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ABSTRACT

Conventional methods of inference in survey sampling are critically examined. The need for condi-
tioning the inference on recognizable subsets of the population is emphasized. A number of real ex-
amples involving random sample sizes are presented to illustrate inferences conditional on the realized
sample configuration and associated difficuities. The examples include the following: estimation of
(2) population mean under simple random sampling; (b) population mean in the presence of outliers;
(c) domain total and domain mean; (d) population mean with two-way stratification; (¢) population
mean in the presence of non-responses; (f) population mean under general designs. The conditional
bias and the conditional variance of estimators of a population mean (or a domain mean or total),
and the associated confidence intervals, are examined.

KEY WORDS: Conditional inference; Conditional bias; Conditional variance; Populatlon mean;
Random sample sizes

1. INTRODUCTION

In the conventional set-up for inference in survey sampling the sample design defines the
sample space S (set of possible samples s) and the associated probabilities of selection, p(s).
The choice of an estimator is based on the criterion of consistency or unbiasedness and on
the comparison of mean square errors (MSE), under repeated sampling with probabilities
p(s), using the sample space $ as the reference set. Thus, an estimator ¥ of a population
mean Y is unbiased if E(Y) = Y s p(s)Y =7, where Y is the value of ¥ for the sample
s. The MSE of the estimator Yis given by MSE(Y) = ¥ s p(s)(Y — Y)Y, and Y is consis-
tent if its MSE approaches zero as the sample size increases. A consistent or | unblased estimator
of MSE(Y), denoted as mse(Y) prov1des a measure of uncertainty in Y. If Y is unbiased
or consistent, then the observed values Y and mse(Y, ) provide a large sample, (1 — «)-level,
confidence interval given by

I, = ¥, + z, Nmse(¥), (1)
where Z,, is the upper o/7-point of a M0, 1) variable. The interpretation of (1) is that in
repeated samplmg with S as the reference set, approximately 100 (1 — «)% of the intervals,
I, will contain the true value Y.

The comparison of unconditional mean square errors, MSE(Y), is appropriate at the design
stage, but the sample space S may not be the relevant reference set for inference after the
sample s has been drawn, if the sample contains ‘‘recognizable subsets’’. The concept of
recognizable subsets will be illustrated in subsequent sections through examples involving
random sample sizes. The choice of relevant reference set, however, is not unique. In fact,
the surveyed sample s can be viewed as unique in a real sense, but then no inference under
a repeated sampling set-up can be made since the relevant reference set would contain a
singleton (Holt and Smith 1979).
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Conditional inference has attracted considerable attention and controversy in classical
statistics since Fisher (1925). For instance, in testing for independence in a 2 X 2 table of
counts, Fisher argued that the inference should be conditional on the observed row and col-
umn marginal totals even if the margins are not fixed by the design. Yates (1984) revived
this problem. The choice of relevant reference set is not always clear-cut, but the following
guidelines look reasonable: (1) A conditional procedure should be chosen before observing
the data, especially in the public domain. (2) A conditioning partition of S should be chosen
in such a way that the partition contains no (or little) information on the parameters of in-
terest, i.e. the statistic indexing the partition should be an ancillary statistic (Cox and Hinkley
1974, p. 38). (3) If the sample sizes are random (e.g., domain sample sizes) and their popula-
tion distribution is completely known (or at least partially known), then the inferences should
be conditional on the observed sample sizes. In this context, Durbin (1969, p. 643) says ‘‘If
the sample size is determined by a random mechanism and one happens to get a large sample
one knows perfectly well that the quantities of interest are measured more accurately than
they would have been if the sample size had happened to be small. It seems self-evident that
one should use the information available on sample size in the interpretation of the resuit.
To average over variations in sample size which might have occurred but did not occur, when
in fact the sample size is exactly known, seems quite wrong from the standpoint of the analysis
of the data actually observed”’.

The discussion throughout the paper will be confined to conditional inference in the
presence of random sample sizes, as in guideline (3) above. Even with this restriction, it will
be shown that conditional inferences are not always easy to implement in practice. We begin
our discussion with simple examples and then extend it to more complex problems. In the
context of sample surveys, Holt and Smith (1979) provide the most compelling arguments
in favour of conditional inference, although their discussion was restricted to poststratifica-
tion of a simple random sample (SRS); see Section 3.1.

Lahiri (1969) pointed out the “difficulties of conveying convincingly the real import of
the sample survey estimates to intelligent but lay users of statistical data”; in particular, “the
fallacy in implicitly using the (sampling) standard error as a measure of precision of the observed
(sample) estimate, illustrating this point with a number of examples drawn from the current
theory”.

