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APPLICATION OF LINEAR AND LOG-LINEAR MODELS
TO DATA FROM COMPLEX SAMPLES

Robert E. Fay1

Most sample surveys conducted by organizations such as Statistics
Canada or the U.S. Bureau of the Census employ complex designs. The
design-based approach to statistical inference, typically the insti-
tutional standard of inference for simple population statistiecs such
as means and totals, may be extended to parameters of analytic mo-
dels as well. Most of this paper focuses on application of design-
based inferences to such models, but rationales are offered for use
of model-based alternatives in some instances, by way of explanation
for the author's observation that both modes of inference are used
in practice at his own institution.

Within the design-hased approach to inference, the paper briefly
describes experience with linear regression analysis. Recently,
variance computations for a number of surveys of the Census Bureau
have been implemented through "replicate weighting"; the principal
application has been for variances of simple statistics, but this
technique also facilitates variance computation for virtually any
complex analytic model. Finally, approaches and experience with
log-linear models are reported.

1. INTRODUCTION

Statistics Canada has played a significant role in many of the methodo-
logical developments in the application of analytic methods to sample survey
data. The intent of this paper is to review and to share some of the
experience acquired by the U.,S. Bureau of the Census with these same
questions.

The "desian-based" (also sometimes called "classical") mode of inference
predominates in the analysis and presentation of data by most qovernmental
statistical agencies, such as Statistics Canada and the lJ.S. Bureau of the

Census, as well as by most large private survey organizations. The basis of
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statistical inference with this approach is the randomization employed to
select the sample from the finite population. Construction of confidence
intervals and tests of hypotheses are based on a larqe-sample theory tied to
this randomization rather than to a specific model. Standard texts such as
those hy Cochran [4], Kish [171, and Hansen, Hurwitz, and Madow [14] present
the elements of this theory. Hansen, Madow and Tepping [15] recently arqued
the advantages of this approach to the problem of inference from survey data
over "model-based" methods; Sarndal [25] and Cassel, SArndal, and Wretman [31,
have discussed the choice between the model and design-based approaches from a
somewhat different point of view. Most of the original development of the
design-based theory of inference was specifically for population totals, pro-
portions, means, and ratios, and much of the corresponding literature for the
model-based theory similarly concentrates on such basic statistics.

Common analytic models, such as linear regression, log-linear models, and
generalized linear models, on the other hand, were initially developed in the
context of explicit stochastic models, for example, the normal or multinomial
distributions., '"Classical" inference here bhas generally come to refer to sta-
tistical inferences based upon such distributional assumptions (where "classi-
cal" may include '"Bayesian" in this discussion). Developments in '"robust"
estimation avoid specific distributional reaquirements, but often maintain
assumptions not typically encountered in survey sampling, for example, that
the error terms of the model are independent and selected from a symmetric
population.

Many researchers familiar with one or more of these analytic models have
applied them directly to sample survey data without recoanition of the possi-
ble consequences of the sample design on the validity of inferences based on
the wusual distributional assumptions. The subject of this conference, of
course, essentially concerns "design-based" alternatives that do reflect the
effect of the design. Althouch all other sections of this paper will address
"design-based" methods, the next section considers some of the theoretical and
practical issues in choosing between these two approaches, and how these con-
siderations appear manifested in practice at the Census Bureau.

The third section briefly describes some of our experience at the Census
Bureau with design-based methods for linear regression. The fourth section

discusses an approach taken in the computer implementation of replication
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methods, using '"replicate weights". Although principally intended for the
computation of variance for the usual survey characteristics, this technique
also facilitates computation of standard errors for complex models. This
general approach may be particularly useful for less standard models, i.e.,
models other than the linear, log-linear, and other aqeneralized linear
models. Finally, some developments with respect to log-linear models are dis-

cussed, including specific computer software.

