SURVEY METHODOLNGY 1984, voL. 10 NO. 1

AN INTRODUCTION TN LINEAR MODELS AND GENERALIZED LINEAR MODELS:
CONCEPTS AND METHODS

David A. Binder!

Univariate statistical models, linear reqression models and
generalized linear models are briefly reviewed. Examples of a
two-way analysis of variance, a three-way analysis of variance and
logistic regression for a three way layout are given.

1. INTRODUCTION

The purpase of this presentation is to give a bird's-eye view of some of
the concepts used in statistical applications for modelling data

The use of data sampled from a population to estimate means and proportions
is now a common practice. In Section 2 we briefly review this concept and
describe the interval estimates obtained from constructina confidence
intervals.

Linear regression and analysis of variance models are often used to reduce
multi-dimensional data to a model consisting of a few parameters. This tool
is a valuable device for the analyst lookina for a deeper understandina of a
complex data set. These methods are reviewed in Section 3.

The concepts of linear rearession methods can be extended to a much wider
class of models through the generalized linear models described by Nelder and
Wedderburn (1972). This is particularly useful when the dependent variable is
cateqorical as opposed to continuous. In Section 4 we review the structure of
these models.

Brief mention of appropriate diaanostics to quard against model failure and

to detect multicollinearities is given in Section 5.

! pavid A. Binder, Institutional and Agriculture Survey Methods Division,

Statistics Canada.
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2. UNIVARIATE MODELS

2.1 Binomial Models

Suppose we have a large population from which we will select a sample and
we take an observation from each selected unit. If the sample size is n, we
denote the aobservations by Y1, Yy, ..., Yn. The purpose of collecting this
data is that we would like to make some inferences about the population based

on this sample. For example, our population could be residents of Canada and

our data are defined as

Y. = | 1 if the person was born in Canada
j = ' 0 if the person was born outside of Canada,

for the j-th individual selected. Based on this sample we would like to make
some inferences on the proportion of people in the population who were born in
Canada.

If a simple random sample of n = 5000 residents is selected and the actual
proportion of persons born in Canada is p = 0.85, then the number of persons

in our sample who are born in Canada will be a random variable with a binomial

distribution given by
fly) = (5080)(.85)y(.15)” “ Y. y=0,1, ..., 5000.

In this case, since we know p = .85, we can completely describe the proper-
ties of Y = X Yi’ the total in our sample who are born in Canada. For most
statistical applications, though, we do not know all the characteristics of
the population and we use our sample to make inferences about this popula-
tion. For example, suppose we do not know the value of p in the previous
example. Then we can say that the number of persons in our sample who were
born in Canada will be a binomial random variable having a distribution qiven

by

fly) = (Soso)py(1 - p)?000 -y 2 g, 1, ..., 5000.
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Now, the usual estimator for p, based on this data is 5 =Y = £ Y./50Nn,
We let s(;) = {5(1—&)/(5000)}%. This is our estimate of the standard eiror of
5. Now, it turns out that 5 *1.96 s(g) is a random interval which has a 95%
chance of including the true unknown value of p. This interval is called a
95% confidence interval. By chanaing the value of 1.96 we would either
shorten or lengthen the confidence interval, thus changing the coefficient
from 95% to some other value. These coefficients can be obtained from
probabilities associated with the standard normal distribution.

We have described the binomial model via a simple random sample from a
large population. Thus, all our inferences pertain to that population. How-
ever, in many contexts we would like our inferences to relate to other popula-
tions which we believe have been qenerated under similar conditions. For
example, the number of deaths in Canada from a particular age-sex qroup in a
given year may be thought of as a single realization from a binomial model,
where each individual bas the same probability of dying and the individual
deaths are essentially independent. If this probability of dyinao is constant
over a number of years then the number of deaths in one year can be used to
make inferences for other years, even though the populations are different.
(Life insurance companies and their actuaries rely on these types of assump-
tions in their calculations.) Providing that individual deaths are indepen-
dent, assumptions about constancy of the probability of death are testable
using these binomial models,

It should be pointed out that by using some generalized linear models to be
described in Section 4, it may be possible to improve on the assumption of
constant probabilities for all individuals, by allowing the probabilities to
depend on other factors such as age, sex, health status, smoking habits,

weight, etc.