2. SIMPLE RANDOM SAMPLING WITH REPLACEMENT

Simple random sampling (SRS) with replacement is seldom used in practice, but it pro-
vides a simple introduction to conditional inference.

Suppose a simple random sample, s, of size n is selected fom a population of size N with
replacement so that S contains N” samples s. Let » denote the number of distinct units in
s. Then » is a random variable with possible values 1, ..., n. Let ¢, denote the number of
times the i-th population unit is included in s. Then two well-known estimators of the popula-
tion mean Y are given by

N 1
Yo=—= Xt 2.0
N ies

the sample mean based on ail the n draws, and

5 =13, 2.2)

V ies
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the mean based on the distinct units in s. Both y, and 7, are unconditionally unbijased under
the reference set S, and the unconditional variance of y, is always smaller than that of y,.
Hence, from efficiency considerations y, should be preferred over y,. The Horvitz-
Thompson estimator

A=ty 2.3)
Ly

is also unconditionally unbiased, where 7, is the probability that unit / is included at least
once in the sample:

E() L\
_E®) _ g i - LY
TTON ( N)

The comparison of variances of y, and y,, shows that y, is not always better than yyr.

Following Durbin’s (1969) argument, it is clear that for the purpose of inference one should
condition on the observed value of », i.e., the relevant reference set is the set S, of (%)
samples of effective size », and not S. Fortunately, it is easy to implement conditional in-
ference in this case since P(s,|») = (¥)7'!, i.e. conditionally, the observed sample, s,, of
distinct units is a simple random sample of size » drawn without replacement. It follows
that p, is conditionally unbiased, i.e. E,(y,) = Y where E, denotes conditional expectation,
whereas E,(J,p) = [#/E(»)]Y # Y so that y,is conditionally biased. Hence, 7, should be
preferred over ¥y, despite the inconclusive comparison of unconditional variances. Note
that y,, would be a serious underestimate if the observed » is much smaller that E(v).

A relevant measure of uncertainty is the conditional variance, V,(y,), which is estimated
unbiasedly by

) = (2= ) 2.4)

where (v — D)), = Y, O — 7,)* and V, denotes the conditional variance. The appropriate
confidence interval for Y is given by

I, = 3, £ 2,Nv0,). 2.5)

%2

Conditionally, the confidence level of I, is 1 — « approximately if » is not small. Another
variance estimator

vy = [B(1)- L], @.6)

is conditionally biased, although unbiased when averaged over the whole sample space, S.
It follows from (2.4) and (2.6) that v(y,) < v*(5,) if 1/v < E(1/») and vice versa if 1/» >
E(1/v). Thus, the confidence interval based on (2.6) would be too narrow if E(1/») < 1/»
and hence yield a confidence level less than 1 — «, and too wide if E(1/v) > 1/» leading
to a confidence level greater than 1 — «. It may be noted that confidence intervals that are
conditionally correct are automatically correct in the unconditional framework.
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3. SIMPLE RANDOM SAMPLING WITHOUT REPLACEMENT

Suppose a simple random sample of fixed size n is drawn without replacement. In the
absence of recognizable subsets, the relevant reference set is the set S of (¥) samples s, each
of size n, and the sample mean y, is unbiased and its variance is estimated unbiasedly by

R e G.1)

where (n — 1)s}, = Y. (; — 7,)>. The resulting confidence interval is given by I:
V. z%\/v()?,,) with confidence level 1 — « approximately if n is not small.

Suppose now that recognizable subsets exist in the sense that we observe the sample con-
figuration n = (n,, ..., n,) belonging to k post-strata with known weights W, = N/N.
Ideally, stratified sampling should have been used but the strata frames were not available.
The relevant reference set now is the set S, of I](%) samples having the realized configuration
n since the distribution of n is completely known.

31Alln =1

If all the observed n; = 1, then the customary post-stratified estimator
ypst = E Wl}jl (3'2)

is conditionally unbiased given n since P(s|n) = [1(;)~', i.e., conditionally the observed
sample s is a stratified random sample (s;, ..., s,) with strata sample sizes n;,. Here y;
denotes the sample mean in the i-th stratum. A relevant measure of uncertainty is the condi-
tional variance, V,(J,;), which is estimated unbiasedly by

V) = T W%(ﬂli - ﬁ)sz (3.3

provided all n; = 2, where (n, — 1)s}, = ¥ jes Wy — 7) (Holt and Smith 1979). The
resulting confidence interval, L,,: J,, * Z,,vV(7,,), is conditionally correct. Another vari-
ance estimator

W) = T WPE(nl) - ﬁ]sz (3.4)
- o

is conditionally biased, although unbiased when averaged over the whole sample space, S
(assuming that P(n; < 1) is negligible). The conditional performance of confidence inter-
val based on (3.4) evidently depends on the extent of divergence of the observed values 1/n;
from their expectataions E(1/n). It may be noted that the interval I, is also correct in the
unconditional framework, provided P(n; < 1) is negligible for all i.

