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Practical Criteria for Definition of Weighting Classes
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ABSTRACT

When the technique of adjustment using weighting classes is applied to compensate for the effect of
non-response, several questions arise that call for precise and quantified answers: How does the choice
of the variables used for definition of the classes affect total root-mean-square error, in particular non-
response bias and sampling variance? What rule and what procedure should be followed in choosing
the adjustment variables? On the basis of what criterion can the optimal sizes for the weighting classes
be established? Finally, when this procedure is applied to compensate for non-response with respect
to specific elements of a questionnaire, how can strongly correlated ancillary variables be used effec-
tively when they themselves are affected by non-response? This article is addressed to those profes-
sionals working at a practical level who are seeking guidelines.
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1. INTRODUCTION

The problem of adjustment for non-response through creation of weighting classes is clearly
related to that of determination of poststratification criteria. Kish (1978) stated that there
was an urgent need for research in this area, noting that, in terms of advantages and disad-
vantages, the final effect of this type of weighting is often unknown. At the same time, Platek,
Singh and Tremblay (1978) developed mathematical expressions for the bias and the variance
of the estimators resulting from adjustment using weighting classes. Their model, which was
based on the response-probability concept, was developed further recently by Platek and
Gray (1983). During the same period, Bailar, Bailey and Corby (1978) described the theoretical
and empirical research undertaken at the US Bureau of the Census. They end their presenta-
tion by emphasizing the importance and the necessity of developing solid theoretical foun-
dations for the methods of adjustment for non-response. More recently, the Panel on
Incomplete Data (1983) provided a particularly concise and complete description of the prac-
tical implications of adjustment through weighting and stressed the conclusions reached by
Oh and Scheuren (1983) following a simulation study. Chapman (1983) analysed a number
of procedures that could be used to identify the most relevant variables for effective cons-
truction of weighting classes.

This article continues along the same lines as these research efforts by attempting to define
some rules for application of this adjustment procedure starting from theoretical founda-
tions. The single example used for illustration throughout this text is very specific, but the
reader will no doubt be able to identify much more varied and rich application possibilities.

2. ILLUSTRATION OF THE TECHNIQUE
Let us take as our example the measurement of voters’ intentions, a very real and fre-
quently encountered problem. All of the data used in this text comes from the fall 1985
OMNIBUS survey of the Survey Research Centre at the University of Montreal. One section

of this survey was aimed at measuring voters’ intentions four weeks before the December
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Table 1

Distribution of Voting Intentions
(with Non-Response)

n? %
Parti Québécois (PQ) 505 27.5
Quebec Liberal Party (QLP) 650 354
Other parties 62 3.4
Non-response 619 33.7
TOTAL 1,836 100.0

2 Number of weighted cases.

Table 2

Satisfaction with the Quebec Government and Voting Intentions
with Regard to the Provincial Election

Voting Satisfied Dissatisfied
intentions (n = 555) (n = 656)
PQ 70.1% 17.3%
QLP 26.7% 76.1%
Other 3.2% 6.6%

1985 Quebec elections. The responses to the question regarding voting intentions given by
the 1,836 individuals surveyed who intended to vote were distributed as in Table 1.

This table presents a situation where the response problem obviously cannot be ignored.
Blindly distributing the non-responses in proportion to the other responses is a risky approach
based on the supposition that those who did not express their voting intentions have the same
profile as those who answered the question spontaneously.

The two consequences of such a high incidence of non-response are well known: potential
bias and an increase in sampling error following effective reduction of sample size. Any ad-
justment technique must be aimed at reducing these two effects. When, as in this case, a
high incidence of non-response can be foreseen, it is appropriate to include in the question-
naire correlated questions that can be used as a basis for eventual adjustments. For example,
it may be very useful to ask the persons surveyed whether or not they are satisfied with the
current government, given the close connection between this index and voting intentions,
as shown in the following table.

As Table 2 shows, 70.1% of those satisfied with the government intended to support the
party in power (the PQ). However, as might be expected, the situation was reversed among
those who were dissatisfied: 76.1% of this number intended to vote for the QLP, which was
the opposition party at the time.
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Table 3

Satisfaction with the Government Cross-Classified with Whether Or Not an Answer Was
Given to the Question Regarding Voting Intentions (Number of Weighted Cases)

Satisfied Dissatisfied TOTAL

Answer given to question

regarding voting in-

tentions n; = 555 n, = 656 n = 1,211
No answer given to

question regarding

voting intentions 236 334 570
TOTAL n{ = 791 n; = 989 n' = 1,7807

2 This table excludes 56 nonresponses to the question on the satisfaction.

One of the techniques available for using this ancillary information is the creation of
weighting classes based on satisfaction. Table 3 presents the complementary data required
for making the adjustments.