2. CHOOSING BETWEEN DESIGN-BASED AND MODEL-BASED
INFERENCE FOR ANALYTIC MODELS

The choice between design-based and model-based inference may involve
several factors, including effects of stratification, and existence or extent
of dependence between sampled values ("clustering"). Many of the essential
issues related to this general choice are enumerated by DuMouchel and Duncan

[6] in their discussion of whether to incorporate survey weights in linear

reqression.
If Y represents a column vector of observations Yi’ and X = {Xii}’ j = 1,
..., p represents predictors for Y, the model
Y = X8+ g (2.1)

with g = {ei} composed of independent, identically distributed error terms

sin«N(U, 02), has as its maximum-likelihood estimate for 8

B= (X0 Xy (2.2)

Typical survey estimation associates a weiaght Wi with each survey case i,
hased on the inverse of the probability of selection, often adjusted by
factors for nonresponse and ratio estimation. If u represents a diagonal

matrix of Wi, then

By = Xm0 Wy (7.3)
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gives a desian-consistent alternative incorporating the weights. Under the
original stochastic model justifying the choice of (2.2), or, more generally,
if the si’s are uncorrelated with zero expectations and equal variances, (2.3)
has a larger sampling variance than (2.2). On the other hand, if these
specific assumptions fail (particularly concerning the expectations of the
ei's), (2.3) remains a design-consistent estimate of the census parameter, g,
defined as the application of (2.2) to the values in the complete finite popu-
lation, whereas computation of (2.2) for unweighted sample cases cannot
guarantee consistent estimation of g%,

DuMouchel and Duncan further elaborate on the issue of choosing between the
variance advantage of (2.2) under the simple model and the consistency of
(2.3) under model failure. Their presentation includes a number of citations
to earlier commentary by others on both sides of this controversy, and can be
recommended for its balanced perspective. Additionally, they propose a test,
which can be performed with typical computer packages for linear regression,
of whether the weighted and unweighted reqressions are sianificantly differ-
ent. If the test rejects the hypothesis that (2.2) and (2.3) are consistent
estimates of the same set of coefficients, then the argument for consistency
with the census value, B*, favors (2.3). If the test does not reject, the
authors prefer (2.2) with its (generally) lower variance.

If a researcher rejects (2.2) on the basis of the test proposed by
DuMouchel and Duncan, and computes (2.3) instead, the implications of this
choice are relatively clear: that (2.3) is selected over (2.2) for its consis-
tency under failure of the model. If the test "accepts" the hypothesis, and
(2.2) is used with its associated standard errors derived under the model,
caution is nonetheless required in uncritically interpreting (2.2) and associ-
ated confidence intervals as statements about the census parameter B*. In
many applications, choice of (2.3) and its associated reliability could be
defended as the only "safe" interpretation of the data as an estimate of g
when model failure is suspected, in spite of possible acceptance by the test
of a hypothesis of no significant difference between the weighted and un-
weighted analyses.,

The paper of DuMouchel and Duncan clearly illustrates the most essential
consideration in choosing between model-based and design-based inference,

namely, efficiency under a correctly specified model versus consistency under
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failure of the assumptions of the model. Two footnotes may be added. Al-
thouah ignoring survey weights is inconsistent under any design-based approach
and can only be justified under model-based approaches, not all model-based
inference requires ignoring the information represented in the weights.

Rubin [24] gave a concise explanation of this last point in his discussion
of the paper of Hansen, Madow, and Tepping [15]. Referring to the more exten-
sive work of Rosenbaum and Rubin [221, Rubin pointed out that a complete
Bayesian interpretation of the observed data reflects not only consideration
of the functional and distributional relationships in the total population
(such as models like (2.1) for the complete population) but also the process
by which the sample observations become observed. (In a randomized design,
"propensity" to be included in the sample may be equated to probability of
selection and the '"propensity score" in Rosenbaum and Rubin [221.) On the
basis of this consideration, Rubin [23] presented an interesting justifica-
tion, from a Bayesian perspective, of the use of randomization in sample
selection, a procedure that has been staunchly defended by proponents of
design-based inference but treated with some disdain by many proponents of
model-based inference. Consequently, Rubin advocates model-based inference
tempered by careful analysis of the effects of selection or propensity to be
included in the sample; these principles in some circumstances could lead to
either (2.2) or (2.3), or perhaps alternatives to both.