2.2 Normal Models

An important distribution used in modeling data is the normal distribution

given by

_1
Fly) = (21097 exp{- —:I_z (y - W2} - o <y< o,
20
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The population mean is u and is usually the parameter of interest. The

population variance is .

If we observe data Y;, Yo, ..., Yn from this population, our usual estima-

tor for p is u =Y z Yj/n. Qur estimator for the standard error of ; is

S

given by s(n) = s/n”, where

s2 - 1 (v, - D2/ - 1).

As in the case of the binomial model, for large samples the 95% confidence
interval is qiven by ; * 1.963(;). This is a random interval which has a 95%
chance of including the true value of u. For small samples (e.g. n < 60), the
value 1,96 may be replaced by the appropriate value from the t distribution
for more accurate intervals. Other confidence coefficients may also be
obtained by changina the value 1.96 to the appropriate percentile from the
standard normal or t distribution,

In some applications, the assumption of constant variance is unrealistic,

particularly in the linear models to be discussed in Section 3. A simple

extension of this model is to assume that the variance of Xi is given by oi
where cf = oz/wi. Here we assume that wj, wp, ..., W are known weights.

In this case n = & iji/Z Wi @ weighted average of the data. Also s(u) =

1
s/(Z wj)°, where

2 Y _
s = I wj(Yj w/(n - 1).

Confidence intervals for u are obtained analoaously. It should be pointed
out here that the weights, wj;, ..., wy, are based on the normal model specifi-
cation and are usually unrelated to sampling weights which are derived from
complex survey designs from finite populations. When fitting models to finite
populations based on data from a complex survey design, the analyst may wish

to incorporate both the model weights as well as the sampling weights in the

estimation.
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2.3 Exponential Family Models

The binomial and normal madels just describted can be viewed as special
cases of a much wider class of models known as the exponential family. The

general form which we will use for this model is aiven by:

f(YJ) = exp[Kj{Yje - b(e)} + C(Yj’ KJ)]!

where Y; takes values which do not depend on 8.

We assume Kj = ij where Wi, ..., w, are known. In many cases k will also

be known.

Example 1 (Binomial Proportion)

We let §j = yi/ni be the sample proportion from a binomial model based on

n. observations. Therefore we have:

n. y n.(1 -vy.)
F3) = ( 9y pdda-p) Vey.o=0, 1,20 00,
J njyj J nj nJ
E(y:) = p, Val‘@j) = p(1 - P)/n]-,

6 = lOQ[p/(1 - p)].
K. =z n.,
J J

6
b(8) = log(1 + e ).

Example 2 (Normal)

Suppose Y5 is normally distributed with mean u and variance o>. We have:

Cipea 2y b oo 1 . )
f(yj) = (?woj )77 exp | 5 (__:r__) }s <y

E(y]') H, Var(yj) = 02

-i’
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8 = Hy
_ 2
<j = 1/
b(e) = u2/2.

Example 3 (Poisson Mean)

Suppose yj is Poisson with mean njk. Letting 91 = yi/ni’ we have:

N L LA a1 2
fly.,) =e 7 (n.;x) Y 7/(ny)! y. =0, —, 5 ...y
J J JJ J n. n.
J ]
E(y.) = X v v.) = A/n.
(yJ) ) ar(yJ) /nJ,
6 = log A,
KJ:nj,
b(8) = ee.

Example 4 (x%)
Suppose yj has a ozx%_/vj distribution. This is common for analysis of

variance and variance components models, where Y5 is the mean-square. Then,

we have:
(v, = 2)/2 YJ v]/Z )

Flyy) =, )7 el v/ 2o}/ rley/2)s 52 0
E(yi) = 02, Var(yj) = Zoq/vj,

6= - 1/02,

.= v./2

<5 = Vi/2

b(8) = - log(- 8).