If those who were satisfied and those who were dissatisfied are regarded as two weighting
classes, statistical adjustment of the data takes the following form:

if p,. = the proportion of respondents in class ¢ who intend to support party j;
n. = the number of persons in class ¢ who answered the question regarding
voting intentions;
n = X, n, = the size of subsample S, of those who answered the questions regarding
voting intentions and satisfaction;
n! = the total number of persons in class c;
and n’ = L, n/ = the size of sample S of those who answered the question regarding
satisfaction
The adjusted estimates of voting intentions are then calculated as follows:

pj= (1/n) Y] ne pje
c

This new estimate corresponds to introducing a corrective weight equal to n;n/n.nn’ for
all respondents in class c.

This simple exercise illustrates the functioning of the well-known mechanism of statistical
adjustment through construction of weighting classes based on traditional poststratification
procedures. The questions which must be gone into in more depth for such an application
are as follows:

1. What is the impact of this procedure on reduction of non-response bias?

2. How does this technique affect sampling error?

3. What are the best ancillary variables (or combinations or variables) for definition of the
classes?

4. Up to what point is it advantageous to refine definition of the weighting classes?

5. What should be done with ancillary variables that also involve non-response?

To answer these questions properly, we must continue to develop the theoretical founda-
tions for application of weighting classes.
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3. IMPACT OF ADJUSTMENT PROCEDURE ON NON-RESPONSE BIAS

The most difficult challenge with respect to non-response is that of quantifying reduction
of non-response bias following application of a given technique. If this challenge could be
met, it would be possible to mesure the bias and, consequently, to produce unbiassed estimates.

However, we can still endeavour to understand more fully the mechanisms underlying
non-response, in order to design instruments that would reduce as much as possible the im-
pact of non-response on data quality.

One way of studying the problem is to consider it from the angle of response-probability
theory, according to which we would stipulate that, for each unit U; of the population, the
probability of responding to the survey (or to a specific question asked) is «; if that unit
is selected. Even though this approach calls for the supposition that the o’s are not nil, the
theory allows us to infer mathematical expressions for non-response bias with the applica-
tion of a given method, in function of the observations X; that we want to obtain and of
the response probabilities «. This was the approach taken by Platek and Gray (1983); for
estimating subtotal in weighting class ¢, by adjusting the sampling estimation using the in-
verse of the response rate in class ¢, they established that residual non-response bias could
be expressed as follows:

Ne Ne
B(X.) = &' E (o — &) X; where &, = N E a, (3.1)
i=1 i=1

and where N, = the size of class ¢ of the population.

Expression (3.1) reminds us that residual non-response bias exists following application
of the correction factor only if, within class ¢, there is a correlation between the response
probabilities and the characteristic measured.

Moreover, it is interesting to examine expression (3.1) in the special context of classifica-
tion data-that is, where the X; = 0 or 1. Using the notation introduced in the preceding
section, it can be shown that the residual bias of X, following application of the correction
factor can be written on the basis of expression (3.1) in the following form:

B(Xc) = NCPC&C_I (éfé\’ - ac)

N.P.(1 — Pya. " (& — &));

where P. = the real proportion of the units in class c that have characteristic X;

&} = the average for response probabilities among the units in class ¢ that have
characteristic X;

and &f = the average for response probabilities among the units in class ¢ that do
not have characteristic X.
It is useful to reformulate B (X,) as follows:

B(X,) = N.o? d.(X, X)
where 2 = is the variance of characteristic X within class ¢

and d.(X, X) = a; ' (& - 'f ) is a standardized measurement of the distance bet
ween the average response probability for those who have characteristic
X and that for those who do not have it within class c.
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The non-response bias associated with estimation p’ of P can therefore be expressed as:

B(p') = BINT' Y] X,)

N~} E N.o2d, (X, X), (3.2)

Cc

Expression (3.2) provides a mathematical argument in support of the thesis frequently
put forward that it is advantageous to construct categories that are as homogeneous as possible
with respect to the phenomenon studied by partitioning the sample into segments, some of
which tend to contain units with characteristic X, and some of which do not.