As a second footncte, DuMouchel and Duncan explicitly restricted their
attention to the issue of weighting for stratified simple random sampling. An
equally important issue in many applications is the effect on inferences of
clustering, that is, dependencies among sampled units due to their joint
inclusion in the sample by design, such as persons in sampled households or
persons in neighboring households jointly selected into sample. In self-
weighting samples (where all sample cases have equal weight), design-based and
model~based analyses may often produce the same estimates of the parameters of
an analytic model but substantially different assessments of their reliabi-
lity, unless the dependencies fram clustering are explicitly incorporated into
the model-based inference. Unlike the issue of the use of weights in strati-
fied simple random samples, where a model-based approach may be defended if
the error terms conform to the original full specification of the model, a

known dependence among the observations due to clustering (to any serious
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degree) inherently conflicts with any assumption of independence of errors
that might be required by an overly simplified model. Hence, models that do
not reflect known effects of clustering automatically fail to model the data
properly.

Design-based inference is the institutional standard at the U.S. Bureau of
the Census; yet, practice incorporates both modes of inference with respect to
models. Researchers are most likely to adhere strictly to a design-hased
standard for inferences to national relationships based upon complex samples.
When survey weights vary by only a modest dearee or not at all, and the
effects of clustering may be presumed small, model-based inferences for ana-
lytic models appear to enjoy acceptance. The attraction of model-based
inference in these cases, no doubt, reflects less a philosophic choice than a
practical one: model-based methods are more accessible and familiar than the
design-based counterparts. (The author has encountered applications meeting
such conditions on variation on the weights and effects of clusterinao where
design-based methods simply duplicate model-based conclusions, thus justifyina
the substitution of model-based methods under similar favorable circum-
stances. When the weights do appreciably vary, or characteristics are subject
to considerable clustering, however, examples are easily found where the two
modes of inference substantially disagree, and where the model-based inference
is highly questionnable.)

Specific areas of application at the Census Bureau appear almost exclu-
sively model-based. Methods for imputation of missing data, in partieular,
some of which derive from explicit parametric models, characteristically avoid
any consideration of desian-based weights. Another specific field of study,
estimation for small areas or domains, often reflects a mixed strategy of
design- and model-based inference. Thus, practice at the Census Bureau
appears to parallel the choice outlined by DuMouchel and Duncan: efficiency
(and simplicity) under the assumed model versus consistency under model
failure. Strict inference to national relationships are most likely to elicit
design-based methods, while less formal analyses or analyses in which the

model is hoped correct (missing data) often favor a model-based approach.
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3. DESIGN-BASED INFERENCE FOR LINEAR REGRESSION
AT THE U.S. CENSUS BUREAU

In general statistical practice, linear regression is probably the single
most popular analytic technique. Most data collected by the Census Rureau,
particularly for the "demoagraphic areas" involving characteristics of persons
or housing, are categorical: linear regression, in any form, is used rela-
tively seldom at the Census Bureau by comparison.

Fuller [13] developed basic results in design-based inference for linear
regression, using methods based upon Taylor-series expansions (lineariza-
tion). These results are incorporated in the computer program SUPER CARP
[16], whose development was partially supported by the U.S. Bureau of the
Census. We can report successful use of the program ourselves, although it
has been applied to only a few problems thus far. The report by Moore [26] is
probably the most accessible illustration of the use of SUPER CARP at our
institution.

The next section discusses the implementation of replication methods
through replicate weights, and we have aqiven preliminary thouaght, but not yet
attempted to implement, alternative computer software specifically designed
for this approach. No substantial philosophic difference with SUPER CARP is
implied by these considerations, although replication methods tend to aqive
slightly larger and thus more conservative standard errors than lineariza-
tion. The intent in developing this software would be to take advantage of
replication methods developed for some of our surveys, which can be made to
reflect the effects of complex estimators more completely than programs imple-

menting linearization.

