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LEAST SQUARES AND RELATED ANALYSES FOR COMPLEX SURVEY DESIGNS

Wayne A. Fuller!

1. INTRODUCTION AND MODEL

Assume that a sample of clusters of elemental units is selected from a
finite population divided into L strata. The total sample of n clusters

(primary sampling units) is given by
(1)

where np 2 2 is the number of clusters selected in the h-th stratum. A column

vector of characteristics

= (Y )! (2)

Yhij = Uhijre Yhijze == Yhijp

is observed for the j-th elemental unit in the i-th cluster of the h-th stra-

tum. The vector Y is quite general. For example, some elements of the

hi j
vector can be the powers of products of other entries. Also, one element can

be, and often will be, identically equal to one. The cluster totals for the

vector are defined by

Mhi

Y, . j§1 lhij' (3)

~hi. T
where mhiis the number of elements in the hi-th cluster.
We shall be interested in the behavior of locally continuous functions of a

linear function of the vector of cluster means
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9= E W.n .E’J:,Xhi-v (4)
where Wh are fixed weiaghts. 0Often the weights are

= NN ~, (5)

where Nh is the number of clusters in the h-th stratum and N is the total num-
ber of clusters in the population. For the weights (5) the linear function in
(4) is the usual unbiased estimator of the finite population mean per clus-

ter. Another set of weights that often is of interest is the set of unit

weights
W o=nln . (6)
h h
Our model permits us to consider functions of the mean per element. The

usual estimator of the mean per element for a particular Y-variable is the
ratio of the mean per cluster for the Y-variable to the mean per cluster of
the number of elements. The mean number of elements per cluster is the clus-
ter mean of a Y-variable that is identically one.

OQur discussion can be easily expanded to include various forms of subsam-
pling within clusters. Because such expansions add little to the generality
of the discussion and add considerable notational complexity, we restrict our
attention to single staage sampling within strata.

Our discussion rests heavily on the following central limit theorem for

samples from a finite population.

Theorem 1. Let {Er: r =1, 2, ...} be a sequence of stratified finite popu-
lations. Let the population in the h-th stratum of the r-th population be a

random sample of size th > N selected from a p dimensional infinite

r-1,h
population with absolute 2 + §, where § > 0, moments bounded by Mg < . lLet
the covariance matrix for the rh-th infinite population be Erh' Let Lr > Lr—1

be the number of strata in the finite population and let a simple random
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sample of n_ <nrh > 2 and n, 2 nr—1,h) units be selected in the h-th stra-

tum. Let frh = be a triangular array such that

th nrh

where Mfu is a fixed number. Let'lrhi be the total for the i-th cluster se-

lected in the h-th stratum for the r-th population and let

L n

8 £ oWl %

~T T K= rh™'rh j=1 ~rhi.’
; W N NE Y

~rf X h'rh ;21 ~rhi.’
L
r

"BJI‘ - hE1 WI‘h'E‘.h !

where 6 Sef is the finite population parameter and u h is the mean of the in-
finite population used to generate the h-th stratum of the finite population.

Assume

L
I' 2
0< Mg < |np  E Wipn o Zon| < Mgy <

where the M's are fixed numbers and assume that

n-'irn — ®
r  h=1 rh ’
L 1 -2
Sﬁp [ Z Wrt rt] 0,

as r > o, where th is a trianqular array of weights. Then
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ofe, - o h7Pe - 8.0~ ng D,

[v{s, - 8. 1778, - 8) —5s NGO D),

where

_ 02 -1 3
Vi - el = oW (- Fdngg Ty,
ér -
V{QT - Qr} T ot th rh Eehs
n

N IR L A AT RS YO A Y

~rth = “'rh j=1 ~rhi. =~ ~rh..”'~rhi. = ~rh..” °
- - Nrh
Y =n}t oz
Arhi. = Mrh j=1 ~rhi.

The proof of this theorem follows from Theorems 1 and 2 of Fuller (1975)
and can be extended to multistage samples. Also see Krewski and Rao (1981)
and Isaki and Fuller (1982).

Most of our applications are to continuous functions of 8.

Corollary 1. Let the assumptions of Theorem 1 hold. Let g(8) be a vector
valued function of 8, where g(8) is continuous with continuézs first deriva-
tives for @ in the sphere IQ,ilj%l < § for all r, where §> N is fixed. Let
G(® be the nonsingular matrix of first derivatives of q(8), where the ij-th

element of G(9) is

qu(ﬁ)

36.

