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Basic Ideas of Multiple Imputation for Nonresponse

DONALD B. RUBIN!

ABSTRACT

Multiple imputation is a technique for handling survey nonresponse that replaces each missing value
created by nonresponse by a vector of possible values that reflect uncertainty about which values to
impute. A simple example and brief overview of the underlying theory are used to introduce the general
procedure.
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1. INTRODUCTION

Any statistician with experience in the field of surveys knows that essentially every survey
suffers from some nonresponse. That is, in practical surveys, some items in the survey in-
strument are not answered by all units included in the survey. Commonly, the items likely
to be unanswered are the more sensitive ones, such as those concerning personal income.
Because nonresponse creates missing values, the complete-data statistics that would have been
used in the absence of nonresponse can no longer be calculated. An obvious desire of both
the data collector and the data analyst is to get rid of the missing values and thereby restore
the ability to use standard complete-data methods to draw inferences.

1.1 Imputation

It is not surprising, therefore, that a very common method of handling the missing values
created by nonresponse is to fill them in, or impute them. That is, when using imputation
to handle nonresponse each missing value is replaced with a real value. Many different pro-
cedures have been proposed for imputation, for instance, filling in the respondents’ mean
for that variable or a value predicted from the modelling of the missing variable given observed
variables using respondent data; as a specific example, when the missing value is personal
income, a linear regression model predicting log(income) from demographic characteristics
such as age, sex, education and occupation might be regarded as reasonable.

1.2 Advantages and Disadvantages of Single Imputation

In addition to the obvious advantage of allowing complete-data methods of analysis, im-
putation by the data collector (e.g. the Census Bureau) also has the important advantage
of being able to utilize information available to the data collector but not available to an
external data analyst such as a university social scientist analyzing a public-use file. This in-
formation may involve detailed knowledge of interviewing procedures and reasons for
nonresponse that are too cumbersome to place in public-use files, or may be facts, such as
street addresses of dwelling units, that cannot be placed on public-use files because of con-
fidentiality constraints. This kind of information, even though inaccessible to the user of
a public-use file, can often narrow the possible range of imputed values.
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Just as there are obvious advantages to imputing one value for each missing value, there
are obvious disadvantages of this procedure arising from the fact that the one imputed value
cannot itself represent any uncertainty about which value to impute: If one value were really
adequate, then that value was never missing. Hence, analyses that treat imputed values just
like observed values generally systematically underestimate uncertainty, even assuming the
precise reasons for nonresponse are known. Equally serious, single imputation cannot repre-
sent any additional uncertainty that arises when the reasons for nonresponse are not known.

1.3 Multiple Imputation to the Rescue

Multiple imputation, first proposed in Rubin (1977, 1978), retains the two major advan-
tages of single imputation and rectifies its major disadvantages. As its name suggests, multi-
ple imputation replaces each missing value by a vector composed of M = 2 possible values.
The M values are ordered in the sense that the first components of the vectors for the miss-
ing values are used to create one completed data set, the second components of the vectors
are used to create the second completed data set and so on. The first major advantage of
single imputation is retained with multiple imputation, since standard complete-data methods
are used to analyze each completed data set. The second major advantage of imputation,
that is, the ability to utilize data collectors’ knowledge in handling the missing values, is not
only retained but actually enhanced. In addition to allowing data collectors to use their
knowledge to make point estimates for imputed values, multiple imputations allow data col-
lectors to reflect their uncertainty as to which values to impute. This uncertainty is of two
types: sampling variability assuming the reasons for nonresponse are known, and variability
due to uncertainty about the reasons for nonresponse. Under each posited model for
nonresponse, two or more imputations are created to reflect sampling variability under that
model; imputations under more than one model for nonresponse reflect uncertainty about
the reasons for nonresponse. The multiple imputations within one model are called repeti-
tions and can be combined to form a valid inference under that model; the inferences under
different models can be contrasted to reveal sensitivity of answers to posited reasons for
nonresponse.

Before reviewing some more general results in Section 3, Section 2 illustrates essential ideas
in a highly artificial example used in Rubin (1986a), which is a comprehensive treatment of
multiple imputation. Other references on multiple imputation include Rubin (1979, 1980,
1986b), Herzog and Rubin (1983), Li (1985), Schenker (1985), Rubin and Schenker (1986),
and Heitjan and Rubin (1986).

2. AN ARTIFICIAL EXAMPLE ILLUSTRATING MULTIPLE IMPUTATION

Suppose we have taken a simple random sample of # = 10 units from a large population.
The objective of the survey is to estimate Y the mean of Y in the population. We know the
mean value of a covariate X in the population, and the survey attempts to record both X
and Y for each of the » units included in the sample.