4. IMPACT OF ADJUSTMENT PROCEDURE ON SAMPLING ERROR

As you know, one of the consequences of the non-response problem is an increasing of
random sampling error following reduction in the number of observations. It is revealing
to examine to what extent the adjustment technique discussed here compensates for this loss
of precision. A number of the authors referred to in the introduction have pointed out the
potential danger in having corrective weights that are too large or too unstable, being based
on a number of observations within a class that is too limited. Platek and Gray (1983) presented
an approximate expression for the component of variance attributable to non-response follow-
ing adjustment.

Although it is instructive regarding the general behaviour of this component of sampling
variance, this mathematical development does not reveal the critical point beyond which refine-
ment of the weighting classes adversely affects data accuracy.

In reality, we find ourselves in the following situation. The person conducting the survey
has some reliable information with respect to a representative sample of the population be-
ing studied (for example, information regarding satisfaction with the government), but the
data that interest him or her most for purposes of the survey (for example, information regar-
ding voting intentions) are available only for a subsample, and he or she would like to use
certain data from the base sample to improve the accuracy of the estimators. Whether we
are talking about non-response at the level of the sampled units or about non-response at
the level of specific questions in a questionnaire, the fundamental problem is the same. From
the point of view of estimator variance, there is some analogy with double sampling, where
data adjustment corresponds to application of the separate-ratio estimators-that is, to
poststratification using categories definable on the basis of information available in the base
sample. Of course, this analogy is unacceptable as far as analysis of the biassing effect of
non-response is concerned, since one cannot support the hypothesis that the subsample of
the respondents is probabilistically representative of the base sample. However, for purposes
of studying estimator variance, the analogical approach is as useful as it is defendable.

More specifically, imagine the following situation. A simple random sample S of size n’
gives us the distribution of a classification variable for the total population, with N

= (N/n')n,.' as the estimator of the number of units of the population belonging to class
¢. A simple random sample S; C S of size n=fn' (0<f<1) is chosen to measure the
distribution of another classification variable X. For each of the units of S, we know the
classification on the basis of the two variables described above.

We want to estimate the proportion P;; of units belonging to class j of variable X. The
simple estimator inferred from S; is

p = (1/n) Y nepje
c
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Moreover, the separate-ratio (poststratified) estimator can be expressed as follows:

pj = (W/n)y Y nip.
C

While all the units of sample S, are given a weight equal to 1 in expression p,, we can
se¢ that, in expression for pj' , the weight of the units varies, depending on the ¢ class to
which they belong. These ‘‘corrective’” weights equal to n/ n/n. n' use the complementary
information available with respect to sample S as a whole for division into classes.

According to Tremblay (1975), if the formula for the variance of p; is developed, keep-
ing the terms to the size of the relative variance of the N, the following is obtained:

Var p; = Var p; —[(1=£)/n] [ E (P — P)?P. - E rePi. (1 —P;) P.] .1

where 7. = N(1 —P,)/nN,: the relative variance of the N, estimator that is,N, = (N/n)n,;

P, = N./N: the proportion of the population belonging to class ¢;

P,.= Ep;’ the proportion of the units that have characteristic j in class c;

P; = Ep;: the proportion of the units of the population that have characteristic /.

Equation (4.1) shows that the effectiveness of the technique of adjustment using weighting
classes increases as interclass variance increases and, consequently, as intraclass variance
decreases. It is easy to verify that, in the extreme case where there is maximal interclass variance
- that is, where all of the P, are either 0 or 1:

Var p; = P;(1 — P)}/n’.
that is, the variance that would have been obtained if ail of the n’ units had responded.

In addition, equation (4.1) reminds us that, in so far as the relative variances are negligi-
ble with respect to 1, it is advantageous to refine the partitioning, dividing the sample into
a large number of classes. We thereby increase interclass variation and, by the same token,
reduce the variance of p; .

