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LOGISTIC REGRESSION ANALYSIS (F LABDUR FORCE SURVEY DATA

S. Kumar and J.N.K. Rao !

Standard chisquared (X2) or likelihood ratio (G?) tests for logistic
regression analysis, involving a binary response variable, are adjust-
ed to take account of the survey design. The adjustments are based on
certain generalized design effects. The adjusted statistics are uti-
lized to analyse some data from the October 1980 Canadian labour Force
Survey (LFS). The Wald statistic , which also takes the survey design
into account, is also examined for qgoodness-of-fit of the model and
for testing hypotheses on the parameters of the assumed model. Logis-
tic regression diagnostics to detect any outlying cell proportions in
the table and influential points in the factor space are applied to
the LFS data, after making necessary adjustments to account for the
survey design.

1. INTRODUCTION

Logistic regression models have been extensively used by researchers in
social, behavioural and health sciences to analyse the variation in binomial
proportions (see, for example, the books by Cox (1970) and McCullagh and
Nelder (1983)). Due to clustering and stratification wused in the survey
desiqn the statistical methods for binomial proportions, however, are often
inappropriate for analysing sample survey data. For instance, the standard
chisquared (x?) or the likelihood ratio (G?) tests areatly inflate the type I
error rate (significance level). Hence, some adjustments to the classical
methods that take account of the survey desiqn are necessary in order to make
valid inferences from survey data. In this article, we have utilized two
simple adjustments to x? or G2, based on certain generalized design effects
(deffs) to analyse some data from the October 1980 Canadian Labour Force
Survey (LFS) (Section 3). The Wald statistic, which also takes the survey

design into account, is alsoc examined.
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University.
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In addition to formal statistical tests, it 1is essential to develop
diagnostic procedures to detect any outlying cell proportions and influential
points in the factor space. Regression diagnostics for the standard linear
model have been extensively investigated in the literature (see the recent
book by Cook and Weisberg (1982)). Pregibon (1981) recently developed similar
methods for the logistic reqression with binomial proportions. In Section 4
some of these methods have been applied to the October 1980 LFS data, after

making necessary adjustments to account for the survey design.

2. THEORETICAL RESULTS

Suppose that the population of interest is partitioned into I cells (do-
mains) according to the levels of one or more factors, and &i denotes the sur-
vey estimate of the i-th domain size, Ni (i =1, 2, «ouy I35 2 Ni = N). The
corresponding estimate of the }—th domain total, N.,, oan biqaryA(ﬂ, 1) re-

sponse variable is denoted hy Ni The ratio estimate, p; = Ni1/Ni’ is used

1°
to estimate the population proportion mo= Ni1/Ni'

A logit model on the proportions ™ is given by m,o= Fi(E)’ where

ln{Fi/(1 - fi)} = logit f; = /8, i=1, ..., L (1)

In (1), X is an s-vector of known constants derived from the factor levels
and B is the s-vector of unknown parameters. Under independent binomial
sampling in each domain, the maximum likelihood estimates (m.l.e.) are

obtained from the following likelihood equations:

X'D(n/n)f = X'D(n/n)q, (2)

Yhere X! =A(L1, cees 54), D(n/n) = diaq(n1/n, cens nI/n), i =,£Qé) = (?1, cees
FI)', and S,is the vector of sample proportion q; = ni1/ni, where n; is the
sample size from i-th domain (% n, = n). For aeneral sample designs, we do
not have m.l.e. due to difficulties in obtaining appropriate likelihood func-

tions. Hence, it is a common practice to use a "pseudo m.l.e." of B8 or f

~o
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obtalned from (2) by replacing n; /n by the estimated domain relative size,

Wi = N, /N, and q; by the survey estlmate P

X'D(W)F = X'D(w)p. (3)

The resulting estimates, B and f = i(é), are asymptotically (i.e., in larage

samples) consistent. The equations (3) may also be written as

X'N1(m) = X'Ny, (4)

~ -~

where ﬁ1 is the vector of estimated counts N, i1? and N (m) is the vector of

pseudo m.l.e., Ni1(m) =z Nifi, of the totals Ni1'

and'ﬂ1(m), are obtained from (3) or (4) by iterative calculations.