4. COMPUTING DESIGN-BASED VARIANCES THROUGH REPLICATE WEIGHTS

Replication methods, such as jackknife, half-sample, and bootstrap tech-
niques, represent the principal general alternative to linearization for
design-based variance estimation for nonlinear statistics. Kish and Frankel
[18] presented an early discussion of the use of replication for such purposes
and much research has been conducted since.

The popularity of replication for variance estimation has qone through
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eycles. Linearization is a powerful technique, of course, and relationships
presented by Binder [11 facilitate its implementation for a wide class of
analytic models. Census Bureau surveys tend to employ quite complex estima-
tors, however, and fully representing the effect on the sampling variances of
these estimators has frequently proven to consume large amounts of profes-
sional time, both by statisticians and, especially, experienced computer
programmers. Recently, variance computations for a number of surveys have
used replication methods achieved through a '"replicate weighting" approach.
The principal features of this method are to provide a unified approach to
enable the computation of variances for a large number of survey characteris-
tics and to simplify the estimation of variance for complex analytic
statistics.

The replicate weighting approach is not a new discovery: some of its
earlier history is reported in [5], which also describes experience acquired
by the U.S. Bureau of Labor Statistics, Bureau of the Census, and Westat,
Inc. The algorithm may be said to represent the variance from a (possibly
complex) desian and a (possibly complex) survey estimator in the form of data
to be associated with the survey data file rather than as a set of (possibly
complex) variance formulas requiring computer programming. Familiar replica-
tion methods, such as balanced half-samples and the jackknife, may be repre-
sented through replicate weights, but the algorithm also facilitates the
implementation of a much wider class of resampling plans, as in [7]. In [10],
it is shown that there exists a resampling plan (actually an infinite number
of resampling plans) corresponding to essentially any familiar variance esti-
mator for estimates of population totals, such as variance expressions far
multi-stage designs, Yates-Grundy estimators, ete. By representina complex
variance relationships as data, variance computation becomes accessible to a
larger group of data users.

Estimation in many surveys assigns weights W;jg to each case i, so that for
any characteristic Xi, estimates of total are given by the weighted sum of the

characteristic times the survey weight

)}0 = X WioXj. (4.1)
1
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The product of the replicate weighting approach is a set of additional
weights Wir’ r=1 ..., R, for each survey case i, from which alternative es-

timates of total

X =3 W, X (4.2)
i
may be computed. The estimate of variance is given by
A a R R A
Var(Xg) = r§1 d. (X, - Xo) (4.3)

for predetermined dr independent of the choice of survey characteristic X.
(As an example, a simplified balanced half-sample estimate of variance.
ignoring the effect of any complex survey estimation reflected in the weights
Wio, would be given by assigning weights Wir equal either to ZW;p or to 0 ac-
cording to whether case i was included in half-sample r, and setting dr = 1/R
for each r.) More generally, for a smooth function S that are functions of
weighted population estimates of total §0<1), ceey io(k)

(4.1),

, each of the form

°(1)

x( 1 §§k>) VIS N LOSSE IR RS

N N - R
var {506, L, x0T = 1 fsodY, L,

The estimator S in (4.4) may stand for the sometimes extremely complex estima-
tors often used in survey estimation, incorporating noninterview adjustments
and ratio or iterative ratio estimation. Furthermore, these forms of complex
survey estimation, if incorporated in the weights Wi’ may be included in the
derivation of Wir as well, Thus, variance computation with this approach

falls naturally into three distinct steps or phases:

1. Generate replicate basic weights Wir* for the simple unbiased (Horwitz-
Thompson) weighting of the data given by the basic weights Wjg*.

2. Compute replicate (final) weights, W.

ip? by applying the same noninter-
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view and ratio estimators to the replicate basic weights, Wir*’ as the
original estimation procedures used to compute Wjip from the Wjg*.
3. Apply (4.4) to the estimation of variance of simple or complex

statistics.

The modularity of the preceding three phases is a key feature of this tech-
nique: general programs may be used to perform phases 1 and 2, or custom pro-
grams may be written to cover unusual circumstances as required. For a single
survey, phases 1 and 2 need be performed only once. Programs for phase 3 need
take no specific note of the desian or estimator and can be run as needed
by any user with access to the replicate weights wir produced in the second
phase.

