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Some Optimality Results in the Presence
of Nonresponse

V.P. GODAMBE and M.E. THOMPSON!'

ABSTRACT

Using the optimal estimating functions for survey sampling estimation (Godambe and Thompson 1986),
we obtain some optimality results for nonresponse situations in survey sampling.
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1. INTRODUCTION AND BACKGROUND

A typical survey sampling set-up consists of a survey population P of N labelled individuals
i, P ={iti=1, .., N}. With each individual i is associated a real value y,. The vector
Yy = (Vi --» Vi ..., Yn) is called the population vector. Any subset s of P is called a sam-
ple. Let S = {s}. Any probability distribution p on S is called a sampling design. A sample
s is drawn using a sampling design p, and the values y;: i es are ascertained through a survey.
Thus the data here are x, where

xs = [, (L,y;):i €s). 1.1

On the basis of the data x, one tries to estimate a survey population parameter 6, that
is a specified real function of the population vector y; 6y = On(y).

In relation to the above estimation problem we assume a superpopulation model under
which y, ..., yy are independent and for certain known covariate values x;, i = 1, ..., N,

e(yi—0x) =0,i=1,.., N, (1.2)

¢ being the expectation with respect to the model. In the model (1.2), 6 is the usual unknown
regression parameter, the expectation being taken holding x; fixed. The usual intercept term
of the regression model is not mentioned in (1.2), for this term can often be eliminated by
an appropriate stratification (Godambe 1982). Note the model (1.2) does not specify the
variance function.

Following Godambe and Thompson (1986), for some specified numbers o;, i = 1, ...,
N, we define the survey population parameter 6, as the solution of the equation

N
g = E (i — 0x))a; = 0. (1.3)
i=1
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That is,
N N
0N = E y,a,-/ E X ;. (14)
i=1 i=1

The parameter 8y is related to the model (1.2) through the equation

g = 0. (1.5)

Any real function k4 of the data x, in (1.1) and the parameter 4 is called an unbiased
estimating function for both the parameters 6, and 6 if

E(h — g) = 0forallyand 4 (1.6)

‘E’ being the expectation under the sampling design p employed to draw the sample s. Because
of (1.5) and (1.6) we say the solution of the equation

h(XS)e) = 0:

for the given data x,, estimates both the parameters and 6 and 8, given by (1.2) and (1.4)
respectively. For the function g in (1.4), under the sampling design p, let H ;) be the class
of all unbiased estimating functions A. That is

H(p) = (h: E(h — g) = 0for all y and 6}. (1.7)

Now we say an estimating function h* € H(p) is optimum if

eE(h*)? < eE(h)?, for all h € H(p) (1.8)

(Godambe and Thompson 1986). Further, when the inequality (1.8) is satisfied,

B* =0 (1.9)

is said to be the optimum estimating equation for estimating the parameter 6 given by (1.3)
and (1.4).

For the sampling design p, used to draw a sample s, let 7;, i = 1, ..., N be the inclusion
probabilities. That is

= E p(s),i=1,.. N, (1.10)
531

where s 5 i indicates all samples s which include the individual /. We assume

7> 0,i=1,.., N (1.11)
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Theorem 1.1. (Godambe and Thompson 1986). For any sampling design p satisfying (1.11),
under the model (1.2), in the class of all unbiased estimating functions H(p) in (1.7), the
optimum A*, that is A* satisfying (1.8), is given by

h* = Y (i — Ox) i/, (1.12)

iEs

w; being the inclusion probability given by (1.10). Thus the optimum estimating equation
here is

Y, i = tx)ai/m = 0. (1.13)
i€s

The estimate és of the survey population parameter 6, in (1.4) and the superpopulation
parameter 4 in (1.2) is given by

L yia;/w;
g = '€ . (1.14)

s
E x,~oz,-/1r,-
ics

This estimate was previously put forward by Brewer (1963) and Hajek (1971) on some
“‘plausibility’” considerations.