The estlmates B, and hence F

2.1 Estimated Variances and Covariances

Let V denote the estimated covariance matrix of p, then the estimated cova-

riance matrix of B is given by
D(B) = (X' &)~ 1(X'D(W)VD(w)X) (X' &)~ (5)

in large samples, where A = diag(wif1(1 = f1), «.uy wIFI(1 - FI)). The diago-

nal elements of (5) provide the estimated variances of the estimates Bi. Sim~

ilarly, the estimated covariance matrix of the residual vector r = b - f is
given by

D(r) = AVA', (6)
where

A =T - DD - XX A)=1X'D(W). (7)

The diagonal elements Vii(r) of (6) lead to standardized residuals ri/s.e.(ri)

which are useful in detecting outlyina cell proportions.
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2.2 Goodness-of-Fit Tests

The standard chi-squared test of goodness-of-fit of the model (1) is aqiven

I (p, - Ff)%w, I
X=n z L. t__t= oz XA (8)
i=1 F (1 - fi) i=1

The likelihood ratio test statistic is aiven by

2 I ~ P ~ (1 -py) I
G°=2n 2 w. {p.ln —+ (1 -p)Iln _——__ }= 1 G (9)
i=1 101 - 1 P i=1 1
f. (1 -f)

Note thatAGi is also defined at &i = N and 1 as given by -2nw;In(1 - %i)
and —2nwiln Fi respectively. Under independent binomial sampling. it is well
known that both X2 and G2 are asymptotically distributed as a x2 variable with
I - s degrees of freedom, but for general desians this result is no longer
valid. In fact. X2 (or G2?) is asymptotically distributed as a weighted sum
z Gizi” of independent x2 variables, Zi’ each with 1 d.f. where the weights
6. (i = 1. .... I - s) are the eiagenvalues of a "generalized desian effects"

i
matrix given by Zal Iy - where

Iy = 6'DCH-0(L - H-W(H)-p(1 - £)-'5, (10)
T ~5-21
Zoz_GAG (11)
n
and G is any Ix(I - s) matrix of rank I - s such that G'X = N. i.e.. G is

orthogonal to X. Under binomial samplina, Z'é Iy reduces to I. the identity
matrix

A simple adjustment to X2 (or G?) is obtained (Roberts. 1984) by treating
Xg = X2/6. or Gg = G%/s. as XZ with I - s dearees of freedom (d.f.) under the

hypothesis that the model is true. where
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PN

(I -s8)8, =n I V
i=1

[ ]

ii(r>wi/{%i(1 - %i>1. (12)

The adjusted statistic Xg (or Gg) should be satisfactory excepting in those
cases with a large coefficient of variation (C.V.) of the Gi's. A better ad-
justment, based on the Satterthwaite approximation, treats Xg = Xé/(1 + a%) or
Gé = Gg/(1 + a%) as x2 with (I - s)/(1 + az) d.f., where

a? = £ (8 - 6)%/[ - )67 (13)

is the (C.V.)2 of the §,'s and

I 1 - - . .
2 2
L8 = 151 j§1 Vij(r)(nwi)(nwj) / [fifj(1 - 0 - ﬁi)] , (14)
where Vij(r) is the (i, j)-th element of D(r). The statistics X% and Gé take
account of the variation in Gi's.
A Wald statistic for goodness-of fit of the model (1) is given by
X2 = w'GIF'G' Y, (15)

where &'is the vector of loqits ;i = loqit 61. The statistic Xﬁ is distribut-
ed as x2 with I -~ s d.f., in large samples. The statistic X% is nPt defined
if p; = N or 1 for some i. Moreover, it becomes unstableAwhen anv p; is close
to 1 (see Section 3), or when the degrees of freedom for V is not larae com-

pared to I - s (Fay, 1983).

