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The Maximum Likelihood Method for
Non-Response in Sample Surveys

M.S. SRIVASTAVA and E.M. CARTER!

ABSTRACT

The analysis of survey data becomes difficult in the presence of incomplete responses. By the use of
the maximum likelihood method, estimators for the parameters of interest and test statistics can be
generated. In this paper the maximum likelihood estimators are given for the case where the data is
considered missing at random. A method for imputing the missing values is considered along with the
problem of estimating the change points in the mean. Possible extensions of the results to structured
covariances and to non-randomly incomplete data are also proposed.
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1. INTRODUCTION

Examples of non-response in sample surveys are in abundance. Various attempts with vary-
ing degrees of success have been made in the literature to solve this problem. The success
of a particular procedure is dependent on the complexity of the problem. For example, when
the data is not missing at random, the problem is far from being solved. The recent attempts
by Heckman (1976) and Greenlees et al. (1982) among others, are highly sensitive to model
misspecification. Similarly the hot-deck method has been severely criticized in the literature.
However, when the sample size is large, the hot-deck method and a carefully designed regres-
sion method yield similar results in imputing the non-response income in Current Popula-
tion Survey (CPS). See David, Little, Samuhel and Triest (1986).

The regression method is based on the assumption that the non-response is random, but
unlike the hot-deck method does not require complete information from a previous census,
which in a majority of cases is non-existent. Thus it appears that a carefully designed regres-
sion method may be of great help.

In this paper, the situation when the non-response is random is considered. Random non-
response arises naturally in many situations. For example, in successive sampling, the sampling
starts with a certain number of people from whom certain observations are obtained for a
period of time. At the end of this period, some people are dropped from the survey and
new people are added. The survey continues in this manner until completion. Examples of
this nature are considered by Woolson, Leeper and Clarke (1978) and Woolson and Leeper
(1980).

Even when the non-response in not random, the non-random nature of the incomplete
data may be accounted for, by using a sufficient number of explanatory variables in the regres-
sion model and employing some of the techniques used in the hot-deck method as was done
in David et al. (1986) for a univariate model. For example, in Section 2.5 a method for im-
puting the missing values is given.
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In the course of developing these results, a method will be derived for checking if there
have been any changes over time in the response patterns. The models used can also be
modified to include error variance-covariance matrices that are structured by the imposition
of a time series to the reponse variables. In this paper it is assumed that the data are normal-
ly distributed from a simple random sampling scheme and that the data are missing at ran-
dom. If the normality assumptions is dropped then the estimators can no longer be considered
maximum likelihood estimators but may still be considered as good heuristic estimators.

In the next section, the form of the model will be described for the one sample problem.

2. THE ONE SAMPLE PROBLEM

2.1 The Model

The bivariate incomplete data problem is considered first to introduce the general pro-
cedure that follows. Let y = (¥;, ¥,)' be a bivariate random vector with mean vector p and
covariance matrix L. Without loss of generality, the missing data in the bivariate situation
can be described as follows:

Vils o5 ylnlx yl,n1+11 vees yl,n1+n2J ______________ (1)

Va1 > y2n1’ ___________ y2,n1+n2+1: e y2,n1+n2+n3

That is, there are n, pairs of observations, n, observations on y; with the corresponding
observation on y, missing, and n; observations on y, with the corresponding observation
on y, missing. Thus N = n; + n, + n3 observations are grouped into three subsets. If the
complete data set were to be represented as yy, ..., ¥y, then the actual observed responses
can be defined as h h

Elj = BIXJ = _Xj » forj l, veey Ny,

n + 1, ey M+ N,

zy = Byy; = yi;, forj
and
Z3j = B3'Xf = _y2j, forj =n + ny + 1, s My + n; + nj,

where B, = I,, the identity matrix, B, = (1 0) and B; = (0 1).