Table 1 presents the observed values of (Y, X) for the ten units in the sample where the
question marks indicate missing Y data due to nonresponse.

2.1 Multiply Imputing for the Missing Values

Suppose the missing values in Table 1 are to be multiply imputed using two values drawn
under each of two models (i.e. two repetitions per model). In general, any number of models
can be used with any number of repetitions within each model. Model 1 is an ‘‘ignorable’
model for nonresponse; ignorable is defined precisely in Rubin (1976), but essentially it means
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that a nonrespondent is only randomly different from a respondent with the same value of
X. Model 2 is a nonignorable model and posits a systematic difference between respondents
and nonrespondents with the same value of X. The repeated imputations under each model
are based on a simple procedure closely related to the hot-deck, which can be improved upon
but is useful to illustrate ideas.

For each nonrespondent, the two closest matches among the respondents are found, where
the distance for matching is defined by the values of X. For the first nonrespondent, unit
2, the two closest matches are units 1 and 3, and for the second nonrespondent, unit 4, the
closest matches are 3 and 5. The repeated imputations are created by drawing at random
from the two closest matches. For the ignorable model, we simply impute the value Y pro-
vided by the matching respondent: the first two columns of Table 2 give the result. For the
nonignorable model, we suppose that the nonresponse bias is such that a nonrespondent will
tend to have a value of Y 20% higher than the matching respondent’s value of Y: the last
two columns of Table 2 give the result where the Y values have been rounded to the nearest
integer. The repeated imputations within each model allow the user to draw a valid inference
under that model. The use of two models, an ignorable one and a nonignorable one, allows
the display of sensitivity of inference to assumptions about nonresponse. Generally such
assumptions are untestable using the data at hand.

Table 1
Observed Data

Unit Y X
1 10 8
2 ? 9
3 14 11
4 ? 13
5 16 16
6 15 18
7 20
8 4
9 18 20

10 22 25

Table 2

Multiple Imputations for Data of Table 1

Model 1 Model 2
Repetition Repetition
1 2 1 2
Unit 2 10 14 12 17

Unit 4 16 14 19 17
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2.2  Analyzing the Resultant Multiply-Imputed Data Set

Each set of imputations, that is each column of Table 2, can be used with the incomplete
data in Table 1 to create a completed data set. Since there are four sets of imputations, four
completed data sets can be created; these are displayed in Tables 3 to 6. Each completed
data set is analyzed just as if there had been no nonresponse.

Assume that with complete data, the ratio estimator Xy/x would be used with associated
variance SE?, where X is the known mean of X in the population, say 12, ¥ and X are the
means of Y and X in the random sample of » units, and

SE? = Y (Y, — X3/%)%/[n(n — 1)]

Table 3

Complete Data Set 1 (Model 1, Rep. 1)
For Mulitiply Imputed Data Set of Tables 1 and 2

Unit Y X
1 10 8
2 10
3 14 11
4 16 13
S 16 16
6 15 18
7 20 6
8 4 4
9 18 20
10 22 25

means 14.5 13

Table 4
Complete Data Set 2 (Model 1, Rep. 2)
For Multiply Imputed Data Set of Tables 1 and 2

Unit Y X
1 10 8
2 14 9
3 14 11
4 14 13
S 16 16
6 15 18
7 20 6
8 4 4
9 18 20
10 22 25

means 14.7 13
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Table 5
Complete Data Set 3 (Model 2, Rep. 1)

For Multiply Imputed Data Set of Tables 1 and 2

Unit Y X
1 10 8

2 12 9

3 14 11

4 19 13

5 16 16

6 15 18

7 20 6

8 4 4

9 18 20

10 22 25
means 15 13

Table 6
Complete Data Set 4 (Model 2, Rep. 2)
For Multiply Imputed Data Set of Tables 1 and 2

Unit Y X
1 10 8

2 17 9

3 14 11

4 17 13

5 16 16

6 15 18

7 20 6

8 4 4

9 18 20

10 22 25
means 15.3 13

Table 7
Ratio Estimates and Associated Variances of Estimates
for the Complete Data Sets of Tables 3-6
Model 1 Model 2
Repetition Repetition
1 2 1 2

Estimate 13.38 13.57 13.85 14.12
Variance 2.96 3.19 3.38 3.84

41
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Table 8

Combined Estimates and Variances for the Multiply
Imputed Data Sets of Tables 1 and 2

Model 1 Model 2
Estimate 13.48 13.98
Variance 3.10 3.66

where the sum is over the units in the sample. Table 7 presents the estimates and variances
associated with each of the four completed data sets given in Tables 3-6.