However, refinement of the partitioning is limited by the presence of relative variances
r.. We should look at this situation a little more closely. Let us postulate that a first parti-
tioning of the sample into a group of classes C’ produces estimator pj' as previously defin-
ed. Then let us postulate that a second, more refined partitioning C” allows for the
construction of estimator pj If all of the classes coincide with the classes, except for one
¢ class divided into two parts (¢; and ¢, that is, c=c¢,Uc,), it would be interesting to find
a simple criterion for determining which of the two partitions (C’ or C") produces the smallest
variance, taking into account the r, factors in expression (4.1) above. We know that:

Var p” < Var p'

©G=Y (P.—P)'P.— Y, (P — P)*P,
ceC” ceC’
> Y rePie(1=P)Pe = Y rePie(1=Pj) P. = D.
ceC” ceC’



Survey Methodology, June 1986 91

The left-hand member G of the inequality can be expressed thus:

G= Y P.P.- Y, PLP,
ceC” ceC’
— p2 2 2
= Py, Py + Py,Py — PLP.. 4.2)

If class ¢ has been partitioned in the following way:

ne, = an; and n.,, = (1—a)n, when 0<a<1

1

we know that P, = aP;, + (1—a)P;,, that P, = aP. and, finally, that

P., = (1—a)P.. Expression (4.2) can therefore be written compactly as follows:

G = P.a(1—a) [Py, — Pi,1%.

Jel
Moreover, the right-hand member can be reduced to:

D = 1 Pie, (1= P;) Py + IeyPjey (1= Pje)) Poy—1.Pjc (1= P;;) P..

With respect to the relevance of refining the partitioning, by replacing relative variances
r. with the expression previously established, noting that the terms P, P, and P, are
negligible with respect to 1, we obtain:

D = (1/n) [Pje; (1 =Pje)) + Pje, (1=Pj;,) — Pjc(1-P;)]

Because of the convexity of function P(1— P) and the fact that P is a linear combination

Pj., and Pj., the value of D is limited in an upwards direction by 1/4n. Thus, for the

variance of p” to be smaller than that of p’, it is sufficient that:
P.a(l-a) [P, ~ Pi,]1? > 1/4n.

If P, is estimated using n./n on the basis of subsample S, this condition takes the follow-
ing form:

DIF = | P, — Pi,,| > ¥a(l — a)n. = DIFMIN (4.3)

Inequality (4.3) therefore reveals a simple rule that is sufficient to make it advantageous
to divide class c into ¢; U ¢,. As we might have expected intuitively, the larger the number
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Table 4.
Values of DIFMIN = Y~a(l — a)n, (in %)

n a=1/2 a=1/4 a=1/10
1000 3.1% 3.7% 5.3%
400 5.0% 5.8% 8.3%
200 7.1% 8.2% 11.8%
100 10.0% 11.5% 16.7%
80 11.2% 12.9% 18.6%
60 12.9% 14.9% 21.5%
40 15.8% 18.3% 26.4%
20 22.4% 25.8% 37.3%
15 25.8% 29.8% 43.0%
10 31.6% 36.5% 52.7%

of respondents in class ¢ (in sample S;) or the greater the difference between the P and

P, proportions, the more advantageous it is to refine the partitioning of the classes. Table

4 above presents the minimal differences (DIFMIN) corresponding to various values of n,
and a.

The above table tells us that, for example, if we have a class containing 100 respondents
which we are considering dividing into two more or less equal parts, there must be a dif-
ference of at least 10% between the two new classes where the j characteristic is concerned
if the refinement of the partitioning is to help reduce sampling error. If there is less than
a 10% difference between the two, refinement will serve no purpose, and may even increase
the variability of the estimates produced. Moreover, we can see that if subclasses ¢; and ¢,
are very unequal, the requirement regarding differentiated behaviour of their respondents
with respect to characteristic j (that is P, vs P,) is stronger. Thus, if ¢; represents approx-
imately 10% of ¢, the minimal difference (DIFMIN) is 16.7%.

In the specific case where class ¢ is divided more or less equally between ¢; and c¢,, the
minimal difference (DIFMIN) can be expressed very compactly:

DIFMIN = 1/ n,

In situations where class ¢ is divided into several components (c=c,Uc,U...Uc;), we can
apply the test described here, considering the smallest of subclasses c; on the one hand, and
all of the rest on the other. Since, in this case, a (or 1-¢) may be small, we can simplify the
rule expressed by inequality (4.3) and consider the minimal difference as follows:

DIFMIN = Y»/min (n,;)
J

It should be noted here that these results were developed by analogy in the context of
sampling in two phases, and that the rules which have been arrived at may apply both to
separate-ratio estimators and to poststratified estimators. For example, it is often useful to
determine up to what point refinement of a poststratification produces more precise results.
The rules set out here may therefore serve as a guide.
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5. CRITERION FOR CHOOSING ADJUSTMENT VARIABLES

Looking once more at the survey of voters’ intentions, we see that the degree of satisfac-
tion with the government can certainly serve as an adjustment variable for non-response with
respect to the question regarding voting intentions. However, is this really the best variable
we could use? If the survey instrument contains other questions connected indirectly with
voting intentions, on the basis of what criterion can we choose between, for example, satisfac-
tion, certain sociodemographic profiles (language, education) and the perception as to who
would make the best premier?