For the general multivariate one sample problem, there will be K subsets of the data contain-
ing ny, ..., ng observations. Note that the maximum number of groups is 27 — 1. Also the
total sample size is N = n; + ... + ng. If the k-th subset contains py characteristics
i, ..., ip,, then the matrix B, would be a p, X p matrix with a one in the (s, i;) position
fors = 1, ..., p; and zero elsewhere. With this notation the observed vectors of responses
can be written as:

2k = Bk J =1, oo i k=1, ..,K
Hence,
E(zkj) = By ps
and
cov(zy) = BXEIB,,j=1,..,mand k=1, .., K
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Example 1: (Data)

Wei and Lachin (1984) give the cholesterol levels for a treatment group studied at times
0, 6, 12, 20 and 24 months. For reasons not pertaining to the response variable, certain obser-
vations were incomplete. The data can be grouped into X = 8 subsets. For the first group
of complete data the sample mean and covariance matrix, based on 36 observations, were:

(22667 (1964 1301 1151 960 1008

249.6 1301 1715 1109 1023 1199

Zi= | 2526 | , S = | 1151 1109 1554 697 1266
253.1 960 1023 697 1148 667
| 256.7 L 1008 1199 1266 667 2546 |

The data for each of the other subsets is given in Table 1 with the imputed values in paren-
thesis.
The matrices that define the model for the observed values are:

10000 10000
01000 01000
B, =1, B, = ) By = )
00100 00010
00010 00001
10000 10000
10000
B,=| 01000 , Bs=| 01000| , Bg=
01000
00100 00001
=(10000), By = (0100 0).

Now that the model is defined, estimation of the parameters and the imputation of the
missing data can be performed.

2.2 Estimation of the Population Mean Vector and Covariance Matrix.

For each of the K subsets define the sample mean as

k - (nk) E Zk/
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Table 1
Observed Cholesterol Levels and Imputed Values
Variable 1 2 3 4 5
Subset 2: n, =7 224 273 242 274 231
231 252 267 299 (233)
268 296 314 330 (303)
284 288 268 261 (300)
217 231 276 257 (238)
209 200 269 233 (323)
200 261 264 300 (279)
Subset 3: ny =1 193 189 (257) 232 211
Subset 4: ng = 12 201 219 220 231 (172)
202 186 253 (245) (328)
209 207 167 (208) (194)
212 253 225 157) (194)
276 326 304 (300) (376)
163 179 199 211 (224)
239 243 265 (238) (246)
204 203 198 (234) (171)
247 211 225 224) (215)
195 250 272 (265) (231)
228 228 279 (276) (259)
290 264 260 (249) (325)
Subset 5: ns =1 227 247 (215) (267) 220
Subset 6: ng =5 250 269 (327) (250) (295)
175 214 (250) (210) (210)
260 268 (327 (248) (321)
197 218 (235) @2s51) (258)
248 262 (286) (251) @71
Subset 7: ny =2 193 209) (219) (230) (255)
256 77) (294) (260) (281)
Subset 8: ng = 1 (284) 327 (287) (336) (309)

Note: Total sample size is N = 65.
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Then
E(Zy) = By,
cov(Zx) = ng '(BEBL),

and the Z; are independently distributed for k = 1, ..., K. Applying the least squares theory,
we minimize

K
Y tr m (BEBL) 'z — Bipllzi — Bipl'.
k=1

The solution for a given value of ¥ is

-1

K K
p= [ Y By (Bsz,:)"‘Bk] [ Y mBi (B@Bé)“zk} 2)
k=1

k=1

If a normal distribution is assumed, then the least squares estimator is also the maximum
likelihood estimator. Little (1982) has suggested the use of the EM algorithm for this pro-
blem and claimed that the normal distribution assumption is not necessary. That is, estimators
of yand ¥ can be defined as the solution of the normal likelihood equations even if the underly-
ing population is not normal. These estimators cannot then be considered maximum likelihood
estimators, but only heuristic estimators that are consistent under certain general conditions.
However, if a normal distribution is not assumed, then there is no justification in maximiz-
ing the normal likelihood equations to obtain estimators. An alternative heuristic estimator
for L is given at the end of this section. The maximum likelihood estimator for £, assuming
normality, are given from Srivastava (1985) as the solution of the following equation:

K K
H =Y nBi(BEB,)™'B. — Y B{(BEB;) 'V (BIB;) By = 0, ®
k=1 k=1

where
Vk = (Ekl - BkE) ceeny Ek,nk - Bkﬁ) (Ekl - BkE; secny Ek,nk - Bk&),-

Methods for computing the solutions of (2) and (3) are given in Section 3.

Note: Alternate estimators for the covariance matrix can be defined heuristically without
the normality assumption. For example ¥ can be defined as the value of I that
minimizes

K
E n U tr[ (BEBL) ~ W — nidi)? 4)
k=1

However, the covariance matrix must be positive definite; therefore any expression that
is minimized must yield a positive definite solution. If one of the groups contains complete
data, then (4) will be infinite for any singular matrix Z; hence, there will exist a minimum
for (4) in the space of positive definite matrices. A similar argument holds for the maximum
likelihood estimators.
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2.3 Asymptotic Distribution of j.
From (2) it follows that jiis asymptotically normally distributed with mean p and covariance
matrix

K
P =Y mBj (BB} 7 &)
k=1

which can be estimated by P obtained from P by substituting the ¥ for E. Using this asymp-
totic theory, tests of significance and confidence regions (intervals) for p or linear combina-
tions of p can be obtained. Alternatively, the likelihood ratio tests given by Srivastava (1985)
may be used for testing the hypothesis H:u = 0 against the alternative A: pu # 0. The
likelihood ratio test rejects the null hypothesis A if -

» = [] 1 BEBY) /| BEEBL| 1" > x2 o

where L is the MLE of T under H and X;Z;, . is the upper 100a% point of a chi-square
distribution with p degrees of freedom.

2.4 Maximum Likelihood Estimates for Example 1

The maximum likelihood estimates for example 1 were obtained as:

(226.82 ) " 1809 1220 1033 873 913 )
246.78 1220 1642 992 1017 1121
i = 252.02 and L= 1033 992 1438 718 1189
255.15 873 1017 718 1233 915

L 255.22 ) L 913 1121 1189 915 2508 )

The estimated covariance matrix for the estimate of the mean vector is

(28.05 18.78 15.96 13.46 14.08)
18.78 25.67 15.42 15.84 17.51
Pl = 15.96 15.42 24.19 11.24 19.31
13.46 15.84 11.24 23.33 15.38

_ 14.08 17.51 19.31 15.38 54.77 )

Inference on p can be made from the asymptotic distribution of the estimators given in
Section 2.3.
2.5 Imputation

The imputation of the missing data can be made from the conditional distribution of the
unobserved data given the observed data. That is define the matrices Cx for k = 1, ..., K
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to be the complements of B,. That is for a p, X p matrix B, with ones as the (s, i;) en-
tries for s = 1, ..., p; and 0’s elsewhere, the matrix C, is defined as the (p — py) X p
matrix with ones in the (¢, i,) position and 0’s elsewhere for i, # i; for all
t=1,.., (p — p) and s = 1, ..., p;. If the response vector y;; corresponds to the j-th
observation from subset &, then the actual observed response vector is zy; = Byy,; and the
unobserved vector is u,; = Cyyy;. The estimated value for the missing vector is given by

dy = Cep + [CEBL1IBEBL) ™ (24 — Biit) 6)

Note that the estimated values for the missing vector have no random error. If the data
is to be used at a subsequent analysis, with these imputed values, as if it were a complete
data set, then the estimated error covariance matrix will be too small. The problem of
underestimating the covariance matrix can be overcome by adding in an appropriate residual
€ to the estimated value ;. If the first subset of complete data is sufficiently large then
the residual vectors for missing observations in subset & can be randomly drawn from the
set of values

(Ceyii — Cep) — [CEBLYIBEBL] ™ (Buyy — Byin) fori = 1, ..., ny. )

Example 1 (continued):

The complete data set, including the imputed values based on (6) and (7) are given in Table
1 for subsets 2-8 with the imputed values in parenthesis.