As we can see from these examples, the exponential family includes a wide

variety of common distributions. In general, we have
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E(YJ) = b'(e) = WU, VaI‘(YJ) = b"(e)/Kj = V]

(e

where b'(+) and b"(*) denote the first and second derivatives of b(e).
If y1y «ony y, are independent, then the maximum likelihood estimate of 8

is given by the solution to:

A:Z..ZK.:Z..Z.
¥ <YK WY/

~

where u = b'(8). This implies that there is a large family of models where a
weighted sample mean provides an efficient estimator of the population mean.

The estimated variance of u is qgiven by

V(1)

2y 2
(z Kjvj)/(z Kj)

b"(8)/(z Kj).

For large samples, the 95% confidence interval for u is given by u * 1.96 x
{Q(;)}%, providina the model is true.

In cases where Kj = ij is known only up to the constant of proportionality
kK, (e.g. normal model), it will be necessary to estimate the value of k. The

maximum likelihood estimate is given by the solution to:

Bc(yj, Kj)

T wj[yje - b(8) + 1 =n.

9K,

Alternatively, an unbiased estimator for V(n) which is less model-dependent

is given by

~

This may be used instead to create the confidence intervals for u. The
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main assumption required for the wvalidity of this approach is that

Var(y.) « 1/w..
(yJ) / 3

3. LINEAR MODELS

3.1 One Way Analysis of Variance

A simple extension of the univariate normal models, described in Section
2.2, is the one-way analysis of variance (ANOVA) model. Here, in addition to
observing one characteristic from each individual sampled, we also have a
sub-population identifier. Some such identifiers could be age-sex groups,

industry/occupation groups, etc. Here the model could be written as

where the u's are population means, which differ among subpopulations and the
e's are assumed to be independent normal with variances oﬁj = 02/%j , where
the wij's are known weights. In most applications the weights are constant.

The usual estimator for By in this model is

.= LW,
i j i

= >

/T WL
1y § g
Under the model assumptions, the estimated means are independent normal
with E(ui) =y and Var(ui) = 02/2 wij' From this, confidence intervals for
J
the individual means may be derived.

An alternative but equivalent description of this model is

where ZI w..a, = 0O, Here we have
ij1

p = LY wijui/ZZ wij
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An extension of this representation is particularly useful for two-way
and higher order analysis of variance models, to be discussed in Sections
3.2 and 3.3. One of the main questions of interest for these models is

whether all the means are equal. This is equivalent to u; = up = ... = My or

a = = ... = Ay = N. Standard ANNVA statistical packages (e.a. SAS, SPSS,
etc.) are available to test these hypotheses. A related problem is: Which
subpopulation means are equal, given that we have concluded already that not
all means are equal? When we have no further structure (such as in a two-way
ANOVA), this is known as the multiple comparison problems. Special treatments

for this problem are available in many statistical packages.

3.2 Two-Way Analysis of Variance

The data of Table 1 has been taken from the 1975 Sri Lanka Fertility Survey
(see Little, 1982). The cell means describe the average number of children
ever born cross-classified by Marital Duration and Level of Education.

The row and column means seem to indicate that the average number of
children increases with longer marriage durations and decreases with more
schooling. Now, the two-way analysis of variance model may be written as

y - u + ai + ?j + Yi' + €,., = U

ijk i %k T Mg T fiik

where the &€'s are assumed to be independent normal with variances

o%ik = oz/wijk' The w's are known weights. 1In most applications the weiaghts
are constant. In order to estimate the parameters of this model, it is

necessary to impose constraints on these parameters, otherwise they are not

unique. The usual side conditions are:

D Ewin =0
FEEvMigpt =D
Fhwigiy™
iy
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The estimators are defined by the equations:

- aui].
2L Zw,.(y.. M. ) J =0
R ijk 7 ijk i <
ijk 1 J 1 3

A -

where 8, 65, ... correspondent to the parameter estimates u, %

a's are B's are referred to as main effects and the y's are the two-way inter-

etc. The

actions. This results in the following estimators:

u:_y“,
&i = ;1.. - 9. . § z lekB /Z z K ik’
éJ B y.j. =Y T f E 1]k& /3 E Tijk’
Yij = yij. =Y. ;1 - %j’
where le. 9i..’ etc. are the appropriate weighted averages.
Now, the additive model specifies that u.1 =W+ oo+ B We have plotted

the cell means from Table 1 in Fiqure 1. The additive model would specify
that all the lines are parallel. If the data of Table 1 are fitted to the
additive model, we obtain the adjusted mean values in Table 2. These are
plotted in Figure 2. As we can see, the effect of the level of education has
been dramatically reduced after fitting this model. This is because the more
educated women were not married for as long, so that the years since first
marriage proves to be the important factor. However, as the analysis of
variance in Table 3 shows, all the main effects and the interactions are
significant. Hence the additive model is rejected. However, only 0.4% of the
total variation is explained by the Education-Marital Durations interactions,
whereas 49.7% of the variation is explained by the additive model. We may
surmise from this that the additive model has led to a better understandina

of the data and that the FEducation effect is not as dramatic as it first
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seemed.

3.3 Regression fFormulation

The above analysis of variance models can be considered as special cases of

the multiple linear rearession model, given by

yj = Boxoj + lelj + ee. + Brer + ej,

where Xoj, le, ceey Xri are known constants and Bg, Biy «s.y Br are unknown

coefficients. We assume that the e's are independent normal with variances
2

Qj = oz/wj, where the wi's are known weights. For example, in the one way

analysis of variance, we could let

Xoj = 1 for all

>
"

i 1 if the j-th individual is in the i-th sub-population

- ai/aI if the j-th individual is in the I-th sub-population

0 otherwise,

for i =1, ...y I - 1, where a, is the sum of the weights for individuals in

the i-th sub-population. In this case we have

u.:60+8i for i =1, ..., I -1,

My Bo - (81B1 + «u. + 31_181_1)/31.

Therefore p = Bg and @ = Bi for i =1, ..., I - 1.
A similar regression formulation is possible for two-way and hiaher order
layouts as well.

Now, for the aeneral regression model, the estimator for Bg, ..., B r is

the solution to

given by Bg, ..., Brs

~

T w.(y. - y.)X.
wJ(yJ y.)

%450 i=0,1, ..., T
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£ BIXj i+ e+ BX

where yj = BpXp. Xy

J
In order to test hypotheses, perform model-building and develop confidence

intervals for the B's, we need the covariance matrix of the é's. This is

given by

Var(é) = o2A-t

where AAis the matrix Yith (ky2)-th entry being % wjxkj)&j . To estimate 02,
we use o> = § wj(yj - yj)z/(n -r-1). ' )

Many statistical packages routinely perform various hypothesis tests on B
using the estimated covariance matrix ;2A-1 and the critical values from the
appropriate F-distribution (e.g. PROC REG, PROC ANOVA and PROC GLM in SAS).

For example, Koch, Gillings and Stokes (1980) give the data in Table 4 for
the number of physician visits per person per year in 1973 in the U.S. cross-
classified by size of city (SMSA = Standard Metropolitan Statistical Area vs.
Non-SMSA), Income (3 groups) and Fducation (3 groups). This data is based on
the 1973 Health Interview Survey, a survey using a complex probability
sample. The data are illustrated in Fiqure 3.

By using a regression model and performina a number of statistical tests,

the following reduced model was obtained:

E(Yj) = Bg + B1X1j + B2X2j,

where X1j = 1 if the j-th person is in an SMSA

]

0 otherwise,
ij = 1 if the j-th person has less than $5000 family income or more
than 12 years education for the family head

0 otherwise.