If n;, = 1 for some #, no conditionally unbiased variance estimator can be obtained, but
it might be satisfactory to use a collapsed strata method or use the model-based solution
of Hartley ef al. (1969) originally proposed for variance estimation in stratified random sampl-
ing with one unit per stratum. Empirical studies might throw some light on the applicability
of the latter methods.
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The customary justification for preferring y,, over y is that the unconditional variance
of 7,y is approximately equal to the variance under proportional allocation and hence
smaller than the unconditional variance of y. We are also reminded that gains in efficiency
under proportional allocation are likely to be modest. It is more important, however, to note
that the sample mean y is conditionally biased:

E,(p) = wY # ¥ WY =Y, w="7, (3.5)

3 |=

and hence the resulting inferences could be conditionally incorrect.

Example 1. Suppose k = 2 (say, male, female strata with known projected census weights
W, and W, = 1 — W,, or small and big hospitals (Royall 1970)). Royall used a super-
population model

EQ)=8xi=1,...,NB>0,x,>0 (3.6)

to demonstrate that ¥ is model-biased conditionally, where E,, denotes the model expecta-
tion, i.e.,

E, () = % # E,(Y) = BX 3.7

unless the sample mean ¥ coincides with the population mean X. In his example,
x;, = number of beds in the i-th hospital, y;, = number of occupied beds in the i-th hospital,
and x,, ..., xy are known. Royall argues that y leads to serious underestimation if the
observed sample contains all (or mostly) small hospitals since B,(9) = E,(9) — E(Y) =
B(x — X) and ¥ << X. This point can also be illustrated in our conditional framework
without assuming a model. The ratio of the conditional bias of y to the population of large
hospitals, Y,, may be expressed as

B0~ w, - wop = s — W, 3.8)

2

where B,(5) = E)(J) — ¥ denotes the conditional bias of y, & = (¥, — ¥,)/Y, and
0 < & < 1 since the population mean, ¥,, of small hospitals is smaller than ¥,. If w, = 1
(i.e., all small hospitals observed in the sample), then E,() = ¥, << Y and hence y is a
serious underestimate. Similarly, if w, >> W, (i.e., mostly small hospitals observed), then
it follows from (3.8) that ¥ would lead to serious underestimation.

In this example, one should use the post-stratified estimator y,, = Wy, + W,, which
is conditionally unbiased unless n, = 0 or n, = 0. It might be preferable, in fact, to use
a post-stratified ratio estimator

= Yo g, (.9)

pst

y pst,r

where %,, = W%, + W,%, and X; is the sample mean of x in the i-th stratum. The estimator
(3.9) is approximately unbiased conditionally and more efficient than y,, if n is large.

Remark 1. In Royall’s example, one should, in fact, use a more efficient design than simple
random sampling since all the population x-values are known, e.g., stratified random sampling
under x-stratification and, perhaps, optimal allocation based on the x-values.
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Remark 2. Royall justifies the use of the customary ratio estimator y, = (¥/%).X under his
model (3.6), but it cannot be justified in the conditional (repeated sampling) framework since
¥, is conditionally biased:

~[w, Y, + w,Y,

B,() =X — < — R R =
07 wX, + w,X,

(3.10)

D]~

0

unless f1/3§1 = y,/% = R. In the extreme case of w, = 1, By(y) = X(R, — R) where
R, = Y,/X,. Hence, By(%,) S 0 according as R, S R.

Remark 3. If the weight W, is unknown but X is known, we cannot implement either Fpst
or ¥, , Royall suggests the use of y, with inference conditional on the observed mean x.
However, the choice X is somewhat arbitrary, and the conditional bias of y, could be quite
large unless the model (3.6) is true, at least approximately.

If good prior information on W), is available, say W¥ = W, < W¥* where W¥ and Wi*
are known, then one could use the following ‘‘pseudo’’ post-stratified estimator of Y:

y:st = ~1)71 + Wﬂzy (3.11)

where W, = w, if W¥ < w, < W¥*, = Wk if w, < W*, = Wr* if w, > W** and
W, = 1 — W,. The estimator ¥ and its ratio analogue should perform better conditionally
given (n,, n,) than y and y,, although biased. Unconditionally, the MSE of 3%, should be
smaller than the MSE of y, provided W} < W, < W#¥*. One could also utilize a formal
Bayesian approach to estimate W, by specifying a prior distribution on W,.