The two preceding sections show us that the more homogeneous the constructed classes
are, the more variance of the adjusted estimates is reduced and the more likely it is that the
bias itself will be smaller. It is therefore advantageous to create classes that maximize in-
terclass variance of estimator p;. With respect to algebraic expression (4.1), the partition-
ing chosen must maximize the quantity

INTERCL; = Y7 (P — P)*P,
<

For a multinomial variable X with parameters P,,P,, ... ,P,, the problem is finding a
statistic that incorporates all of the INTERCL quantities (f = 1, ... ,J). In this case, x>
merits consideration, since

xX*=NY Y (Pe-P)P/P; =N Y. PJUINTERCL;/P]]
i« J

In other words, XZ is equal to a linear combination of the relative values of the INT] ERCL/’s
weighted in function of the P/s. On the other hand, since B, = INTERCL;/P;(1 — P))
measures the proportion of the variance explained by division into classes, there is also
justification for considering the statistic

Y 8=Y Y (P.-P)P/P(1 - P).
Jj c

Note that the latter statistic is equivalent to x? in three specific situations: a) when X is
dichotomous; b) when the P;’s are almost equal; and c¢) when the P;’s are all small. In the
multinomial case, where it is important to refine estimation of a P for a particular j index,
we can therefore dichotomize variable X in function of this j index and use x? as a perfor-
mance criterion for division into classes. For our example, we will use x2, since this statistic
is produced directly by most of the software used for processing survey data.

6. APPLICATION AND INHERENT PROBLEMS

In the preceding discussion, we found a criterion for evaluating the performance of
weighting classes. In practice, however, variables which best explain variance may also be
affected by the non-response problem. This complicates the choosing of weighting classes
to some extent.

The following table presents a list of variables deemed interesting a priori by a researcher
for the purpose of weighting to adjust for non-response with respect to the voting-intentions
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question. For each potentially useful variable, there is a description of the value of ¥, the
number of missing values and the total number of missing values when the variable is cross-
ed with the question on voting intentions. Remember that the latter question, taken alone,
accounted for 619 non-responses in the survey.

The value of x? is very revealing with respect to the predictive force of the different
variables involved. For example, we can see that, among the sociodemographic variables,
only mother tongue has an impact that merits attention. On the other hand, some thematic
questions show an unequivocal link with voting intentions - in particular, that regarding
degree of satisfaction with the present government and that which asks which of the two
main party leaders would be the best premier. It is clear that the more a question is perceived
as being connected with the basic question, the more difficult it is to obtain responses. Only
56 non-responses were recorded for the more insignificant question regarding satisfaction
with the government (approximately 3% of the sample), but there were 392 non-responses
when people were asked who would be the best premier!

In the creation of weighting classes, it is therefore advantageous to try to use variables
strongly correlated with the phenomenon being studied, as well as variables which are both
strongly correlated and characterized by an excellent response rate. In addition, by crossing
the relevant variables with each other, we can create classes that are more homogeneous and,
consequently, increase the value of x>. Obviously, the degree of refinement of the classes
must be in line with the limiting criterion previously expressed by equation (4.3).

Table 5
List of Variables That Might Be Useful for Compensation, through Weighting, for
the Effect of Non-Response with Respect to the Question on Voting Intentions

Value Number of missing Number of missing
Variable? of data on the data upon cross-classification
X2 variable with voting intentions

Age (6) 34 4 620
Education (4) 8 3 621
Mother tongue (2) 96 0 619
Degree of satisfaction with