The estimated parameters were éo = 4.18 (standard error of 0.11), él = 0.65
(standard error of 0.11) and éz = 1.12 (standard error of 0.09). The standard
errors derived here were not those described above since the authors used the
18x18 estimated covariance wmatrix from the survey to obtain the standard

errors. This approach removes the assumption of independent error terms in
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the model-fitting and is a common approach for analysing data from complex
surveys,

In Table 5 we summarize the results. These are illustrated in Figure 4.
We see that the model fit is quite good. We have reduced the data from 18
values to 3 summary statistics and also have smaller standard errors (hence

higher precision) of the estimated values.

4. GENERALIZED LINEAR MODELS

4.1 Regression with a Dichotomous Dependent Variable

One of the difficulties often encountered with the linear models discussed
in Section 3 is that the error terms were assumed to be normally distributed.
It is true that analyses similar to those in Section 3 may be performed with
non-normal errors, providina the variances of the errors still satisfy
o? = oz/wj and the errors are uncorrelated, In this case the estimators we
have described yield the minimum variance linear unbiased estimates of the
model parameters, however better estimators (i.e. non-linear estimators) may
be available. These considerations have led to generalized linear models (see
Nelder and Wedderburn, 1972) and robust estimators (see Huber, 1973). We
concentrate here on the generalized linear models.

For example, suppose the dependent variable, yi, can take on only two va-
lues, N or 1. We now want to model pj = Pr(Yj = 1) as a function of the

..

linear expression XojBo + X1j61 + eve + X There are three popular

rj'r’
approaches for this problem. One is to let Bg, ..., Br be the usual estimate

A

from a stardard regression model. This is analogous to discriminant analysis

where the variables Xgi, ceey X are not considered fixed known constants,

rj
but are themselves random variables (multivariate normal with constant covari-
ance matrix) whose mean depends on the value of Yi. The problem with this

-~

err cannot‘be used directly to predict

the value of Pj- Also, in many applications the Xii'S are cateqorical, (e.q.

approach is that Yj = XOjBO + aae + X

province, occupation, etc.), thus violating the assumption of multivariate
normality.

Two other popular approaches are known as probit analysis and logistic
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reqgression. In probit analysis it is assumed that pj = ¢(z XlJBl), where ¢ is
the cumulative distribution function of a standard normal %andom variable. 1In

logistic rearession, it is assumed that

ej = loq[p /(1 - P; )1 = f ijsi'

Both these approaches are valuable analytic tools, and are available in

many statistical packages (e.g. SAS, BMDP)., The two approaches may be viewed

together by letting

For probit analysis we have n =

we Ila e nN. = Il)ll ||D. I - ,). I

The max1mum likelihood estimate for Bg,
Br is the solution to

es 0y

~

.= pIX. .
(yJ pJ) 1]

J 5.1 -p)g"(p.
pj( pJ)q (pJ)

= 0, for i=0, ..., T,

where q(pj) =z X..Bi. These equations often must be solved iteratively.
i

For
the probit analysis we have

1

q'(p.) = —
¢o[e="(p,)]

J

where ¢(°) is

regression,

the standard normal density function. For the logistic

9'(p;) = [p;(1 - pj)]-l

so that the parameter estimate is given by the solution to



- 272 -
I(y, -p)X,.., =0, for i = 0, ...y T.

~

The covariance matrix of Bg, ..., B is A-! where A is a matrix with

(k, 2)-th entry given by

X, . X
A = X kJ %

kg . 2
ipy(1-piattep}

This can be used to construct confidence intervals and perform hypothesis
tests and model-building.

For logistic reqression, the covariance simplifies to

Ay = ? pj(1 - P )X

k1 2i°

As an example of the utility of these models, we consider an unpublished
analysis performed by Dolson and Morin on the Canadian Health and Disability
Survey. The dependent variable was whether or not a person would be screened
in as potentially disabled using the Screening Test 2 of the January 1983
Labour Force Supplement on Disability. For details, see Dolson and Morin
(1983). Analysis was restricted to males aged 15-64, 0Of the 13,897 respon-
dents, 14.4% (unweighted) were screened in. The screened-in rates are cross-
classified by age-groupings, labour force participation and a proxy/non-proxy
variable (with 3 levels: non-proxy, proxy by male or proxy by female) in
Table 6. (The fitted values from the model to be discussed below are also
shown.) The data are illustrated in Figure 5.