Example 2 (outliers). The problem of estimating a population mean Y in the presence of
outliers is similar to the hospital example above. Suppose the population is known to con-
tain a small fraction, W,, of outliers (large observations) but W, is unknown, i.e.
W, >> W, and Y, >> Y,. Then, if the observed sample contains no outliers (i.e., w, = 0),
we would say that y is “far from the true value ¥*’ (Chinnappa 1976) and yet ¥ is (un-
conditionally) unbiased. The meaning of this statement follows from the fact that
E,(y) = Y, << Y, where E, is the conditional expectation as before.

On the other hand, we would say that y is a serious overestimate if the sample contains
outliers. This follows from (3.8) noting that w, >> W, (since W, is very small). For in-
stance, if N, = 1then w, = 1/n >> W, = 1/N. In this situation, we are told to modify
the estimate y by reducing the weight attached to outliers in the sample. One suggestion is
to modify y by reducing the weight attached to outliers from 1/n to 1/N and adjusting the
weights for non-outliers such that the n weights sum to 1:

N_nz_ nz_

p* = + . 3.12
y N Ot yn (3.12)
The conditional relative bias of y* is given by
Yid
B.OY (wzﬁ - Wz)é, (3.13)
Y, N
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whereas B,(5)/ Y, = (w, — W)s. If w2§ — W, < 0, then

n
Wzﬁ— W2

=W—wﬁ<w—Wif2W<w(1+ﬁ).
2 2N 2 2 2 2 N

The inequality 2W, < w,(1 + n/N) should be satisfied since w, >> W,. If w,n/N — W, > (,
then

n n
w, — — Wol=w,— — W, < w, — W,.
2N 2 2N 2 2 2

Hence, the estimator y* should have a smaller absolute value of conditional bias than y.

The estimator y* is essentially obtained from the post-stratified estimator y,, by preten-
ding that N, = n,. A more satisfactory solution can be obtained by gathering good prior
information on W (= 1 — W,), say from census data, and then using the estimator y%, or
the estimator based on a Bayes estimator of W,.

Hidiroglou and Srinath (1981) derived the conditional bias and conditional and uncondi-
tional MSE of y, y* and some other modifications of y, but they did not compare the condi-
tional biases of ¥y and y* as above.

3.2 n; = 0 for Some i

If the total sample size, n, is small or if too many post-strata chosen, then »; could be
zero for some i. The post-stratified estimator (3.2) in this case reduces to

.Ppst = E,Wiyi’ (314)

where Y’ denotes summation over strata with nonzero n,. The estimator (3.14) is condi-
tionally biased:

E, () = L'WY, # L WY, (3.15)

It remains conditionally biased even under the strong assumption Y; = Y for all i, which
incidentally shows that y,,, could lead to serious underestimation. It is also unconditionally
biased. One commonly used method to overcome these difficulties is to collapse similar strata
to ensure that n; > 0 for all i in the reduced set of strata. Fuller (1966) proposed a more
efficient solution for the special case of k = 2 post-strata, but his framework is uncondi-
tional in the sense that the probability, P, of n, = 0 given that either n, = Oorn, = 0,
is brought into the picture. His estimator is given by

_ w, . .
Yr = —*1)’1 ifn, =0
P (3.16)

W, _ .
=2y, ifn =0,
P V2 1
where P¥ = 1 — P¥. The estimator y, is conditionally unbiased given that either n, = 0

or n, = 0, but is conditionally biased given (n,, n,), even in the case ¥, = ¥, = Y.
An unconditionally unbiased estimator is given by

a.
i = — Wy 17
Yp Z E(a,-) i (3 )
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(Doss et al., 1979), where a; = 1 if at least one unit from stratum / in the sample, = 0
otherwise, and y, is defined as ¥, if n; = 0 (note that a;5, = 0 if n; = 0 even though Y, is
unknown). The estimator y,, however, is conditionally biased since
Eo) = v 2 s swy, - 7
E(a)
It remains conditionally biased even if ¥; = ¥ for all i.

Doss et al. criticized y,, on the grounds that it is not translation-invariant (i.e., yp does
not change to y, + ¢ when each y, is changed to y; + ¢, where c is an arbitrary constant),
and hence that the variance of y,, when y, is changed to y; + ¢, can be made arbitrarily
large by increasing ¢ sufficiently. On the other hand, the ratio estimator

Y 2w Wi
ﬂ_ (3.18)

EmWi

proposed by Doss ef al., is translation-invar_iant. It is conditionally biased, but the condi-
tional bias is approximately zero if ¥; = Y for all i, unlike the conditional bias of yp.
Another ratio estimator which is similar to y,, conditionally is given by

Z/ i)ji
5o = 2 3.19
Yrpst) Z'VV, ( )

but it is inconsistent unconditionally, unlike y,, . Hence, y,, may be preferred to 7, or Jp .