«

qi(g) is the i-th element of g(8) and ej is the j-th element of 8. Then
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(608,008, - 8,616 (8017 Tq(8) - a(e, )1 — N, D),
[6(8)V 18, - 816" (817 q(8) - a(e)] —5s N(O, D).

Corollary 1 is stated for the Taylor estimator of the variance of the approxi-
mate distribution of Eﬁér) - Eﬂgr)ﬂ Suitably defined replication estimators
of the variance can also be used. Replication methods include balanced repli-
cation methods (see McCarthy (1969)), jackknife methods (See Miller (1974))
and bootstrap methods (see Efron (1979, 1981)). While these methods can be
adapted to the sampling situation, the adaptation is not always immediate (see
Rao and Wu (1983)).

One class of continuous functions of ﬁ that deserves special attention is
that obtained by using él as the dependent variable in a aqeneralized least

squares fit.

Corollary 2. let the assumptions of Theorem 1 hold. Let 8 satisfy

8= n-

where o is a k-dimensional vector (k < p), h(@) is a continuous function of g,
with continuous first and second derivatives for all a in an open sphere
containing the true 2. for all r. Let the parameter space for o be an open

bounded subset of k-dimensional Fuclidean space. Let 2. be the vector that

minimizes

- ) -

(8, - hle )"V "8, - 8 o, - hia)]
Then

~ -~ —l ~ L

. 2

[V{QT}] (9. - &) > N(0, 1),

where
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and ﬂ(gr) is the matrix of first derivatives of Q(g) with respect to a evalu-

ated at é,

2. MEANS, RATIOS AND REGRESSIONS

An elementary application of Theorem 1 is the estimation of the mean per
cluster and the setting of approximate confidence limits for the mean per
cluster. Often the parameter of interest for the mean estimator is the finite
population mean per cluster, in which case the finite population correction
(1 - fh) would be included in the variance estimator.

A slightly more complex application is the estimation of the difference
between the means per cluster for two domains. If we let

Yhij1 = observation on characteristic of interest if element hij is in

domain 1
= 0 otherwise,
YhijZ = observation on characteristic of interest if element hij is in
domain 2
= 0 otherwise,
Yhij3 = 1 if element hij is in domain 1
= 0 otherwise,
Yhij4 = 1 if element hij is in domain 2
= 0 otherwise.

the estimated difference between the mean per element in the two domains is

(5 = of, ) = T

Y AT (7)
Two methods of computing the Taylor estimator of variance are often used. The
first method computes the estimator of Corollary 1 directly from the matrices
QKQT) and Xjﬁr - QT} or ngr - grf}' An algebraically identical computational

procedure is to define the ohservations
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i & =2y = RO, - ) (R)

and to compute the ordinary stratified estimator of the variance of the mean

per cluster for Z ..

L Ny - z Z
_ 2 -1 -1 h - » -
where
z L z
V4 = . W.1Z, ,
~ h=1 h~h.
7 =0t 307
~h. 7 h j-1 ~hi

For example, the computational form (9) is used in Super Carp. See Hidiroglou
et al. (1980, p. 32).

The analyst may be interested in inferences for the particular finite popu-
lation sampled or for the superpopulation when working with quantities such as
differences of means.

One of the more frequent analytic uses of survey data is the computation of
regression equations. In fact, the difference between domain means can be
expressed as a reqression coefficient. Although the vector of rearession
coefficients is of the form Eﬁﬁ) described in the previous section. it may be
advantageous to partition the Y-vector of Section 1 into several parts and to
give the reqression coefficients explicit expressions. The regression equa-

tion can be written as

- 1
Yhij = ZnigR* ®hig (10)
where Yhii is the dependent variable, the vectorlzhii is a k-dimensional
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vector of explanatory variables. The weighted least squares estimator of B is

L h h L nh m
] 1

b X
h=1 i= 1 j= 1~hIJ h1]~h13

hi

W_..Y LN
h= 1 i= 1 j= 1 ~h13 hij hij"® (1)

= [

The weights Whij are permitted to be a function of hij, but we will assume
that the weights are fixed in the sense that they depend only on the elemental
identification. This precludes from consideration (except as an approxima-
tion) the use of weights that are a function of other elements entering the

sample.
Under mild assumptions on the moments of the superpopulation generating the
finite population, Theorem 1 is applicable to the estimator defined in (11).