The two answers obtained under the same model can be combined to obtain one inference
for Y under each model. The results are displayed in Table 8: the estimate is the average
of the estimates and the variance associated with this estimate has two components: (i) the
average within-imputation variance associated with the estimate and (ii) the between-
imputation variance of the estimate. Thus, under Model 1, the estimate is
(13.38 + 13.57)/2 = 13.48; the associated estimated average within variance is (2.96 +
3.19)/2, and the associated estimated between variance is [(13.38 — 13.48)% + (13.57 —
13.48))]. The estimated variances are combined as: (estimated total variance) = (estimated
average within variance) + (1 + M~') x (estimated between variance), where the factor
(1 + M 1) multiplying the usual unbiased estimate of between variance is an adjustment
for using a finite number of imputations. The associated 95% interval estimate for Y is (10.0,
16.9) under Model 1 and (10.2, 17.7) under Model 2. In practice, better intervals can be formed
by calculating degrees of freedom as a simple function of the variance components and us-
ing the 95% points appropriate to the corresponding #-distribution; when either M is large
or the between variance component is small relative to the total variance (as in this artificial
example), the degrees of freedom will be large and thus the normal 95% points will be used.
Details are given in Section 3.

The essential feature to notice in this illustrative example is that only complete-data methods
of analysis are needed. We merely have to perform the complete-data analysis that would
have been used in the absence of nonresponse on each of the completed data sets created
by the multiple imputations. The resultant answers under each model are then easily com-
bined to give one inference under each model. Although not illustrated here, diagnostic
analyses using complete-data techniques can be applied to each completed data set; Heitjan
and Rubin (1986) provides several examples.

3. GENERAL PROCEDURES

The example in Section 2 illustrated methods for creating multiple imputations and analyz-
ing the resultant multiply-imputed data set in a special case. We now outline the methods
needed for general practice.

3.1 Proper Imputation Methods

Multiple imputations ideally should be drawn according to the following general scheme.
For each model being considered, the M imputations of the missing values, Y, are M
repetitions from the posterior predictive distribution of Y,,, each repetition being an
independent drawing of the parameters and missing values under an appropriate Bayesian
model for the posited response mechanism. In practice, implicit models such as illustrated



Survey Methodology, June 1986 43

in Section 2 can often be used in place of explicit models. Both types of models are illustrated
in Herzog and Rubin (1983), where repeated imputations are created using an explicit regres-
sion model and an implicit matching model, which is a modification of the Census Bureau’s
hot-deck.

Procedures that incorporate appropriate variability among the repetitions within a model
are called proper, which is defined precisely in Rubin (1986a). The essential idea of proper
imputation methods is to properly reflect sampling variability when creating repeated im-
putations under a model. For example, assume ignorable nonresponse so that respondents
and nonrespondents with a common value of X have Y values only randomly different from
each other. Even then, simply randomly drawing imputations for nonrespondents’ from mat-
ching respondents’ Y values ignores some sampling variability. This variability arises from
the fact that the sampled respondents’ Y values at X randomly differ from the population
of Y values at X. Properly reflecting this variability leads to repeated imputation inferences
that are valid under the posited response mechanism.

In the context of simple random samples and ignorable nonresponse, Rubin and Schenker
(1986) study hot-deck imputation (i.e. simply randomly drawing imputed values from
respondents), which is not proper, and a variety of proper imputation methods based on
both explicit and implicit models, including a fully normal model, the Bayesian Bootstrap
(Rubin, 1981), and an approximate Bayesian Bootstrap. The Approximate Bayesian Bootstrap
(ABB) can be used to illustrate how an intuitive imputation method, such as the simple ran-
dom hot-deck, can be modified to be proper.

3.2 Example of a Proper Imputation Method with Ignorable Nonresponse - The ABB

Consider a simple random sample of size n with ng respondents and nyg = n — ny
nonrespondents. The ABB creates M ignorable repeated imputations as follows. For

= 1, ..., M, create n possible values of Y by first drawing 7 values at random with replace-
ment from the ny observed values of Y, and second drawing the ny; missing values of Y
at random with replacement from those n values. The drawing of the nyg missing values
from a possible sample of n values rather than the observed sample of ny values generates
appropriate between imputation variability, at least in large samples, as shown by Rubin
and Schenker (1986). The ABB approximates the Bayesian Bootstrap by using a scaled
multinomial distribution to approximate a Dirichlet distribution.