If concomitant information on all strata is available, then one could fit a model to the
observed strata means y; and predict the population means of strata with n, = 0. For ex-
ample, if the population means X; of a concomitant variable are hnearly related to the cor-
respondmg Y,, then the predicted value of a ¥, is given by & + BX, = y* (say), where &
and § are the least squares estimators obtained by minimising ¥'(y; — o — BX)*. The
resulting estimator of Y is given by

= LWy + LWk (3.20)

where ¥” denotes summation over strata with n, = 0. This estimator should have good
conditional properties if the fitted model is adequate. It should be clear from this discussion
that there is no simple solution if n;, = 0 for some of the strata.

4. TWO-WAY STRATIFICATION

Ingenious designs to improve the efficiency of estimators have been proposed in the
literature. Bryant et al. (1960) proposed a design involving two-way stratification in which
the sample sizes n; are zero for some strata (cells). Their method is supposed to permit
estimation of the population mean even when the total sample size # is less than the total
number of strata. Using proportional allocation for the marginal sample sizes (n;, n ), they
obtained a random allocation n;; such that E(n) = (n,n))/n = nW, W, where W, and W
are the row and column marginal totals of cell weights W;;.

Bryant et al. proposed the estimator

Jo = L ¥ Ln,Gp (4.1)

S|
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where G; = n*W;/(n;n ) and y; may be taken as Y, if n; = 0. The estimator y, is uncon-
ditionally unbiased. However, the distribution of n; is completely known (since all W are
known) and hence the relevant reference set is the set of samples having the observed con-
figuration {n,}, i.e., one should treat the design as stratified simple random sampling for
inference purposes. The estimator y, is conditionally biased:

n,G; _ -
E,(yy) = X n )Yij?& EZVVinij= Y,

noting that E,(§;) = YU if n; > 0. It also has the defects of y,, in the previous section which
can be circumvented by using the ratio estimator

o T L L n,Gyy @.2)
"Toay ¥ T n,G;

where d, = ¥ Y n;G;/n. y, is also conditionally biased, but the conditional bias is approx-
imately zero if ¥; = Y for all (i, j). The latter condition, however, may be unrealistic in
the present context since the strata are different by design.

As in Section 3.1, it seems necessary to use a model connecting the sampled and non-
sampled strata. A reasonable model, in the absence of concomitant information, is to assume
that

yijk = §K + Bj + 7; + £ijk (4.3)

where y,;, is the k-th observation in the (i, j)-th cell, 8; and 7, are fixed effects and ¢ are
independent errors with zero mean and common variance ¢>. Unfortunately, the linear com-
bination g + B8; + 7, for nonsampled strata is not estimable from sample data and hence
the corresponding Y,j cannot be predicted. This difficulty can be avoided by assuming that
B, and 7, are random variables and then obtaining a predictor 4 + Bj + #, but the random
effects model may be less realistic than (4.3) in the present context.

Motivated by the above-mentioned difficulty, Bankier (1985) discussed a raking procedure
in the context of independent stratified samples according to two different criteria of stratifica-
tion. His estimator is approximately model-unbiased under the fixed effects model (4.3), while
the usual Horvitz-Thompson estimator and its ratio extension are model-biased.

Bankier’s method can be adapted to the two-way stratification problem. The raking ratio
estimator of Y is given by

Gyp)

n

yp) =L X Vi 4.4

where y; is the sample total in the (i, j)-th cell (; = 0 of n; = 0) and G(p) are the values
obtained in the p-th iteration of the raking procedure such that

G(p)
: n

Jj n

)

ij—

“4.5)
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and

G,
Y 2) n, = W;= YW,
i n i

The G,(p) are obtained as follows: Let G(0) = G; > 0 V(i, ), and

w.

Gij(p) = Gij(p - if pis odd
¥ W ny (4.6)
w.
= . _——;——
G -1 Go - D if p is even.
Z n ij

Under the fixed effects model (4.3), we have

E, 0@ = p + LW + ;Wjﬁj = E(L L W,Yp

= E,(Y),

i.e. y(p) is approximately model-unbiased. Since E(G0)n;/n) = W, for the choice
G0) = Gy, these starting values should be good. However, we may encounter convergence
problems with the raking process because of the many empty cells (n; = 0) resulting from
the Bryant et al. design. We hope to investigate these convergence problems as well as the
conditional properties of the raking ratio estimator (4.4) in a separate paper.