Quebec government (4) 382 56 625
Degree of satisfaction with

Quebec government (2) 346 56 625
Identification of best

premier (3) 773 392 686
Vote in 1981 provincial

election 109 269 658
Interest in politic 1 1 619
Degree of satisfaction with

federal government (4) 39 58 631
Voting intentions at

federal level (4) 288 694 832

% The figures in parentheses indicate the number of classes considered for the variables in question.
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Consider, for example, the formation of weighting classes on the basis of three variables
that are explanatory with respect to voting intentions - namely, identification of the party
leader who would be the best premier (3 response categories), degree of satisfaction with
the government (4 categories) and mother tongue (2 categories). At this stage, the idea is
to project the voting intentions determined for the respondents in a given class onto all of
the individuals in that class - that is, those for whom it has been possible to establish a
classification. The first step in the process is to refine the classes as much as possible on
the basis of the three variables involved and produce a cross tabulation of voting intentions
in accordance with these twenty-four (3x4x2) classes. Referring either to the criterion reveal-
ed in equation (4.3) or to Table 4, we eliminate through combination those classes which
are too small. Where necessary, we therefore group together ‘‘similar’’ classes - that is, classes
that have a similar voting-intentions profile. We are then in a position to produce a table
like that on the following page, in which voting intentions are cross-classified following this
new division. An examination of the data may also suggest a few groupings. In addition,
Table 6 presents other relevant data. For example, the last two lines compare by class the
number of individuals who answered the question regarding voting intentions with the total
number of individuals surveyed who can be classified in accordance with the three variables
involved. From this, we obtain a first weighting system. In the example, there are 283 per-
sons overall who can be classified, but whose voting intentions are not known. In addition,
the overall value of x2 is 891, a distinct improvement over the situation when the variables
were taken alone (Table 5).

Finally, in the B; column, for each P;, there appear estimates of the percentage of the
variance that can be attributed to interclass variance. These B;’s measure the increase in
precision (variance reduction) that can be attributed to adjustment of the data in accordance
with the type of partition chosen. This is clear if we rewrite equation (4.1) as follows (disregar-
ding relative variances):

Var p{ = Var p; — (1 — f)B; Var p;

Having a B; equal to 61.9% for estimation of intention to vote for the PQ means that,
from the point of view of variance reduction, adjustment of the data is equivalent to having
recuperated in the field 61.9% of the 283 non-responses for the question on voting intentions.

We now have the residual problem of determining how to adjust for non-response for
specific questions using variables that have themselves been affected by non-response.

In the example produced through division in accordance with Table 6, it is clear that a
significant portion of the non-responses with respect to voting intentions is not corrected
through this kind of weighting. In effect, we are left with 409 cases of non-response that
cannot be dealt with in this fashion, since classification with respect to a reference variable
cannot be determined. One possibility that might be explored here is establishment of a
weighting system that would allow us to use, for each non-respondent, the maximum number
of variables available for estimating the missing data. For example, the voting-intentions
profile of persons who did not respond to the question on voting intentions or to that asking
who would be the best premier, but who we know are Francophone and are satisfied with
the government in power, would be inferred on the basis of the voting-intentions profile of
the Francophone respondents satisfied with the government. A weighting system can easily
be developed for this process of attribution.
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Table 6.
Study of a Partitioning of the Sample

Best premier Johnson (PQ)
Satisfied . Very or Not very or
government Very Fairly Fairly not all all
Franco- Franco- Non- Franco- Non-
Mother tongue hone hone franco- hone franco-
p p phone P phone
% vote PQ 100 88.3 42.7 63.4 32.9
% vote PLQ 0.0 9.5 45.8 30.2 61.4
% vote Other 0.0 2.2 11.5 6.4 5.7
Number of respondents for the
classification and voting-
intentions questions 51 342 37 133 22
Number of respondents for the
classification questions 59 404 50 203 28
Best premier Bourassa (PLQ)
Satisfied Very or Not at
. Not very
government fairly all
Non- Non- .
Franco- Franco- Franco-
Mother tongue hone franco- hone franco- hone
P phone p phone p
% vote PQ 12.2 0.0 6.5 1.2 3.5
% vote PLQ 86.5 85.9 92.4 98.8 93.9
% vote Other 1.3 14.1 1.1 0.0 2.6
Number of respondents for the
classification and voting-
intentions questions 64 21 156 49 159
Number of respondents for the
classification questions 81 24 178 54 175

Other Neither Bour.
Best premier than either Bourassa TOTAL B; (")
nor Johnson

Johnson
Satisfied Not at Very or Not very or
government all fairly not all all
Non-
Mother tongue franco- -
phone
% vote PQ 0.0 14.3 4.6 42.7 61.9
% vote PLQ 100.0 73.5 54.9 52.6 58.7
% vote Other 0.0 12.2 40.5 4.7 15.1
Number of respondents for the
classification and voting-
intentions questions 42 17 51 1144 (x> = 891)

Number of respondents for the
classification questions 49 32 89 1427
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