To explain the relationships of Theorem 1.1 above with earlier optimality results (e.g.
Godambe 1982) we put «; = 1 in (1.3) and therefore in (1.2). Further, we consider a super-
population model obtained from (1.2) by letting # = 6,, a specified value. Now for any
sampling design with inclusion probabilities =; satisfying (1.11), in the class of all design un-
biased estimates of 0y (in (1.4) with «; = 1, i = 1, ..., N), the superpopulation expecta-
tion of the design variance is minimized for the estimate

1

o Box N
e=)—({ 2}’—’-——°x'+002x,} (1.15)

1r.
i€s ! i=1

where X = IV x;. This ““optimality’’ of the estimate e at § = 8, carries over to all values
of 9 if the sampling design is such that

2

I
—_

(1.16)

Probability s:< E - E x,-> =0

ies f i=1

A

Now when the sampling design satisfies condition (1.16), then 6, in (1.14) is equal to e in
(1.15). Thus all the earlier optimality results are covered by Theorem 1.1, and it does a great
deal more: in many situations, such as for designs with =, o x;, the condition (1.16) implies
a fixed sample size design. In contrast the ‘‘optimality’’ in Theorem 1.1 holds regardless
of the fixed sample size design condition. That is, the ‘‘optimality’’ is available for random
sample size designs, which are common in the nonresponse situations discussed subsequently.
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2. NONRESPONSE AND OPTIMALITY

Suppose a sample s is drawn from the survey population P, using a sampling design p.
Suppose because of nonresponse the variate values y; are available only for the subset s’ Cs;
s — s’ are the non-respondents. Thus now the data instead of x; in (1.1) are

Xss = (5 8, {(Ly) €5 }). 2.1

We may now consider two problems of estimation:

(I) If there were no nonresponse, that is if all the data x, in (1.1) where available, we
would have estimated the survey population parameter 8 in (1.4) by solving the op-
timum estimating equation given by (1.12), namely #* = 0. When the hypothetical
data x; are replaced by x, - in (2.1), one may try to estimate #* with some function
h' (xs,s)- This is in line with a suggestion of Rubin (1976). Following (1.7) we define
the class of unbiased estimating functions A’ (for A*, given the sample s) as

H' (p,..,s) = (h': E(h' — h*|s) =0, forally & 0}; 2.2)

the ¢.” in A’ indicates that the class H’ would be specified only after the response mechanism
is specified. Again we define 4’* as the optimum estimating function in H' in (2.2), if
h'* € H' and if under the model (1.2), eE(h'*)? < eE(h'*)? forall i’ € H'.

(II) Alternatively we could try to estimate the survey population parameter 8y directly,
that is without estimating #* as in (I) above, from the data x;, . In line with (1.7)
we define the class of unbiased estimating functions A" (x5 ):

H'(p,.) = (W": E(h" — §) =0, forally & 0}; 2.3)

as before the ¢.” in H” indicates that the class H”, for its specification, requires the specifica-
tion of the response mechanism. Again h"* is called the optimum estimating function in H" if
h"* € H” and if under (1.2), eE(h"*)? < eE(h")? for all estimating functions A" € H".
In H' (p,.,s) and H" (p,.) of (2.2) and (2.3) we have left the response mechanism °.’
unspecified. Now we specify it.
RESPONSE MECHANISM: If the individual ‘@ of the survey population P were includ-
ed in the sample s drawn,

‘i’ would respond with krown probability g;
and would fail to respond with probability 1 —g; 2.4)

i=1,.. N;weassumeg; > 0,i =1, ..., N.

The response mechanism q = (gq;, ..., gy) in (2.4) completely characterizes the class
H'(p,.,s) in (2,2) as H' (p, q, s) and H’’(p,.) in (2.3) as H" (p, q).