If the selection probabilities are denoted by then the estimator EW is a

hij’®
consistent estimator of the finite population vector

L h "hi o5 Ny
I

= X, . W X z I X . MW oo.m oY . (12
Nf rh -1 i= 1 E 1 ~hij hij h1]~h11] h=1 i=1 j:1fvh1J hljnhlj hi j (12)

It follows from (12) that the estimator (11) is a consistent estimator of the

finite population regression coefficient when Wh i 1s proportional to the in-

verse of the selection probabilities. The error in B an estimator of Ef
is
- B. = X, W X', z L X WLy L
T ~f h=1 i=1 j=1 ~hij hl\]tz(lhl\]' h=1 i=1 j=1 ~hij hl\]vhl‘]’ (13)

where
- — '
Vhij - Yhij 'éhijaf'

By Theorem 1 and Corollary 1 a consistent estimator of the variance of the ap-

proximate distribution of EW - B is

Vig, - 8 = ATlGATL (14)
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where
A ; ;h mgi X, . WX
~ " h=1 i=1 j=1 ~hij hij~hij’
~ -1 L -1 "h o~ 7
- _ _ _ 1]
G=(n-Nh -k Lonlny =D d,
. Mhi -

Shi. 7 % Sy

dnij = "hiihiiVhie
L n
n= I Zh m ..,
h=1 i=1 Ni

A N

1
Yhij = Yhij T Zhiidae

and B is the superpopulation analog of Ef. This particular form of the esti-
mator of variance was suqgested by Fuller (1975) and is used in Super Carp.
One of the frequently asked questions faced by survey statisticians is: "In
computing the reagression equation, should I use the sampling weights?" As
with most such questions, the answer is "It depends.” The fact that the
question is asked generally means that the ouestionner has in mind inference
for a population beyond the finite population sampled. This does not mean
that the particular superpopulation is completely defined or definable. It
does suagest that the questionner is postulating that the finite population is
generated by a superpopulation in which some type of linear model holds. One
quantification of the hypothesis that weights are not required is the

superpopulation hypothesis

P (15)

where the 8's are superpopulation analogs of (12),

L Nh My L Nh Mg

1
-1
6 = z z X .. XL, - hX .. .. R IR
o [h=1 s "e j=1 {éhlehlthlJ}] het 121 Fﬁ{j=1 zhlJ"hlJthJ}‘
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L Nh L Nh m

Mhi -1
] z I E

- z S
~(1) r -1 i=1 g{] ’]Z’hl]’)‘(’hll} h=1 i=1 g{\]:'] l('hlJth\]}’ (16)

and EE denotes expectation with respect to the superpopulation. This is a
testable hypothesis. It seems that, at a minimum, a test of this hypothesis
should be constructed if one performs an unweighted analysis of a sample with
unequal selection probabilities.

If the null hypothesis also includes the hypothesis that the estimator with
unit weights is the minimum variance estimator, then the test of the hypothe-

sis is given by the statistic

k _ -1 “,‘ 1%
FreLozk = % 85¥008y- (17)
where
Goodyr a1 g R,
= X X AN R A
17 72 h=1 i=1 j=1 ~hij~hij h=1 i=1 j=1 ~hij hij
ZAlJ = (XhlJ 5%13 h11)
and
~ V11 V12
’\\/’ = " n (18)
V21 Va2

is defined by (14) With,ghij

statistic is approximately distributed as Snedecor's F with k and n - L - 2k

replaeinqlghij. As the notgtion suggests, the

dearees of freedom.

Example 1. Table 1 contains observations on 37 area segments collected by the
Statistical Reporting Service, U.S. Department of Agriculture in northcentral
Iowa in 1978. Two determinations on the hectares of soybeans are reported.
The first is obtained by personal interview in the June Enumerative Survey.
The second is obtained from a classification of Landsat data based upon a
classifier developed by the Statistical Reportinag Service. The original ob-

jective of the study was to use the Landsat data to construct a regression
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estimator of the total acres. We use the data to illustrate the computation
of reqgression statistics from survey data. The sample most nearly approxi-
mates a stratified sample with strata identified in the column headed
"county". The inverse of the sampling rates is given in the weight column.
The estimated regression equation for the regression of interview hectares on

satellite hectares defined by estimator (11) is

Y = -11.845 + 1.1602X,
(8.332) (0.0922)

where the numbers in parentheses are the standard errors obtained from the
estimated covariance matrix calculated by equation (14).