The fitted model reduced the number of parameters from 3N to 11. The final
model was given by

lOC][p /(1 - Dijk)] = 1+ Q.

i + 8‘1 + Yk + &,

ijk ij?

where I o = z B = I Y, = n, Gij = 0, Z 6 = N, for the i-th age agroup,

\.

j-th labour Force status and k-th proxy status (2 levels: non-proxy vs.

proxy). The following were the estimated parameters.
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Parameter Subscript Fstimate
u ~1.43
« Age 15-24 -1.12
Age 25-34 -N,571
Age 35-44 n.n143
Age 45-54 0.629
Ace 55-64 1.05
B8 In Labour Force -N.576
Not in labour Force N.576
Y Non-proxy Nn.0859
Proxy -0.N859
8 Age 15-24, in L.F. n. 385
Age 25-34, in L.F, 0.0938
Age 35-44, in L.F. -0.175
Age 45-54, in L.F. -0, 243
Age 55-64, in L.F, -0.N612
Age 15-24, not in L.F. -0.385
Age 25-34, not in L.F. -0.N938
Age 35-44, not in L.F. N.175
Age 45-54, not in L.F. 0,243
Age 55-64, not in L.F. 0.0612

The fitted values are illustrated in Figure 6.

We see that even after adjusting for age and labour force status, there is
a proxy effect on the screening rates. This proxy effect does not seem to
depend on the sex of the proxy respondent. Also, there is no interaction
between the proxy and the age/labour force status variables., This model does
not necessarily imply a proxy bias, but it indicates that a proxy bias may
potentially be present. Without a special study such as a re-interview pro-
gram for the proxy respondent, it is impossible to definitively conclude the

existence of a proxy bias.

4.2 Generalized Linear Models

In the previous section we discussed a large class of linear models related
to the binomial model, of which probit analysis and loaistic reagression were
special cases. We now extend these to the exponential family as proposed by
Nelder and Wedderburn (1972).

As in Section 2.3, we assume yj has probability function given by
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f(yj) = exp[rcj {yj Gj - b( Bj)} + c(yj, K‘J.)],

h .= E[Y.] = b'(6, dvVv. =V Y.l = b"(6. .
where u, [ J] ( J) and V ar[ J] ( J)/KJ

We let n, = q(uj) = I XijBi be the linear component of the model, where
i
g(+) is a known function.

Now the maximum likelihood estimates of B are given by the solution to

-~

(y. - Uj)xi\]. i} 0.

L J
J v Vo
Vj[q (uj)]

Nelder and Wedderburn (1972) have shown that a reasonable method for
estimating B is given by performing a number of weighted least-squares
regressions, updating the weights and the dependent variables on successive
iterations. This is called iteratively re-weighted least squares. In

particular, the weights for the t-th iteration are qgiven hy

. 1
W(t) =
J

° ~(t

Vi faruit)y2

J J

and the dependent variables on the t-th iteration are given by

S(t) _ n(b) v (t) ~(t)
Zj = q(uj ) + g (uj )(yj - ).

The (t + 1)-th iteration of E’is then the solution to

“(t)p7(t) g (t+1)
zw, '[Z.77 - ZX,.B X, . = D.
ij [J g At ] kj

The estimated covariance matrix of B is aqiven by A-1 where the (k, 2)-th

entry for A is
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~

AkQ, = ? wjxijlj.

This implies that many standard weighted least-squares packages could be
invoked to perform analysis of these aeneralized linear models.

For example, a common analysis of contingency tables, called log-linear

models assumes a basic Poisson model with log My = z XijBi' Here we have
. 1 .
a(u;) = log Wiy

so that the iteratively reweighted solution is given by assigning

MOBINCY

J J
~(t)
- ~ y. = W,
AL PO SR I S
J J ()

J

Hence, models similar to those described in Section 3 can be analyzed

analogously using the ageneralized linear model formulation.