If the population means X’U of a concomitant variable x are known for a// strata, then
one could fit a model to the observed strata means y; , as in Section 3.1. For example, the
model J; = B%; + b, + t; + €; with random effects b; and ¢, mlght be reasonable, where

; is the sample mean of EITOTS £ in the (i, j)-th cell. A predictor Bx,j + b + f,of Y, for
nonsampled strata may be used in conjunction with the observed means y; to arrive at an
estimator of Y. This approach is similar to modelling for small area estimates, except that
the parameter of interest here is the overall mean Y rather than the individual cell means
Y,.j. We hope to investigate the conditional properties of alternative estimators of Y in a
separate paper.

5. NONRESPONSE

5.1 A Simple Model

Suppose m responses are obtained in a simple random sample of size n. Let W, denote
the proportion in the response stratum and ¥ = W,Y, + W,Y, the population mean, where
Y, and Y, are the means of response and nonresponse strata respectively, and
W, = 1 — W, . In this situation, conditioning on the observed value of m can be question-
ed since the distribution of m depends on the unknown W, which is involved in the
parameter of interest. Also, the sample mean y,, of respondents is unconditionally biased
because E(y,) = Y, # Y. Hence, it is necessary to assume a model for response mechanism
even in the unconditional framework, unless a subsample of nonrespondents is also sampled.
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A simple model assumes that the probability of response if contacted is the same for all units,
say p*, i.e., data are missing at random. Under this model, the distribution of m depends
only on p*, and hence we should condition on m if p* is assumed known (or at least partially
known or unrelated to ¥). Oh and Scheuren (1983) have shown that conditionally given m
the sample s,, of respondents is like a simple random sample of size m from the whole
population. Hence, y,, is conditionally unbiased, and its conditional variance is unbiasedly
estimated by

v2();m) = (m_l - N-I)S%n)w (51)

where (m — 1), = Lies, Vi — ¥, ). The resulting confidence interval y,, = z,,VVv,(J,) is
conditionally correct, at least approximately, if m is not small.
On the other hand, the Horvitz-Thompson estimator (p* known):

m Yi

Vv = — V = 5-2
Yur E(m) Ym ity np* ( )

is conditionally biased, as in Section 2, although unbiased when averaged over the distribu-
tion of m. For general designs, the ratio estimator

o
e et
Py = (5.3)
L o

is often used on grounds of efficiency, where =, is the probability of inclusion and p* is the
probability of response if contacted (assumed known) for the i-th unit.éIn the simple case
of p*= p* and simple random sampling, it is interesting to note that Y, reduces to y,.
Hence, the ratio estimator might perform well in a conditional framework, for general
designs.

5.2 A More Realistic Model

A more realistic model assumes that data are missing at random within post-strata with
known weights W,. Let n; and m, respectively denote the sample size and the respondent
sample size in the i-th post-stratum. Then the joint distribution of (n,, m;) depends only on
the W, and the response probabilities within post-strata. Hence, we should condition on the
observed value of (n;, m;) provided the post-stratum response probabilities are either known
or unrelated to the parameters of interest, viz., the post-strata means. Conditionally, the
observed sample is like a stratified simple random sample with fixed strata sizes m; (Oh and
Scheuren 1983). Hence, the estimator

ypst,m = E leml (54)

is conditionally unbiased, and its conditional variance is unbiasedly estimated by

ViFpam) = ¥ W?(mi - L)slm (5.5

i
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where 7, and 5%, are the mean and variance of sample respondents in the i-th post-stratum,
respectively.

If the W, are unknown, it is a common practice to replace W, in (5.4) by its estimate
w; = n/n. In this case, conditional inference can be questioned since the distribution of (n;,
m,) depends on the unknown weights W, and since W, are involved in the parameter
Y = Y W,Y. If partial information on W, in the form of bounds on W, is available, we
can proceed with conditional inference as in Example 1, Remark 3, although the resulting
estimator is still conditionally biased (but likely to be better than (5.4) with W, replaced by
w).

6. DOMAIN ESTIMATION (SRS)

6.1 Domain mean
Under simple random sampling (SRS), the usual estimator of a subpopulation (domain)
mean, Y, is given by the sample mean

5= Zn>0 6.1)

jes; 11

where s, is the sample falling in the domain and #; is the corresponding size.

If the domain size, N, is known, then one should condition on the observed value, 7,
The estimator ¥, is conditionally unbiased if n, > 0 since conditionally s; is a SRS sample
of fixed size n, from the domain. An unbiased estimate of the conditional variance is

" 1 1
v@)= [ - =\, n >0 (6.2
) (”i M) g )
and the resulting confidence interval y; + z,, ¥v(¥;) is conditionally correct.
The estimator y,, however, is unstable for small domains (small areas) with small n,. Also
¥, is not defined if n, = 0. One solution to the latter problem, suggested in the literature,
is to use a modified estimator.

a;
)= ——yp ;= 0 6.3
y E(ai)y 6.3)

where ¢, = 1if n; = 1; = 0if n, = 0 and J, is taken as Y,if n; = 0. The estimator y/,
however, is conditionally biased:
EG) = — ¥
2V E(a,-) i

It is an underestimate if #, = 0, and an overestimate if n; = 0, although unconditionally
unbiased. The extent of overestimation depends on the magnitude of E(a;) = P(n; = 1).
If, for example, P(n; = 1) = 0.75, then E,(¥/) = )Y if n;, = 1.