3. COMPUTATIONAL PROCEDURES

Equations (2) and (3) can be solved iteratively. A procedure using a combined Newton-
Raphson and steepest ascent method is given in Carter (1986) for a general case that includes
linearly restricted means and covariances. The procedure is a generalization of the one given
by Hartley and Hocking (1971). The method can be described as follows. For an initial choice
of L, say X,, suppose

E=Eo+/\

is a solution. This expression is substituted into (3) and the equation is then expanded in
a series involving only the linear terms of A. The following approximate solution for A results.
Define

K
Q= E (Dy®D, — DRF, — F,QD,),
k=1

where A®B denotes the kronecker product of two matrices 4 and B defined by
A®B = (a;B),
Dy = B[ (BLoB;) ~'By,
and
Fy = B} (ByZoBi) ~'Vi(BZoB; ) ~'By.
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For any matrix A = (ay, ..., a,)', we define vec(A4) = (a,', ..., gq’)’. Then (3) can
be written as approximnately

0O vec(A) = vec(E),

where

K
Y (D - Fo).
k=1

To insure the nonsingularity of Q, we shall write the solution for vec(A) as
vec(A) = (Q + N) ~! vec(E), ®)

where A is allowed to vary with the algorithm but is initially set to a very small number.
For a given value of L, i is obtained from (2) and then a value of A is obtained from (8)
to produce an updated estimate for L. The procedure is then iterated until a desired level
of convergence is reached.

The above method can be extended to more complex structured covariance matrices;
however, the procedure does require the inversion of Q + NI, For a large number of variables
this matrix will be extremely large. In this instance the alternate method of solving (3) using
the EM algorithm is preferable. Again the procedure is iterative, so calculations must be
performed using the updated estimates of y and L at each iteration. For an initial choice
of ¥ say L, define the complete predicted vector ikj = By 'z + Ci'jyj» where the
predicted missing value fi; is given in (6). Then

=
Il

K n
N Y Y

k=1 j=1
Define the matrix V by

=)

I"$Z>
I‘;‘.‘ >
~

K ny
) E (g
k=1 :
The updated estimate of L is then given by
K
= (UNIV + Y nCi HCyl,

k=1

where H, is the conditional variance of the incomplete data given the observed data for the
k-th class defined by

Hy = CEC, — (CIBY) (BEIB) ~H(BELC)).

The procedure is then iterated. The EM algorithm is advantageous for those situations where
there exists simple closed form solutions for the likelihood equations in the complete data
situations. If a Newton-Raphson procedure is necessary to solve the complete data likelihood
equations then little is gained from the EM algorithm.
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4. A REGRESSION MODEL

4.1 Incomplete Response Variables.
The model discussed in section 2 can be extended to handle the regression situation. The
data is again partitioned into K subsets. Then the following regression model is formed:

Zk = B]éBAk + €ks for k = 1, vees K,

where Z, is a p, X n;, matrix of observed values, § is a p X g matrix of unknown
parameters, B, is as defined in Section 2, A is the design matrix for the matrix Z, and the
columns of ¢ are independently distributed with mean 0 and covariance matrix B,LB;. For
a given L, the least squares estimator of 8 can be written from Carter (1986) explicitly as

vec B = p! vec(E),

where «
P = Y mBi (BZIBi) 'By ® A AL, (10)
k=1
K
E = E B, (B,LB.)'Z,A}. (11)
k=1

The maximum likelihood estimator of I is given by the same formula as (3), except that now

Vi = [Zk — BiBAZi — BiBAL" . (12)

The asymptotic distribution of 8 can be written in the form

vec(B) ~ Npg(vec(B), P71). (13)

Inference on the regression parameters can be made from this asymptotic distribution or
from the likelihood ratio statistic given in Srivastava (1985).