5. DIAGNBSTICS

Linear rearession methods have been known now for over a century; see
Hocking (1983) for a review of developments over the last 25 years. In more
recent years attention has been focused on difficulties encountered when there
is multicollinearity in the variables (leading to large variances of the para-
meter estimates) and when the models may fail. Some of these diaqnostics are
now available in SAS and SPSS-X.

The methods discussed in this paper extend linear rearession toc a much

wider class of problems. Newer diagnostic techniques for models of this sort
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are discussed in Landwehr, Pregibon and Shoemaker (1984),

In many statistical applications, the proposed model is only used as an

approximation to reality. Therefore, the user of these models should employ

these diagnostic tools in the course of the analysis.
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Table 1: Mean Number of Children Ever Born, by Marital Duration
and Fducation Level. Sri Lanka 1975 (from Little, 1982)

Level of Education
Years since
First Marriage No 1T-5 6 -9 10+
School Years Years Years Row
0 -4 Mean 0.96 N.R88 0.95 0.92 0.92
Count 112 376 442 351 1281
5-9 Mean 2.54 2.46 2.39 2.39 2.44
Count 172 442 362 255 1231
10 - 14 Mean 3.87 3.9 3.73 3.14 3.76
Count 197 482 293 145 1117
15 - 19 Mean 5.13 4,97 4.6 4.13 4.84
Count 239 461 262 95 1057
20 - 24 Mean 6.22 5.87 5.22 4.47 5.79
Count 292 377 184 an 893
25+ Mean 6.92 6.55 6.23 5.97 6.65
Count 501 548 161 22 1232
Column Mean 5.17 4.24 3.26 2.30 3.94
Count 1513 2686 1704 908 6811
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Table 2: Interactions for Mean Number of Children from Table 1
Years
Since Level of Education
First
Marriage No 1-5 6 -9 10+
School Years Years Years Row
N -4 Raw Mean 0.96 0.88 0.95 0.92 0.92
Adjusted Mean 1.31 1.07 0.86 0.71 1.02
Interaction -0.35 -0.19 0.n9 .21
5-9 Raw Mean 2.54 2.46 2.39 2.39 2.44
Adjusted Mean 2.78 2.54 2.33 2.18 2.49
Interaction -0.24 -n.08 0.06 n.21
10 - 14 Raw Mean 3.87 3.91 3.73 3.14 3,76
Adjusted Mean 4.06 3.82 3.61 3.46 3.77
Interaction -N.19 n.0n9 0.12 -0.32
15 - 19 Raw Mean 5.13 4.97 4.61 4.13 4.84
Adjusted Mean 5.11 4.87 4.66 4,51 4.82
Interaction 0.02 0.10 -Nn.05 -01.38
20 - 24 Raw Mean 6.22 5.87 5.22 4.47 5.79
Adjusted Mean 6.01 5.77 5.56 5.41 5.72
Interaction 0.21 0.10n -0.34 -0.94
25+ Raw Mean 6.92 6.55 6.23 5.97 6.65
Adjusted Mean 6.82 6.58 6.37 6.22 6.53
Interaction 0.10 -0.03 -0.14 -N.25
Column 5.17 4,24 3.26 2.30 3.94
4.23 3.99 3.78 3.63 3.94




- 29

Table 3: Analysis of Variance of Data from Table 1
- Sum of |Proportion Mean Signif.
Source Squares {of Total SS| DF Square F of F
Main Effects
Marital Duration [27402.684 0.493 5| 5480.537 1340,990 000
Education/Duration 225.535 0.004 3 75.178 18.395 .N0o
Interactions
DurationxEducation 206.965 0.004 15 13.798 3.376 .0on
Residual 27729.848 0.499 6787 4.986
Total 55565.031 6810
Table 4+ Physician Visits per Person per Year by Residence Size.