Sarndal (1984) proposed the following estimator in the context of small area estimation:

wp _
.}-’iS :}7 + W (yi - y)’ ni = 0, (64)
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where y = ¥ w¥; is the overall sample mean and w; = n;/n. The estimator is approximately
unconditionally unbiased, but conditionally biased unless w;, = W;:

&%ﬁ%%—ﬂm~Y% 6.5

!

where ¥/ = Y w;Y. If n, = 0, the estimator y,; reduces to the “‘synthetic’’ estimator y. The

extent of under- (or over-) estimation of y,; depends on both w;/W, —1 and ¥, — ¥’ and

hence more complex to analyse than the bias of y.. However, y,; would have a larger ab-

solute conditional bias* than y if w; > 2W, (and hence a larger conditional MSE). Also,

the conditionally unbiased estimator y; has a smaller conditional variance than y if w;, >

W, (neglecting the variance of y relative to that of y,) and hence smaller conditional MSE.
Hidiroglou and Sarndal (1985) proposed a modification of y:

yiifw = W,
yE*= wors (6.6)
%=y+@)m—ﬂﬁm<m.

The estimator y}%* is conditionally unbiased if w; = W,, while its conditional absolute bias
is smaller than that of y if w; < W,. A motivation for y%* is that the conditional variance
of y% (or y,) is larger than that of y; (neglecting the variance of y relative to that of y) if
w; > W, while the conditional variance of y% is smaller than that of y, if w, < W,
However, the absolute conditional bias of y¥% is larger than that of ys if w; < W,. Hence,
the choice between y% and y; in the case w; < W;is not clear-cut and no simple recipe seems
to exist.

Drew et al. (1982) proposed another sample size dependent estimator which depends on
a parameter K,. In the SRS case and the choice K, = 1, their estimator reduces to

yiifw,z W,

Yo = . (6.7)
Vs if w, < W

As noted above, the choice between yg and y% in the case w; < W, is not clear-cut. Con-
sequently, the choice between y,, and y%* is also not clear-cut.

If N; is unknown, the conditional argument may still be relevant provided N, is unrelated
to the parameter of interest Y. It is also relevant when partial information on N, is
available, such as bounds on N,

If a concomitant variable x with known domain mean X, is available, the ratio estimator

5 =2 X, 6.8)
X

*Sarndal’s estimator, however, should perform better in the case of a one-way model. The estimator is obtained
by pooling estimators of the form (6.4) over two or more groups.
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and a regression-type estimator (Battese and Fuller 1981)

(X — %) (6.9)

yr=Jy+

><I|\<I

are both conditionally unbiased (approximately), but y} is likely to be more efficient if a
regression model (through the origin) with a common slope holds true, at least approximate-
ly, for the small areas. If the slopes are varying, then an empirical Bayes estimator, which
is more complex, might be more relevant (Dempster et al. 1981).

6.2 Domain Total

If N, is known, then an estimate of domain total Y; = N, .Y, is simply obtained by
multiplying a chosen estimator of Y; by N,. On the other hand, the usual unbiased estimator

Y, =Ny == % Y,n=1 6.9)

is used if N; is unknown, where N, = Nw; is the unbiased estimator of N; and P(n; = 0)
is assumed to be negligible.

Suppose now that we have prior information, say N* < N, < N** Then the conditional
argument may be relevant. The conditional bias of Y, is

B(Y,)) = (N, — N))Y. (6.10)

It follows from (6.10) (assuming Y; > 0) that B,(Y) > 0, i.e., overestimation, if N, > N,
and that B,(Y;) increases as the domain sample size n, increases. Similarly, B(Y;) < 0,
i.e., underestimation, if N; < N; and |B,(Y;)] increases as n; decreases; the conditional bias
is zero if N, = N,

Utilizing the prior information, we can modify Y, as

Npp; if N < N¥

I

Pr={ N,y if N* = N, = N** (6.11)
N¥*y, if N, > Np*

The absolute conditional bias of ¥*is smaller than that of ¥, if either N, < N} or
N, > N** while P* = ¥, in the interval N*< N, <N¥*. Hence, ¥ is conditionally bet-
ter than the unbiased estimator Y,. Also the unconditional MSE of Y*is smaller than that
of Y, although Y* is uncondltlonally biased. Unfortunately, there is no simple way to im-
prove upon Y¥* in the range N¥ =< N, < N**_In any case, Y* should be preferred over Y.
Good supplementary information on the domain size is necessary in estimating a domain

total efficiently.