3.3 Analysis - The Repeated Imputation Inference

The general methods for analyzing a multiply imputed data set implicitly assume proper
imputation methods have been used to create the multiple imputations. As illustrated in Sec-
tion 2, the repeated imputations within each model are analyzed as a collection to create
one repeated-imputation inference as follows. Each data set completed by imputation is analyz-
ed using the same complete-data method that would be used in the absence of nonresponse.
More precisely, let 8,,U,,f = 1, ..., M be M complete-data estimates and their associated
variances for a parameter O, calculated from the M data sets completed by repeated imputa-
tions under one model for nonresponse. The final estimate of © is

— M N
=1

The variability associated with this estimate has two components: the average within-
imputation variance,

M
UM = E Ug/M,
=1
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and the between-imputation component,
By =Y (6, — 6y)%/ (M—1)

where with vector ©, (+)? is replaced by (+)T(+). The total variability associated with O, is
then

Ty = Uy + (1 + M~ Y)By,.

With scalar O, the reference distribution for interval estimates and significance tests is a
t-distribution.

(0 —Oy) Ty'? ~ 1,
where the degrees of freedom,
= (M= D1+ [(1 +M Y)By /U]~ "}?

is based on a Satterthwaite approximation (Rubin and Schenker 1986 and Rubin 1986a).

The within to between ratio U,/ B, estimates the population quantity (1 — v) /v, where

v is the fraction of information about © missing due to nonresponse. In the case of ignorable
nonresponse with no covariates, y equals the fraction of data values that are missing.

3.4 Significance Levels for Multicomponent O

For © with k components, significance levels for null values of © can be obtained from
M repeated complete-data estimates, 6,, and variance-covariance matrices, U,, using
multivariate analogues of the previous expressions.

A simple procedure described in Li (1985) and Rubin (1986a) that works well for M large
relative to k is to let the p-value for the null value O, of O be Prob {Fk » > Dy} where
Fy, is an F random variable and Dy, = (6 — 6, Tat' (69 — GM) with v defined by
generalizing B,/ U, to be the average diagonal element of B,/ Ut trace (By Ui’ ) / k.
Better procedures are described in Rubin (1986a). Less precise p-values can be obtained directly
from M repeated complete-data significance levels; also see Rubin (1986a).

4. DISCUSSION

4.1 Frequency Evaluations

Although repeated imputation inferences are most directly motivated from the Bayesian
perspective, they can be shown to possess good frequency properties. In fact, the definition
of proper imputation methods means that in large samples infinite-M repeated imputation
inferences will be valid. Since the finite-M adjustments are derived using approximations
to Bayesian posterior distributions, however, deficiencies can arise with finite M. For exam-
ple, the large sample relative efficiency of 0,,to 0., that is, the efficiency of the finite-M
repeated imputation estimator using proper imputation methods relative to the infinite-M
estimator in units of standard errors is (1 + /M) ~1/2. Even for relatively large v, modest
values of M result in estimates ©,, that are nearly fully efficient.
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4. 2 Confidence Coverage

In large samples the confidence coverage of proper imputation methods using the #-reference
distribution can be tabulated as a function of M, v and the nominal level, 1 — «. Table
9 is from Rubin (1986a) and is also partially reported in Rubin and Schenker (1986) and
Schenker (1985). Also included are results for single imputation, where the between compo-
nent of variance is set to zero, since it cannot be estimated, and the reference distribution
is the normal, since v cannot be estimated without B,,. Even in extreme cases, two or three
repeated imputations yield nearly valid confidence coverages; this is in striking contrast to
using only one imputation. Even worse coverages for single imputation would have been
obtained using best prediction methods, such as *“fill in the mean’’.

Table 9

Coverage probabilities in % of interval estimates based on the f-reference distribution as a function
of the number of proper repeated imputations, M = 2, the fraction of missing information, v, and
the nominal level, 1 — «. Also included for contrast are results based on single imputation M = 1,
using the normal reference distribution with the between component of variability set to zero.