The case (I) above is implemented by the following Theorem 2.1 and the remaining
Theorems 2.2, 2.3 and 2.4 implement the case (II).
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Theorem 2.1. For any sampling design p satisfying (1.11), and for any sample s, in the
class of estimating functions H' (p, q, s) in (2.2) under the superpopulation model (1.2)

¢E{h')?|s} is minimized for A’ = h'* where
h'* = E i — Ox)ai/miq;; (2.5)
i€s'

that is 2'* is the optimum estimating function in H' (p, q, s). O

Proof. As was emphasized in Section 1, the optimality of A#* in (1.12) obtains even for
random sample size designs and for any values of o;, { = 1, ..., Nin (1.3). Thus the proof
of Theorem 2.1 is accomplished by replacing, in Theorem 1.1, the population ‘P’ by ‘s’ and
«; by «;/7;, | € s and noting that now the inclusion probabilities are g, i €s. O

Theorem 2.2. Let H” be the subclass of H” in (2.3) such that any estimating function
h" (xs,s') in H" depends on (s,s’) only through s’. Then for any sampling design p satisfy-
ing (1.11), in the class H” (p, q), under the superpopulation model (1.2), eE{ (h")?} is
minimized for #” = h"* where

h"* = E (Vi — Oxpa;/miq;; 2.6)

les’

that is 2”* is the optimum estimating function in A" (p, q). O

Proof. This follows directly from Theorem 1.1, by replacing in it s by s’ and the inclusion
probabilities by #; by m;q;, i = 1, ..., N.

Theorem 2.3. The estimating function #”* in (2.6) is the optimum estimating function
in the entire class H” (p, q) given by (2.3). That is the result of the Theorem 2.2 is valid
without the restriction to the subclass H” of H”. O

Proof. For any given response probabilities q in (2.4) and the sampling design p, the statistic
({5, yi}: i € 5") is sufficient for the population vector y. More specifically, referring to (1.1)
and (2.1), we have the conditional probability Prob(x;, | x,,¥) independent of y. Hence
for any estimating function #” € H” (p, q) in (2.3) we have the estimating function E (k"
| x¢) = A" € H" and eE(h")? < eE(h")?% This proves Theorem 2.3.

When s = s’, that is when there are no nonrespondents, do we still estimate A* by
h'* = h"*? The obvious negative answer to this question is obtained, as shown by Godambe
(1986), by an appropriate conditioning. The same reservation tends to be felt for cases where
there are only a few nonrespondents, and again appropriate conditioning holds some pro-
mise of a resolution. In summary the formal optimality of #'* = A" suggests that it is useful,
and is likely to give good estimation when nonresponse is considerable and the relative values
of the g; are known. However, it can clearly be improved upon in situations when
nonresponse is rare; improved versions will have natural conditional interpretations. Ap-
propriate conditioning becomes even more important in the case of unknown response pro-
babilities, as will be seen next.

Now we assume that the survey population P is divided into k strata P;, of sizes IV,
J = 1,..., k. Further suppose that the response probabilities are constant within each stratum.
That is

g =qYforalli€P;j=1..,k 2.7
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Unlike in (2.4), where the response probalities were assumed to be known, now we assume
that in (2.7), the response probabilities g7, j = 1, ..., k are unknown. Let p, denote the
stratified sampling design, consisting of drawing from the stratum P;, a simple random sam-
ple (without replacement) of size n;, j = 1, ..., k. Now as in (2.3) we define the class of
unbiased estimating functions # (xss)

Hi(py) = (hi: E(hy — §) = Oforally, §and ¢g¥, j = 1, ..., k}, (2.8)

where gV are as in (2.7). Let s; = s' N P; and |s/| = nj, that is the size of the sample of
respondents from the stratum P, j = 1, ..., k.

Theorem 2.4. For the sampling design p,, in the class of estimating functions H;(po)
in (2.8), under the superpopulation model (1.2), ¢E(h?) is minimized for A = h} where

k '
* n;
hy = Z E (v — exi)ai/(ﬁjjﬁ 2.9
Jj=1 IGSJ‘

that is A% is the optimum estimating function in H;(py).

Proof. The sampling distribution of the data x; in (2.1) depends, in addition to the
unknown population vector y, on the unknown (parameter) gV, j =1, ..., k. Now for
every fixed y, the statistic n/, j = 1, ..., k is completely sufficient for the parameter q",
j =1, ..., k. Hence for a fixed y and 8, in (2.8),

[E(h, — §) =0, forall gV, j =1, ..., k]

= E{(h, — Dinj,j=1,..,k} =0, (2.10)

ignoring sets of ‘0’ measure. Further, conditional on the number of respondents n; from
the stratum P;, the probability of i € s/ is (n;/N;)(nj/n;) = (n//N;). Hence for any
estimating function #, € H; in (2.8) we have from Theorem 2.3.

eE((h)2 nhj =1, ..., k} < eEL(h)*nfj =1, ..., k), (2.11)

h being given by (2.9). Theorem 2.4 is proved by taking the expectations of both sides of
(2.11) for the variations of n/, j = 1, ..., k.