2.3 Nested Hypothesis

Suppose the matrix X is partitioned as (Xj, X2) where X; is Ixr and Xz is

Ixu (r + u = 8), then the model (1) may be written as

v = XB = X181 + X282, (16)
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where B; is rx1 and Br is uxi. We are often interested in testing the null
hypothesis H: B, = 0 given the model (16). The "pseudo m.l.e." under H can be

obtained from the eguations
' ] ' ~
X1D(w)f = XD(w)p (17)

again by iterative calculations, where f = FQ@). The standard chisaquared and

likelihood ratio tests of H: B = 00 are given by

) I wi(%_ - g.)z
x<z|1)=n_>;1 ' (18)
i= 2 3
Fi(1 - Fi)
and
I . %i . (1 - ?i>
52(2’1) =2 ¢ wlf.ln 2+ (1 -Ff)ln — __— (19)
i=1 1 1 2 1 2
£ (1 - f.)
1 1

respectively. linder binomial sampling, both X2(2|1) and G2(2'1) are asympto-
tically distributed as X2 with u d.f. when H is true, but for general desians
this result is no longer valid. In fact X2(2‘1) or 82(2'1) is asymptotically
distributed as a weighted sum, ZGi(H)Zi, of independent Xf variables 7., where

the weights Gi(H) (i =1, ..., u) are the eigenvalues of the desian effects

matrix.

(X3 8X3)= (XD (W) VD () X2) (20)
where

X2 = [T - X1 (x18x )= X1 81Xz, (21)

(Roberts, 1984). In the binomial case, the desian effects matrix (20) reduces
to I, as in the previous case of goodness-of-fit.

A simple adjustment to X2(2’1) or G2(2’1) is obtained by treating Xé (?,1)
= X2(2|1)/6.(H) or G§(2|1)/6.(H) as Xz with u d.f. under H, where
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—

W (W =n T V. (0w /F (1 - £ (22)

z
i=1

and V}i(r) is the i-th diagonal element of the covariance matrix of residuals,

ri(H) = f; - f,. given by

V(r) = DO - HXAXPOD, - £) (23)
where
A = (RyaX,)= XD () VD ()2 1(X,8K5) (24)
~ 2 ~ 1
The standardized residuals (Fi - Fi)/[Vii(r)]° can also be computed. As in

the case of goodness-of-fit. improved approximation. based on Satterthwaite's
method, can also be obtained.

A Wald statistic of H B, = 0 is given by

Xa(2]1) = ByTD(B2) 1 18,. (25)
where D(Bp) is the principal submatrix in (5) corresponding to B,. Under H.

X2(2l1) is asymptotically distributed as xz with u d.f. 1In particular if 85
is a scalar. we can treat By/s.e.(Bp) as N(N.1)-variate under the hypothesis

H: By = 0 or B2/var(By) as x2 with 1 d.f.

2.4 Diagnostics

It is desirable to make a critical assessment of the logit fit by identify-
ing any outlying cell proportions and influential points in the factor space.
For this purpose. the vector of residuals and a projection matrix in the
factor space provide useful tools. However. unlike in the case of the stan-
dard linear model. the residuals can be defined on different scales The
natural choice that takes account of the survey desian is the vector of stan-

N 1
dardized residuals e, = ri/[Vii(r)]° agiven in section 2.1. Since the ei's are
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approximately N(0, 1) under the model (1), the expected numbers of residuals
e, exceeding 1.96, 2.33 and 2.58 in magnitude are 0.05I, 0.02I and 0.01I res-
pectively, where I is the number of residuals (cells). These expected numbers
provide a rough quide to identify any outlyina cells. Ignoring the design and
hence using standardized residuals under binomial sampling could lead to mis-
leading conclusions.

Th? standardized residuals ey however, become unreliable for those cells
with p; = 1 or close to 1. Follawing Fregibon (19813, we suqgest the use of
components of Xg or Gg, viz., Y} = Xi/G? or E} = Gi/é?, i=1 ..., I, for re-
sidual analysis in order to circumvent this difficulty. In either case, laraqe
individual components should roughly indicate cells poorly accounted for by
the model. Index plots (i.e., plots of R; vs i and E; vs i) are useful for
displaying these components. Normal probabilities plot of Xi or E} (i.e., the
ordered values plotted against standard normal quantiles) is also useful to
detect deviations from the model (i.e., deviations from a straight-line
confiquration).

