbances,

. Ly—x{B

14 1 J o1
[r(-) T] Y = [ et
P i Tii he1 1r(;,) .

a2 H-1
="_{L+ ) (—1—— 1 )qI[(Lh—x;B)/a]}. (59)

i LT(H) ae1 \Ty T+

Here, ¢(-;6°) indicates the normal density with mean zero and variance 62. The function
V() is defined as

X

¥ (x) = s o (s1)e2de = & (x) — xp (x1), (60)

-0

where ®(-) denotes the cumulative density function for the standard normal distribution.
In the derivation of (59), use has been made of ¥ (Ly) = 0 and ¥ (Lyg) = 1.

7. MODEL-FREE REGRESSION

7.1 Consistent Estimation

As a digression from the main theme of this paper, model-free regression will be con-
sidered in this section. Firstly, model-free regression can be usefully applied in the case of
doubt about the validity of a linear model. See Fuller (1975), who studies model-free regres-
sion for some specific designs. Van Praag (1981, 1982) studies model-free regression in the
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case of repeated sampling from some probability distribution. See also DuMouchel and
Duncan (1983). White (1980b, Section 3) studies related problems. Secondly, the so-called
regression estimator of a population total uses model-free regression. See textbooks such
as Cochran (1977), the review papers mentioned above by Nathan (1981) and Smith (1981)
and Bethlehem and Keller (1983).

The purpose of model-free regression is the estimation of the population parameter vector

b= (X'X)"'Xy, (61)

without assumptions about the probability distribution of y. In fact, both X and y are con-
sidered non-stochastic. Further, the same replica structure as in Section 2 is used, as follows.

X = 1x® X, (62)
and

Y = 1x®J,, (63)

where y, is some fixed Ny-vector. As before, the K diagonal matrices 7, (kK = 1, ..., K)
are i.i.d. These matrices describe the sample as in Section 2. Together the matrices T, form
the matrix 7. No additional assumptions are made concerning the distribution of 7.

It is proved relatively easily, along the same lines as in Section 2, that the weighted estimator
f defined before in (7), is a consistent estimator of b defined in (61). See also Jénrup and
Rennermalm (1976), who indicates § as an “‘approximately unbiased’’ estimator of b, and
Van Praag (1982, Section 4d), where ‘‘selectivity bias’’ with known inclusion probabilities
is studied for the model-free case.

It follows in the same manner as in Section 4 that in the model-free case the asymptotic
variance of B, say Varyg(8), equals

Varyp(B) = (X'X) "' X' VX(X'X) ", (64)

with
e=y — Xb, (65)
V = diag (e)I1~'PII~!diag (e), (66)

and with P defined as before in (29). Notice that V in (66) differs from ¥V in (28) in the omis-
sion of the £-expectation and the substitution of e for e.

It is interesting to rewrite Varyg(3) in the same way as Var(3) was rewritten in Section
5. In doing so, use will be made of

X'e=0, (67)

which follows directly from (61) and (65). The Varyp(3) can be rewritten as

Varye(B) (X' X) ~1x'diag(e) (I~ 'PI~'— /) diag (e) X (X' X) !

+ (X'X) Xee' X(X'X) !

(X’'X) ~'X’diag (e) (-1~ 'PO ' -1/ ) diag (e) X (X' X) ~1. (68)
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The last member of (68) corresponds with the p-component of the decomposition of Var(B)
in (37). It may be concluded from (68) that in model-free regression the variance of the
estimator of the regression coefficients consists of the p-component, while the £-component
vanishes.

Notice finally that, using the discussion at the end of Section 5, the last member of (68)
can be written as

(X' X)) 'o(x'x)1, 69)

where the matrix L is the p-variance-covariance of the row totals of X’diag(e). A similar
result was reached by Binder (1983, Section 4), though along different lines.

8. DISCUSSION

In this section some practical considerations are given concerning the use of weights in
regression analysis. Several motives for the use of weights are discussed shortly, related to
the preceding technical sections of this paper.

First of all, it must be noted that the difference between weighted and unweighted regres-
sions may be of some significance. An important example is the case where business firms
are the unit of study - either farms, industrial enterprises of any other kind of business firms
varying considerably in the number of employees. At the Netherlands Central Bureau of
Statistics, for instance, the classification by number of employees is a standard stratification
variable in sampling designs of business firms, giving a considerable range of inclusion proba-
bilities - the large units chosen with relatively large probabilities. In studies with employment
as the endogenous variable, such a sampling design is endogenous, which calls for weighted
regression; the large units receiving small weights.

Secondly, in the case of units varying widely in size, a major problem with regression
analysis is the heteroscedasticity of the error term. This calls for weighted regression, of the
same sort as the weighting due to an endogenous design discussed in Section 2: large units
receiving small weights.

Finally, there is a third motive for the weighting of sampled data: the notion of a model
free regression, as discussed in Section 7 above. Again, the weights here are of the same
sort as the weights in Section 2.

Summing up, there seems to be no reason not to incorporate the sampling design in
regression analysis.

9. CONCLUSIONS

In this paper the estimation of a regression model with survey sample data has been studied.
In particular, samples drawn with an endogenous design have been studied; for example,
a sample stratified on the endogenous variable. It has been shown that for such a sample
the weighting of the observations with the inverse of the square root of the sampling frac-
tions gives a consistent estimator. The concept of consistency used here is a modification
of Brewer (1979). The asymptotic variance of the estimator has been given, as well as a
consistent estimator of this variance. The variance is the sum of a sampling component and
a model component.
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Also, model-free regression has been considered. Model-free regression requires the same
weighting as endogenous stratification. The variance of the estimator of the model-free regres-
sion coefficients contains only the sampling component, and not the model component.

Finally, some practical considerations relative to the weighting of the data have been given.
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