Although most applications of this method at the Census Bureau have been to
estimate variances for basic survey characteristics such as means, totals, or
proportions, (4.4) lends itself well to analytic purposes as well. This
approach fully represents the effects of complex designs and estimators,
whereas in practice implementation of linearization often is restricted to the
more common and simple situations. Furthermore, although specific computer
software may be developed to implement linearization for common analytic
methods, such as linear regression, log-linear models, generalized linear
models, etc., formula (4.4) enables researchers to compute variances for more
specialized analytic models for which no linearization methods have been pro-
grammed, since (4.4) only requires that the researcher apply complete data

algorithms to the alternative estimates produced by the replicate weights.

5. DESIGN-BASED INFERENCE FOR LOG-LINEAR MODELS

Log-linear models, which express the logarithm of the expected frequencies
for cateqorical responses as a linear function of unknown parameters, encom-
pass both factorial models for cross-classified cateqorical data, and logistic
models for one or more dependent categorical variables as a function of any
combination of categorical and continuous predictors. Bishop, Fienberg, and
Holland [2] provided one of the earliest books in this rapidly expandinq
field.
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Many log-linear models, particularly those for fully cross-classified
cateqorical data, involve a large number of parameters. The three most

typical problems of inference are:

1. To compute standard errors and confidence intervals for the individual
estimated parameters,

2. To test the significance of the contribution of specific sets of para-
meters to the fit of a model,

3. To test the overall agoodness-of-fit of the model.

In the context of simple random samples, standard results in maximum like-
lihood theory provides an answer to these questions, although the Pearson
chi-square test rightfully enjoys greater popularity than the likelihood-ratio
chi-square test as a solution to the third problem.

Koch, Freeman, and Freeman [19] extended the Weighted Least Squares (WLS)
method to complex samples, thereby providing solutions to each of the three
principal inferential problems. While this method has proven of substantial
general use, it is limited in some applications by the necessity to produce
highly precise estimates of the desian-based covariance of the sample esti-
mates before the asymptotic theory approximates the actual performance of the
WLS procedures. (Further comments on the limitations of WLS are given in ra]
and [11].)

Fellegi [12] made an early contribution to the development of alternative
tests to WLS for specific situations. More recently, Rao and Scott [20], [21]
have formulated and extended a set of related methods to cover the problem of
testing for a general class of models including log-linear models. Develop-
ment of these methods has been closely associated with Statistics Canada.

A less well-known "jackknife chi-square test" [11] gives an alternative
approach to the general problem of design-based tests of hypotheses. This
test is based upon replication, usinag (4.4) and a similar expression related
to the approximation of the first-order bias (as in the usual jackknife) to
draw approximate inferences about the null hypothesis distribution of the
usual chi-square tests applied directly to the weighted survey estimates. The
method shares much in common with those developed by Rao and Scott. Although

a full comparison of the relative merits the jackknifed test and the tests
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proposed by Rao and Scott has not been conducted, the preliminary suagestion
is that both work well and neither entirely dominates the other. (Further
comments are given in [11].)

The jackknifed tests do appear somewhat easier to implement, however,
especially to tables involving a large number of cells. A FORTRAN computer
program, CPLX (described in [8] and documented by [9]), implementing the jack-
knifed tests for factorial log-linear models for cross-classified data is now
in the public domain. The program also computes replication-based standard
errors for parameters of log-linear models, thus also addressing the first of
the three problems of inference listed earlier. Although CPLX fits well into
an environment in which other survey variances are also estimated through
replication approaches, such as the replication weighting technigues described
in the previous section, these circumstances are by no means necessary to use
the program, and a number of researchers within and outside the Census Bureau
have applied the program in a variety of settings.

In time, the author hopes to be able to incorporate the methodology of Rao
and Scott into a proaram like CPLX in order to make both methods available.
For the short term, however, the current version of CPLX should be of help to

researchers seeking design-based inferences from survey data.
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