7. GENERAL DESIGNS

Post-stratification adjustment is commonly employed in complex large-scale surveys, mainly
to increase the efficiency of estimators, e.g., the age-sex adjustment in the Canadian Labour
Force Survey (LFS). A general theory of unconditional inference is also available.
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The estimator of total Y is given by

Y, = TM = (7.1)

where ¥; and M, are the usual unbiased domain estimators of the i-th post-stratum total
Y; and size M, respectively. In the LFS, projected census counts are used for the M,
The estimator Y',,S, reduces to ¥ Ny, in the SRS case (see (3.2)) and we have already seen
that Y N,y, is conditionally unbiased in the SRS case (assuming all n, = 1). However,
for complex designs it seems difficult to investigate the conditional properties of (7.1);
even the choice of reference set is not so clear-cut. To illustrate this difficulty, consider
stratified SRS with L = 2 strata and &k = 2 post-strata. If we condition on the observed
post-strata sample sizes (n,, , 71,,) in each stratum A, the theory is straightforward provid-
ed the post-strata sizes N,; in each stratum are known. However, in practice we will run
into problems with zero sample sizes n,; and also the sizes N,; in each stratum may not
be available or the projections inaccurate, although N, = Y, N, = M, are available.
Hence, we may prefer to condition on the observed total sample sizes (n,, n,), where
n; = Yuhy .
The estimator Y, in this special case of stratified SRS (L = 2, k = 2) reduces to

Yu Yo Y12 Y2
N, 7 +N, Ty N, . + N, 7

Yoo =N, — 7, ny TN, —w, (7.2)
N, n +N2.n—2j N, n + N2~;l:

where N, = N,, + N, and n, = n, + n,, are the strata population and sample sizes
respectively, and y,; are the sample totals in the (4, i)-th cell. The conditional expectation
of (7.2) given (n,, n,) is not tractable since one has to evaluate the sum

EZ(Ypst) = z{: p(srln.la n.Z)?pst(t) (7'3)

where s, is a possible sample such that the observed sample sizes 7, satisfy A, + A, =
n;@=1,2), and f’ps,(t) is the value of (7.2) for the sample s,, and p(s,|n,, n,) is the con-
ditional probability of observing s, given (n, n,):

’%1 (N“)( Ny, )( N, )( Ny, )
ny =0\ ny [\n,.—ny n,—nyf \ny,—n,+ny,

It is clear from (7.3) and (7.4), however, that Ey(Y,,) # Y since ¥,, does not depend
on the cell totals N,; unlike p(s,|n , n,).
Turning to variance estimation, the usual formula for general designs is given by

-1

(7.4)

psin,, ny) =

V(Y. ) = v(z¥) (7.5)
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where v(¥,) = v(¥) is the usual variance estimator of the estimated total Y, and v(z}) is
obtained from v(Y) by replacing y, by

Y;
=y - L v ai) (7.6)

where a,(i) = 1 if the t-th element belongs to the i-th post-stratum and @) = 0 otherwise
(Williams 1962). In the SRS case, (7.5) reduces to

v (P ) = N? (l - l) T ns, (.7)
n N

(assuming (n; — 1)/(n—1) = n;/n) which is not equal to (3.3) when multiplied by N>

Hence, (7.5) does not behave well in the conditional framework, even in the SRS case. On

the other hand, a new variance estimator

v(¥,) = V@), (7.8)

where
M7 L
Z = Z’I 1—‘2 670 ]_Wr ali)) 7.9

i i

and y,(§) = y, if the ¢-th element belongs to the i-th post-stratum and y,({) = 0 otherwise,
might be preferable over v*(Y,,,) since in the SRS case it reduces to (3.3) when multiplied
by N? and the finite population correction is ignored:

- N?
wWY,) =Y — s?y. (7.10)

i n;

Some theory for ratio estimators under models also suggests that v( f’ps,) might perform bet-
ter conditionally than v*(Y,,). In any case, there is no harm in switching to (7.8) since it
is asymptotically equivalent to the customary variance estimator (7.5), unconditionally.

8. DISCUSSION

Our study clearly shows that conditional inference for complex designs involves formidable
difficulties. Nevertheless, we should not use conventional procedures blindly. In those cases
where conditional inference is feasible, as in the SRS case, we should certainly employ con-
ditionally relevant methods as elaborated in Sections 2 - 6, while in the more complex cases
we should at least make simple modifications to conventional methods, as in (7.8), so that
they agree with known, conditionally correct results in special cases. Clearly, we need more
research in this area.
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