Pregibon (1981) sugaested the use of diagonal elements, miso of the pro-
Jjection matrix

1
?

al - N
5 =1
I - VbX(X'VbX) X'Vb

<
"

I - H (say) (26)

A

to detect influential points, wher? Vb isAthe estimated govariaqce matrix un-
der binomial sampling, viz., diaglp;(1 - p1)/(nwy), ..., pI(1 - pI)/(an)] in
the context of survey data. The matrix M arises naturally in solving likeli-
hood equations (4) by iteratively reweighted least squares, and small values
of mes call attention to extreme points in the factor space. Again, an index
plot (mii vs i) would provide a useful display. It may be noted that the de-
sign effect does not come into picture with mss since we are wusing 'pseudo
m.l.e." based on binomial sampling. Another useful plot which effectively
summarizes the information in the index plots ?; vs 1 and m.; V8 i is given by
the scatter plot of Y?/xg - xiz/x2 vs h., vhere h., is the i-th diagonal ele-

ment of H given by (26) (see Pregibon, 1981).
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The diagnostic measures e Yﬂ or Eﬁ and m. are useful for detectinng
extreme points, but not for aSSeSSlnG their impact on various aspects of the
fit including parameter estimates, B, fitted values, i, and goodness-of-fit
measures X /6. or G2/6. or others. Following Pregibon (1981) we suggest three

measures which quantify the effect of extreme cells (points) on the fit.

(1) Coefficient sensitivity: Let B ( %) denote the pseudo m.l.e. of B
talned after deletlnq the 2-th cell data. Then the quantity A (2) =

[B - B (-2)]/s.e. (8 ) provides a measure of the j-th coefficient sen31t1v1fy

to 2- th point. The 1ndex plots A (2) vs & for each j provide useful displays
but the task of looking at the 1ndex plots could become unmanageable if the
number of coefficients in the model is large.

(2) Sensitivity of fitted values: Significant changes in coefficient es-

timates when l th point (cell) deleted does not necessarily imply that the
fitted values F also vary significantly from f( %), the vector of fitted va-
lues obtained after deleting the 2-th cell, i.e., [ﬁ _,f(-z)u could be small.
We therefore use [G? - ©2(-2)1/68  or [X? - X?(-2)]/8, to assess the impact of
the 2-th point on the fitted values. where EQ(-Q) and ?Q(-z) are given by (9)
and (8) respectively when %i = fiQE) is replaced hy %i(-z) = Fi(B(—l)).

(3) Goodness-of-fit: A measure of goodness-of-fit sensitivity is given by
[6% - 62(-2)1/s, or [X? - X2(-2)16., where G%(-2) and X?(-2) are the likeli-
hood ratio and chisquared statistics obtained after deleting the £-th cell.
(Note that G2(-8) #* T2(-2)).

3. APPLICATION TO LFS

We have applied the previous methods to some data from the October 1980
Canadian Labour Force Survey (LFS). The sample consisted of males aged 15-64
who were in the labour force and not full-time students. We have chosen two
factors, age and education, to explain the variation in unemployment rates via
logit models. Age-group levels were formed by dividina the interval [15, 64]
into ten qroups with the j-th age group being the interval [10 + 5j, 14 + 5il,
j=1 2. ..., 10, and then using the mid-point of each interval, Ai , as the

value of the age for all persons in that age aroup. Similarly, the levels of
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education. Ek" were formed by assigning to each person a value based on the

median years of schoolina resulting in the following six levels = 7, 1N, 172.
13 14 and 14. Thus the age by education cross-classification provided a
two-way table of I = 60 cell proportions. "ik'
The LFS design employed stratified multi-stage cluster sampling with two

stages in the self-representing (SR) urban areas and three or four stages in

non-self-representing (NSR) areas in each province The survey estimates.
pjk' were adjusted for post-stratification. using the projected census age-
sex distribution at the provincial level. The estimated covariance matrix

V of the estimates p ik is based on more than 450 first-stage units (psu's) so

that the degrees of freedom for V are large compared to I = 60.