4.2 Incomplete Explanatory Variables

In Section 3.1, the design matrices were assumed to be known completely. In some in-
stances the explanatory variables can also be incomplete. If the explanatory variables are
random, then these missing values can first be imputed for the explanatory variables given
the observed data, using the procedure of Section 2 . Once imputed values for the explanatory
variables are obtained then the method of Section 3.1 can be applied to estimate the regres-
sion parameters and to impute the missing response variables.

4.3 The Likelihood Ratio Test.

The likelihood ratio procedure can be used to determine if the variables in the model are
significant. To test the hypothesis

H: 3 = BF vs A:f # BF,
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for Fanm x g matrix of full rank, the estimates of T are obtained under the null hypothesis
(L) and under the alternate hypothesis (r). The null hypothesis is rejected at the o level
of significance if

= 200X\ > X{g-mpi e

where
K -
N = T |B&EBi| " / | BB | (14)
k=1

5. ESTIMATING A CHANGE POINT

Consider a sequence of observations y;, j = 1, ..., N, with expected values E(y;) = p;.
Srivastava and Worsley (1986) have given a procedure for estimating the point of change
of the mean vectors g ;. It is first assumed that the change occurs at some point r. Then the
following hypothesis is tested.

The likelihood ratio statistic is then calculated as A,, for r = 1, ..., N —1. The estimated
point of change is that value of r that yields the maximum value of A,.

The existence of incomplete data poses no problems for estimating the change point. The
linear model is set up as for the complete data case, then the observations are grouped into
the K subsets. Suppose that the observed portion of y; is 2. Then under the alternate
hypothesis for a given r, L the estimate for E is given from (3) for the regression model defined
in (9)-(12), where the parameter matrix § is defined as

6= (El, Ez)

and the design matrix for the k-th subset is defined by

[1 .. 10 ... OJ

A = ,

0..01..1

where the i-th column of A4, has a one in the first row if observation z,; corresponds to the
vector y;and j < r and zero otherwise. Under the null hypothesis the population mean vec-
tor is considered the same for all N observations; hence, L the estimate for I is given from
(2) and (3) for the one population mean problem. The likelihood ratio statistic is obtained
from (14).

Modifications of this procedure are possible. For example the vectors y; forj = 1, ..., N
could be sample means for N sampling time points. Multiple change points can be obtained
by repeating the procedure on each section of the data. For 50 observations, if the change
point occurs at point 20 then the procedure is repeated for points 1-20 and 21-50.
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6. STRUCTURED COVARIANCE MATRICES

For longitudinal studies the error vectors over time may not be arbitrary, but may follow -
a time series model. If such a model can be assumed, then the number of parameters to be
estimated is reduced. A stationary time series would assume that the covariance matrix &
can be written as

f 1 L1 eeees Pp—1 h
P1 1 P1: Pp-2
L =02 ) . . (15)
U Pp—1 Pp—2 «eeeenee 01 1 D,

Further models can be obtained. The correlations p; can be structured. For example p; can
be set equal to p!/!. The likelihood equations can be solved using the Newton-Raphson
technique. Carter (1986) considered the case where the covariance matrix can be written as
vec(Z) = Gy for some matrix G. By defining y; = o%p;fori =1, ..., p — land Yp = a?,
then the covariance matrix for the stationary time series can be expressed in this linearly

restricted form. For example for p = 3 we have

(o) (001 Y1
o12 100 Y2
a3 010 Y3
a1 100
02> = 001
023 100
031 010
032 100

L 033 ) L001 )

The estimate of I can be solved numerically from the likelihood equation G’ H = 0, where
H is defined in (3). Numerically the Newton-Raphson algorithm from Section 3 can be
employed with the modification that the estimate for +y at each iteration is given by

v = (G'QG + N)~'G’ vec(E).
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