Calculations were performed using Super Carp. If the equation and standard
errors are calculated using unit weiaghts in equations (11) and (14), respec-

tively, we have

Y = -3.927 + 1.0850X.
(9.282) (0.0963)

If we calculate the F-test suggested in equation (17), we obtain
2
F2, = 2.81.

At first glance, this test is large enough to cause to suspicion about the
equality of the two coefficients. Because this sample is very small and
because of the structure of the weights, the test is nearly a test between two
lines, the line for county one, and the average line for the remaining
counties. In this small sample the deviations from the line in county one are
small. Hence, the estimated standard errors of the coefficients for the two
added variables are small. This phenomenon is discussed further in Section
3. If one uses the ordinary reagression F-test that assumes homogeneous error

variances and ignores the stratification, one obtains

2
F33 = 0-68.
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While this statistic is not distributed as Snedecor's F, it does make one
feel more comfortable with the assumption that the two weighting procedures
are estimating the same equation.

Table 2 contains the standard errors of reqgression coefficients estimated
under alternative assumptions. The estimated standard errors- for the inter-
cept behave much as one might anticipate. The stratified weighted sample pro-
cedure has the smallest estimated standard error followed by the stratified
unit weight procedure and the ordinary least squares procedure. Do not forget
these are estimated standard errors. The two stratified procedures are con-
sistent under the stratified model. The weighted estimator has smaller
variance because the observations for stratum 1, the stratum with the largest
weight, lie closer to the estimated line than do the points in other strata.
The ordinary least sguares estimated standard error is not consistent under
the stratified model. If the sample is treated as a cluster sample of coun-
ties, the estimated standard errors for the intercept are about 3N to 4n
percent larger than the corresponding values for the stratified sample,

The estimated standard errors for the slope display a different behavior.
The smallest estimated standard error is associated with the unit weight clus-
ter estimation, and the largest estimated standard error is associated with
ordinary least squares. Roughly speaking, the variation of slopes among clus-
ters is small relative to the within cluster variation. Because the weights
are inversely correlated with the observed variability, the weighted estima-
tors have smaller estimated variances. This is a small sample, hut it is
sufficient to demonstrate that unit weights do not always produce smaller
variances than sample weights and that stratification and clustering can have
rather complex effects on the estimated variances of the regression

coefficients.

3. WHAT IS A LARGE SAMPLE?

Our discussion has rested on the large sample properties of estimators and
of estimators of variance. If the limiting normal distribution is being used
to establish confidence intervals, the size of the sample required for a good

approximation depends upon the nature of the original population. For
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example, if the characteristic is a rare zero-one item (probability less than
0.05, say), a very large sample (more than 1,400 for a simple random sample
(Cochran, 1977, p. 58)) will be reauired for the normal approximation. The
binomial with small p is only one example of the very skewed populations often
encountered in sampling practice. Measures of size such as gross sales of
firms, number of employees of firms, number of animals per farm, and family
income are examples of skewed populations for which large samples are required
hefore the distribution of the mean approaches normality. On the other hand,
the distribution of the mean for items such as family size may approximate the
normal distribution for small (less than 100) sample sizes.

The use of the Taylor expansion is semi-nonparametric in that the approxi-
mation holds, in large samples, under very mild assumptions on the popula-
tion. The large sample requirements are met if we have no isolated points in
our sample space. The method may perform poorly in situations where the gene-
rating distribution and sample size are such that an observation or observa-
tions are isolated from the remaining cluster of points. We consider the
problem of estimating the variance of the vector of regression coefficients
used to test the effect of weighting on the coefficients in the soybean

example. The original vector is
(1, X, XW, W),

and the hypothesis to be tested is the hypothesis that the coefficients for XW
and W are zero. To illustrate the problems associated with variance estima-
tion for the vector of coefficients for the soybhean data set, we create a vec-
tor that is orthogonal in the unit weight metric. The matrix of observations
on the transformed independent variables is composed of the residuals obtained
in the regression of each variable, except the first, on the elements preceed-
ing it in the original vector. Table 3 contains the transformed reqression
variables (X - }, RWX, RW). Only a few digits have been retained to make it
easier to read the table.