3.1 Formal Tests of Hypotheses.

Scatter plot of the loqgits v vs age levels Ai at each education level E

Jk k

indicated that vjk for given k generally increaseé with age to a maximum and

then decreases (i.e., the graph is convex and upward to a maximum). Hence.

the following model might be suitable to explain the variation in “ik‘s'

‘ 2 2
= 1ln 2" = Bg + BlAj + BZAj + BgEk + BuEk

1M k= 1. ... 6. (27)

—.
1]
-

Some previocous work in sociological literature also supports such a model
(Bloch and Smith, 1977). Applying the results of Section 2 we obtained the
following values for goodness-of-fit statistics
X2 = 98.9 62 = 101.2
X2/8 = 52.5 G2/§ = 53.7. & = 1.88.

since X or G? is larcer than x; 05(55) = 73.3, the upper 5% point of xZ
with T - s = 55 d.f.. we would reject the model if the survey design 1is
ignored. On the other hand. the value of XZ/G‘ or Gz/db indicate that the mo-

del is adequate. the significance level (or P-value) beina approximately equal
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to 0.52. The value of Xé when adjusted to refer to xé.05(55) is equal to 47.7
which is also not significant. Moreover. in the present context with s(= 5)
relatively small compared to I(= 60), the simple correction d.  the average
cell deff, (see Fellegi, 1980), is very close to §:d = 1.905 compared to
§ = 1.88: see Rao and Scott (1984) for a theoretical explanation.

) The Wald statistic Xﬁ is not defined here since two of the cells have
p\].k 1, but we made minor perturbations to the estimated counts to ensure

that pjk < 1 for all cells and then computed x2. The resulting values of X2

>

W W
are all larqe compared to X2/6_ (at least 30 times larager than X2/6.) and vary

considerably (1715 to 3061). Hence, the Wald statistic is very unstable for

goodness-of-fit test in the present context. If the two cells having p].l< =1

are deleted, then Xﬁ = 68.4 < xs nS(53) = 71.0, indicating that the model (27)
is adequate. However, it is not a good practice to delete cells just to

accomodate a chosen test statistic. The other problem with Xﬁ, noted by Fay

(1983), does not arise here since d.f. for V is large compared to the number
of cells in the table.

The pseudo m.l.e., their s.e. and the corresponding s.e. under binomial
sampling, all obtained under the model (27), are given in Table 1 along with
Wald statistic Xﬁ(2|1) and G2 statistic G2(2/1)/8.(H) for the hypotheses
Hi: B; = 0, i=1, 2, 3, 4 given the model (27). As expected, the true s.e.'s
are larger than the corresponding binomial s.e.’'s. The hypothesis Hy: By = 0
(i.e., coefficient of Ei is zero) is not rejected at the 5% level either by
the Wald statistic or G2 statistic. On the other hand, the coefficient,
Ba, of Af is highly significant. In testing the significance of individual
coefficients we compare the values of Xﬁ(2'1) or G2(2'1)/6_(H) to x20.05(1) =
3.84, the upper 5% point of x2 - variate with 1 d.f.

We have also tested the following nested hypotheses given model (27): Hszy-
B3 = By = N (i.e., no education effect); Hoy: B2 = By = 0 (i.e., no quadratic

effects). Both H3y and Hyy, are highly significant:

282.2/1.64

"
Hj

165.6 for Hgy:

G2(2|1)/8, (Haw) 172.1, X2(2[1)

GZ(2[1)/8, (Ha)
2
x0‘05(2) = 5.99.

242.2/2.28 = 106.3, Xﬁ(2|1) 162.1 for H,, compared to
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. P P 2 _ a2 p 2
Table 1: Pseudo m.l.e. B,, s.e. (B,), Xw(2|1) = B;/var (8;) and G (2'1)/6_(Hi)
Values for the LFS Data under Model (27).

s.e.(Bi) ) )
3 XW(Q{1) G (2|1)/5 (H.)
. : . LI |

i True Binomial
8] -2.76 0.557 24,6
1 0.209 n.0132 n.n12 250.6 168.4
2 -0.00217 N.000173 N.ND0136 157.3 102.1
3 0.0913 0.0891 Nn.068 1.04 1.01
4 N0.00276 0.00411 0.0030 Nn.45 N.46

Unlike in the case of goodness-of-fit, the Wald statistics is stable for
testing nested hypotheses and leads to values close to the corresponding
G2(2'1)/6.(H) values.

By the above test of aoodness-of-fit and tests of nested hypotheses we have

arrived at the following simple model invelving only four parameters:

T,
jk
vV, = 1n — -
Jk 1 - m,

= By + BIA, + B2AT + 83F,, (728)
o . .