The optimum estimating function Af in (2.9) has the following intuitive interpretation.
If in (2.7), the response probabilities g%, j = 1, ..., k were known, by Theorem 2.3, the
optimum estimating function, for the sampling design p,, would be given by

k
no
h" = Z Z i = exi)ai/(]vjj q?).

/=1 iEsj‘

Now when g are unknown (which is the case in Theorem 2.4), we estimate them by
(n!/n), j = 1, ..., k. Substituting these estimates for gY) in k" yields the estimating func-
tion h; of (2.9).

These estimates obtained by solving the equations #'* = 0, #"* = 0 and h] = 0in (2.5),
(2.6) and (2.9) respectively have previously been proposed, on plausibility considerations,
by several authors. A good reference in this connection in Cassel et al. (1983). The assump-
tion (2.4) of ““response probabilities’” seems to have evolved gradually in the literature. An
interesting early reference in this connection is Hartley (1946).
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3. OPTIMAL INCLUSION PROBABILITIES

It should be emphasized here that the ‘‘optimality’’ of the estimating function #”* in (2.6)
was established under the superpopulation model (1.2), which does not specify the variance
function. However the specification of the variance function in the model (1.2) would be
required to obtain the ‘“‘optimal’’ inclusion probabilities. We assume

e — 0x)? = 0% f(x), i =1, ..., N, G.1)

where fis a known function of x, and o2 can be unknown. Now for the estimating function
A”* in (2.6), (3.1), we have

f: e(yi — 0x) %o} = o2 f:f(xi)a

T0;
i=1 14 i=1

eE(h"*)? = (3.2

In (3.2), the response probabilities g; as said in (2.4) are given (fixed) numbers. However,
(a sampling design with) the optimal inclusion probabilities can be obtained by minimizing
eE(h"*)? in (3.2) under a restriction, either (A) or (B).

N
(A): E 7; = constant,

i=1
N

(B): E 7;q; = constant 3.3

i=1

In (A) we hold the average size of the sample s fixed, for E|s| = E¥a;. In (B) we hold

fixed the average size of the effective sample s', for E|s| = E;' m; g;. Now since the g; are
fixed numbers we have for minimizing eE(4”*)? in (3.2), respectively,
x.
(A): T o {M1 g,
i
172
x.
(B) w < (f('—))oz,-. (34)
4qi
Denoting by n’ the size of the effective sample s’, thatis|s’| = n’, we have from (B) in (3.4),

_ )%y E(n)
(VNN ey g

Li=1,.., N 3.5)

i

Further for a fixed sample size design such that
Probability {s: |s| # n} = 0,

we have from (3.5).

n N s
o) %y 1
= n = ——— - F(n'). 3.6
LT Ly gt o (-6
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As a special case, when all the response probabilities g;, i = 1, ..., N are equal, g; = g say,
i=1, .., N, in (3.6),

n=En)/qg; (3.7

for instance if ¢ = 1/2, the sample size of the (initial) sample s should be double the expec-
tation of the effective sample (s’) size!

Now we assume the survey population P to be divided into strata P;, = 1, ..., k so that
the response probabilities in each stratum are constant, that is they satisfy (2.7). For a stratified
sampling design consisting of drawing a sample of size n; from the stratum P;, j = 1, ... k
we have from (3.5).

, ‘gp'(f(xi))l/zai
g = B T Li=1 .,k

ST a0
7 L, Ux)) ey

ieP

If (f(x;)) "o are constant for i = 1, ..., N, it is clear from (3.8) that optimal allocation
implies drawing a relatively larger sample from the stratum with smaller response probabili-
ty. Actually in this situation

E(n)) = E(n')/k

where n/ is the size of the effective sample s/ from the stratum P, j = 1, ..., k.
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