When we regress Y on (1, X - i, RWX, RW) we obtain

Y = 95.34 + 1.085(X - X) + 0.093 x 10" 2RWX - 0.015RW,
(2.24) (0.093) (N.044) (0.023)
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where the estimated standard errors were computed for a stratified sample with
unit weights using expression (14). If the reagression and standard errors are

computed by ordinary least squares, we obtain

Q = 95.34 + 1.085(X -~ X) + 0.093 x 1072RWX - N.015RW.
(3.37) (0.113) (0.086) (0.034)

The estimated standard error for the coefficient of RWX obtained by Taylor
methods is about one half of that obtained by ordinary least squares methods.
This can be explained by the data confiquration.

The first observation on RWX is much larger in absclute value than any other
observation. 0Of the total sum of squares for RWX, A7 percent is due to this
observation. The Taylor approximation to the variance uses the sample vari-

ance of deviates called d in (14) to estimate the variance of the statis-

tic. The deviations fromhiggression, denoted by Q, are given 1in the last
column of Table 3. The Q value for observation one is among the smaller
values. The mean square for the residuals is 421. The product (RWX)(;) for
the first observation is -1113. This product is of the same order of
magnitude as the product for observations 3, 33 and 36. Therefore, while the
first observation is responsible for about 67 percent of the sum of sguares of
RWX, it is responsible for only about 15 percent of the sum of squares of
(RWX)(;). This is because v2 for the first ohservation is less than one tenth
of the average of the squares of the other observations. Furthermore, the
squared deviation for the first observation is biased downward because the
method of least squares will cause the estimated plare to pass close to an
observation that is separated from the other observations. Thus, if all of
the observations have the same error variance, the Taylor method will produce
an estimate of the variance of the coefficient for RWX that 1is biased
downward.

Did the procedure underestimate the variance for this sample? We do not
know. If we use the parametric procedure of ordinary least squares, we assign
the pooled estimate of error variance to the separated observation. It is not
possible to determine if this procedure is correct because our estimate of

variance for the separated observation is a one degree of freedom estimator.
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In this situation most people will feel more comfortable assumina that the
variance for the separated point is the same as the variance of the other
points rather than taking the small observed variance of the single point.

In the nonparametric world a single observation contains little information
about the variability of the population that aqenerated the observation.
Furthermore, an observation separated from other observations is essentially a
single observation. In the full parametric world the separated ochservation is
in the fold because the separated observation is specified to have been
created by the same generating mechanism that created the other observations.
For data of the type displayed in Table 3, the answer obtained by parametric
methods rests very heavily on assumptions about the error variance.

In the estimation of variances, one measure of the numerical size of the
sample is the number of cluster degrees of freedom. Thus, for example, the
estimated covariance matrix for a k-dimensional vector random variable is

singular unless

L
r (n_-=1) > k.
h=1 ( h

In setting approximate confidence intervals it seems reasonable to use Stu-
dent's t distribution with degrees of freedom no greater than & (nh - 1). Be-
cause the variance of an estimated variance is a function of the fourth mo-
ments of the population, estimated variances are notoriously unreliable. The
coefficient of variation for the squares is 2% for the normal and considerably
larger for many other common distributions.

If the error variances in the strata are unequal or if unegual weights are
applied to the estimates of different strata, the variance of the variance
estimator can be considerably different from that suggested by a simple calcu-
lation of error deqrees of freedom. Table 4 has been constructed using the
data configurations of Table 1 to illustrate these effects on the estimated
variance. In the first column we assume that stratification is ineffective in
that we assume each stratum variance is equal to the variance of the popula-
tion. We assume the parent population to be normal so that we can give an
explicit expression for the variance of the variance. In this situation stra-

tification produces an estimated error variance for a mean with a variance
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that is proportional to (26.6)"! while a simple random sample produces .a
variance of the estimated variance that is proportional to 3671, The effeg-~
tive degrees of freedom for the stratified sample is slightly less than 27
because of the unequal sample sizes within strata. If we use the sample
weights of Table 1 and the usual stratified variance estimator, the variance
of the eséimated variance is proportional to (4.6)~%. This large reduction is
due to the large weight for the first stratum. If the variance in the first
stratum is one half of the variance in other strata, then the effective de-
grees of freedom for the variance estimator is 12.4. In the last column we
give the effective degrees of freedom for the simple random sample if the
variance of the simple random sample is twice that of the stratified sample.
This illustrates the fact that stratification can reduce both the variance of
the estimated mean and the variance of the estimated variance of the mean.
While we are unable to specify the number of error degrees of freedom
required for our approximations, it is clear that we shall be uncomfortable
with a small number of deqrees of freedom, particularly with unequal weights.
The theory of Corollary 1 uses a linear approximation to the nonlinear
function of the sample means to approximate the behavior of the nonlinear
function. If this approximation is to perform well, the curvature of the
function must be small relative to the standard error of the sample means.