A

with Bg = -3.10, B8; = 0.211, B2 = ~N0.0N218 and B3 = N.15N9 and corresponding
standard errors are 0.247, 0.0130, 0.000172, and 0.0115. We will use the

model (28) in Section 3.2 to develop logistic reqression diaanostics.

3.2 Diagnostics
We now illustrate the use of diagnostics developed in Section 2.4.

(i) Residual Analysis
The 60 cells in the two-way table were numbered lexicographically, and the

standardized residuals e, were computed under the model (28) arrived through
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Forma% testing of hypotheses. Among the sixty €5 cells numbered 6 and 54
with p\].k = 1 lead to very large e values: 166.6 and 6.2 respectively. Among
the remaining e; the residuals numbers 7, 27 and 59 have values 3.84,
2.73 and 2.52 respectively, whereas the expected number of lei| exceeding 2.33
under model (28) is roughly 0.02 x 60 = 1.2. Hence, there is some indication
that cells 7 and 27 could correspond to outlying cell proportions.

The normal probability plot of E} is displayed in FIG. 1:; the plot of ?& is
not given to save space since it is similar to the plot of Gi' Figure 1 indi-
cates no strong deviations from a straight line confiquration. The index plot
of E;, Figure 2, is consistent with Figure 1. Hence, there is no evidence of
outlying cell proportions when the components E; of qg are used for residual
analysis.

(ii) Detection of Influential Cells.

The index plot of mis is displayed in Figure 3 which clearly points to
cells 1 and 6. Figure 4 displays the plot of ??/Xg = Xiz/X2 VS hii’ where the
line with slope - 1 is given by Xiz/X2 + hyy o= 3ave(h§i). Here h%. = h,

ii
Xf/Xz, and the values of h;i near unity corresponds to cells which are out-

lying or influential or both (Pregibon, 1981) and appear above the line in
Figure 3. It is clear that cells 1 and 6, and to a lesser extent cells 7 and
58, warrant further examination.

(iii) Coefficient Sensitivity.

The index plots for measuring coefficient sensitivity (Ai(z) vs %) are dis-
played in Figures 5, 6, 7, and 8 for Bp, B;, B2 and B3 respectively. It is
clear from the plots that cells 2 and 3 cause instability in éo, &1 and éz,
whereas ég is affected by cell 7.

(iv) Sensitivity of Fitted Values

Figure 9 displays the plot of g2 - ﬁa(-l)]/d. = ¢ vs % for assessing the
impact of individual cells on fitted values. Significant peaks in this figure
correspond to cells 2 and 3 and to a lesser extent to cell 7. Following Cook
(1977) and Pregibon (1981), it may be noted that the comparison of c to the
percentage point of x?(s) (s = 4 in model (28)) gives a rough guide as to
which contour of the confidence reaion the pseudo m.l.e. is displaced due to
deletion of the f2-th cell. The value ¢ = 2.1 for cell 2 roughly corresponds

to 78% contour of the confidence region.
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(v) Goodness-of-fit Sensitivity
Figure 10 displays the plot of g2 - Gz(—l)]/é_ vs &: the plot of
[x% - Xz(-k)]/G. is similar and hence not displayed but the former plot is

preferred (Pregibon, 1981). Significant peaks in this figure corresponds to
cells 2, 3, 7, 27, 39 and 54 (values 2 3), the most significant being cell 7
with the value 5.4. By deleting cell 7 and recomputing the adjusted statistic
Gg(-l) = Gz(-z)/a.(-z) where 8 (-2) is the corresponding value of § , we get
a value of 48.43 with 55 d.f. compared to GZ/G. = 55.3 with 56 d.f.

OQur investigation on the whole indicated that cells 7, 2 and 3 are possible
candidates for deletion, but we feel that their impact is not siqnificant
enough to warrant their deletion - one would like to explain the variation
among all cell proportions unless certain cells contribute heavily to the

disagreement between the data and the fitted model.
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Fiqure 2: Index Plot of Ei
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Figure 7: Index Plot of {éz - Ez(~£)}/s.e.(é2)
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Figure 8: Index Plot of {Eg - &3(—2)}/s.e.(83)
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