Y

l-« M .1 2 .3 4 .5 .6 7 .8 .9
1 46 42 38 34 30 26 22 18 12

2 50 50 51 51 50 50 50 50 50

50% 3 50 50 50 50 50 50 50 50 50
5 50 50 50 50 50 50 50 50 50

o0 50 50 50 50 50 50 50 50 50

1 75 70 65 60 54 48 41 33 23

2 80 80 80 79 78 77 76 76 76

80% 3 80 80 80 80 79 79 79 79 79
5 80 80 80 80 80 80 80 80 80

o 80 80 80 80 80 80 80 80 80

1 86 82 77 72 66 59 51 42 29

2 90 90 89 88 87 86 85 84 83

90% 3 90 90 90 89 89 88 88 88 88
5 90 90 90 90 90 90 89 89 89

o 90 90 90 90 90 90 90 90 90

1 92 89 85 80 74 67 59 49 35

2 95 95 94 93 92 91 89 88 87

95% 3 95 95 95 94 94 93 93 92 92
5 95 95 95 95 95 94 94 94 94

o0 95 95 95 95 95 95 95 95 95

1 98 96 94 91 86 80 72 61 45

2 99 99 98 98 97 96 95 93 92

99% 3 99 99 99 98 98 98 97 97 96
5 99 99 99 99 99 99 98 98 98

o 99 99 99 99 99 99 99 99 99
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4.3 Significance Levels

Work on accurately obtaining significance levels is at an early stage of development. Table
10 is from Rubin (1986a) and is also partially reported in Li (1985). It indicates that if M > k
and vy is modest, accurate tests can be obtained using D,,. Better procedures are considered
by Li (1985), Rubin (1986a) and in current thesis work by T.E. Raghunathan.

Table 10

Level in % of Dy, with Fy , reference distribution as a function of: nominal level, «; number of com-
ponents being tested, k; number of repeated proper imputations, M; and fraction of missing informa-
tion, .

a = 1% a = 5% o = 10%

k M oy = 1 2.3 .5 .1 2 .3 .5 .1 2 .3 .5
2 1.0 12 ‘1.6 25 49 53 59 7.5 9.9 103 11.0 129
' 1.0 1.0 1.0 13 49 49 5.0 5.5 9.9 9.8 10.0 109
2 5 1.0 1.0 1.1 12 50 50 5.1 5.6 10.0 10.0 10.2 10.9
10 10 10 1.1 12 50 51 353 5.7 101 10.2 104 11.0
25 1.0 10 1.0 10 50 50 5.0 5.0 10.0 9.9 9.9 10.0
50 1.0 1.0 1.0 10 50 50 5.0 5.0 10.0 9.9 9.9 10.0

100 1.0 1.0 1.0 1.0 50 50 5.0 5.0 10.0 10.0 10.0 10.1
2 1.0 1.1 1.3 1.7 51 53 5.6 6.3 103 106 11.1 12.0

1.0 1.0 1.0 10 51 52 53 5.7 102 10.5 109 123
3 5 1.0 1.0 1.1 13 50 52 54 6.2 10.1 103 10.8 12.2
10 1.0 1.0 1.1 12 350 52 53 59 10.1 103 10.6 11.6
25 1.0 1.0 1.1 12 50 51 352 5.6 10.1 10.2 104 10.9
50 1.0 1.0 1.0 10 50 50 5.0 5.1 10.0 10.0 10.0 10.2
100 1.0 1.0 1.0 10 50 50 5.1 5.1 10.0 10.0 10.1 10.2
09 08 0.8 09 51 48 45 4.0 105 104 10.1 9.2
3 1.0 1.0 1.0 09 52 55 57 6.1 105 11.3 12.1 144
5 5 1.1 1.1 1.2 1.4 52 56 6.1 7.7 104 11.1 12.2 154
10 1.0 1.1 1.2 15 51 53 5.6 6.9 10.1 104 11.1 131
25 1.0 1.0 1.1 13 50 52 53 6.0 10.1 103 10.6 11.5
50 1.0 1.0 1.0 111 50 5.1 5.1 5.4 10.0 10.1 10.2 107
100 1.0 1.0 1.0 1.1 50 5.0 5.1 5.2 10.0 10.1 10.1 104
2 08 05 0.3 01 51 40 29 1.5 10.8 10.1 8.5 5.4
1.1 09 0.6 03 56 59 5.7 49 113 127 13.8 16.2
10 5 1.1 1.2 1.3 14 54 63 7.4 11.0 107 124 148 227
10 1.1 1.2 1.4 22 52 58 68 103 104 114 131 190
25 1.0 11 1.2 1.6 50 52 5.6 7.1 10.0 104 11.0 13.4
50 1.0 10 1.1 13 50 51 54 6.1 100 102 106 11.8
100 1.0 1.0 1.1 12 50 52 53 5.8 10.1 102 10.5 11.3
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5. CONCLUSION

In conclusion, multiple imputation is a very promising new tool for helping to handle
nonresponse in surveys. Although much work remains to be done before it will become a
commonplace method, many interesting theoretical and practical results suggest effort ex-
pended in its development will be well rewarded by important contributions to applied work.
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