For example, if the function is quadratic

g(¥) = a1Y + a2Y2,

the linear approximation is
g(y) - aju + a2u2 + (a1 + 20ou)(Y - n).
The expected value of q(?) is

E{g(V)} = au + wlu? + V{Y}1.

For the linear approximation to perform well we must have small V{Y} and/or
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small as.

In summary, to be comfortable with the use of large sample theory we

require:

1. A reasonable number of observations in the sense that no observations
are widely separated from the main clusters of observations. This is
another way of saying that the Taylor deviates are such that the mean
of the deviates is nearly normally distributed.

2. A reasonable number of effective error deqrees of freedom for the
estimator of variance.

3. The curvature of the nonlinear function of sample means to be small

relative to the standard error of the sample means.
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Table 1: Soybean Area Determined by Two Methods

Soybean Hectares

County Segment Weight Interview (Y) Satellite (X)
1 1 502 8.09 24.75
1 2 106.03 98.10
1 3 103.60 112.50
2 1 212 .47 43,20
2 2 63.82 80.10
3 1 188 43.50 61.65
3 2 71.43 92.70
3 3 42.49 74.25
4 1 190 1N5. 26 9R8.10
4 2 76.49 99.45
4 3 174.34 152.1N0
5 1 134 95.67 57.60
5 2 76 .57 66.15
5 3 93.48 91.80
6 1 189 37.84 34,65
6 2 131.12 97.65
6 3 124.44 116 .10
7 1 172 144.15 136,35
7 2 103.60 99.45
7 3 88.59 99.90
7 4 115.58 123,30
8 1 114 99.15 85.50
8 2 124.56 121.50
8 3 110. 88 77.40
8 4 109.14 102.60
8 5 143,66 133.65
9 1 193 91.05 75.15
9 2 132.33 85.95
9 3 143.14 112.05
9 4 104.13 81.90
9 5 118.57 80.55

10 1 93 102.59 117.90
10 2 29.46 39.15
10 3 69.28 72.00
10 4 99.15 99.45
10 5 143,66 155.25
10 6 94 .49 85.50
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Table 2: Estimated Standard Errors of Reqression Coefficients

Calculated by Alternative Procedures

Fstimated standard Error

~ ~

Procedure

Bo B1
Ordinary least squares 10.747 N.1116
Stratified; sample weights R,332 0.0922
Cluster: sample weights 11.121 0.0823
Stratified: unit weights 9.282 0.0963

Cluster; unit weights 13.256 0.1071
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Table 3: Data for Transformed Regression Problem

>

Stratum Cluster Weight X - X 10™2RWX RW
1 502 -67 -195 167 6
1 502 7 25 336 6
1 502 21 68 369 -15
2 212 -48 1 1 -37
2 212 -1 4 24 -19
3 188 =30 10 -7 -20
3 188 1 5 7 -26
3 188 -17 8 -1 -35
4 190 7 4 12 3
4 190 8 4 13 -28
4 190 61 -3 38 14
5 134 =34 28 -53 34
5 134 =25 23 -51 6
5 134 0 5 47 -3
6 189 -57 13 -20 3
6 189 6 4 11 29
6 189 25 2 20 3
7 172 45 -9 8 1
7 172 8 3 -6 -1
7 172 8 2 -6 -16
7 172 32 -5 3 -14
8 114 -6 10 -67 8
8 114 30 -22 -66 -2
8 14 -14 18 -68 28
8 114 1 -5 -67 1
8 114 42 ~32 -65 5
9 193 -16 7 4 13
9 193 -6 6 9 43
9 193 21 3 22 26
9 193 -10 6 7 19
9 193 -1 3 6 35
10 114 26 -24 -90 -21
10 114 ~52 63 -84 -16
10 114 -19 26 -87 -9
10 114 8 -4 -89 -6
10 114 64 65 -93 -16
10 114 -6 12 -88 3
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Table 4: Efficiency of Estimated Variance under Alternative Assumptions

Equivalent degrees of freedom

Procedure VSRS = VSt VSRS = 2VSt
Simple random sampling 36 9
Strat. Sa., unit weights, equal var. 26.6 26.6
Strat. Sa., unequal weights,
equal var. 4.8 4.8
Strat. Sa., unequal weights,
13.9 13.9

o% = 0.502