Family Income

and Education of Family Head, U.S. 1973

Education o Family Income
in _
Years 0 - 4999 5000 - 14999 15000 or more
— _ - —
SMSA
Less than 12 6.15 4.73 4.82
(0.18) (0.13) (0.25)
12 6.17 4,98 4,70
(0.41) (0.17) (0.18)
More than 12 6.31 6.08 5.66
(0.49) (0.19) (0.16)
L__ _——— D ~~—
Non-SMSA
Less than 12 s.o8 4.14 4.42
(0.26) (0.15) (0.37)
12 5.36 4,32 4.49
(D.44) (0.19) (0.33)
More than 12 4,58 5.06 4.48
(0.58) (0.29) (0.31)
Note: Bracketed figures indicate standard errors of estimate.
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Table 5+ Estimated Physician Visits from Table 4,
Original and Fitted Values

B Family Income
Education |
(in Years) 0 - 4999 5000 -~ 14999 15000 or more
- SMA

Less than 12 Original 6.15 (0.1R) 4.73 (0.13) 4.82 (0.25)
Fitted 5.95 (0.07) 4.83 (0.07) 4.83 (0.07)

Difference 0.20 -0.10 -0.M
12 Original 6.17 (0.41) 4.98 (0.17) 4.70 (0.18)
Fitted 2;22_(0.07) 4.83 (0.07) 4.83 (0.07)

Difference 0.22 0.15 -0.1

More than 12 Original 6.31 (N.49) 6.08 (0.19) 5.66 (0.16)
__Fitted 5.95 (0.07) 5.95 (0.07) 5.95 (0.07)

Difference N.36 0.13 -0.29

Non-SMSA

Less than 12 Original 5.08 (N.26) 4.14 (0.15) 4,42 (0.37)
Fitted 5.30 (0.11) 4.18 (0.11) 4.18 (0.11)

Difference -N,.22 -0.04 0.24
12 Original 5.36 (0.44) 4.32 (0.19) 4.49 (0.33)
Fitted 5.30 (0.11) 4.18 (0.11) 4.18 (0.11)

Difference 0.06 0.14 n.3
More than 12 Original 4.58 (N.58) 5.06 (0,29) 4,48 (0.31)
Fitted 5 30 (0.11) 5.30 (0.11) 5 30 (0.11)

Difference -0.72 -0.24 -0.82
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Unadjusted and Fitted Secreened-in Rates from Test 2.

Canadian Health and Disability Survey, Males Aged 15-64,
by Labour Force Participation and Proxy Status, Canada
January 1983 (Unweighted)

Age - Non-Proxy Malé—;roxy Féﬁale Proxy
o In Labour Force

15 - 24 | Unadjusted | .065(.0067) .055(.0143) .056(.0069)
__ Fitted .065(.0051) .056(.0044) .056(.0044)

Difference .000 -.001 .000
25 - 34 Unadjusted .085(.0058) .058(.0252) .069(.NN69)
Fitted .085(.0048) ;071(.0046) .071(.0046)

Difference .0on -.N3 -.002
35 - 44 Unad justed .113(.0079) .029(.N290) .N94(.0N86)
__Fitted .111(.0064) .093(.0059) .09}(.0059)

Difference .N02 ~-. 064 .nn1
45 -~ 54 Unadjusted .180(.0109) .na2(.n351) .154(.0120)
Fitted .177(.0088) .153(.0NN83) .153(.NN83)

Difference .003 -.071 N1
55 - 64 Unad justed .284(.0150) .207(.0752) .250(.0183)
Fitted .283(.0124) .249(.0124) .249(.0124)

Difference .001 ~-.042 .001

o Not in Labour Force

15 ~ 24 Unadjusted .104(.0127) .N071(.0190) .074(.0084)
Fitted .104(.0078) .079(.0065) .079(.0065)

Difference .000 -.008 -.005
25 - 34 Unadjusted .146(.0239) .367(.1450) .227(.0365)
Fitted .192(.0213) 167(.0194) .167(.0194)

Difference ~.046 .200 060
35 ~ 44 Unadjusted .348(.0372) .455(.1501) .324(.0544)
Fitted .359(.0309) .320(.0299) .320(.0299)

Difference ~-.0M11 .135 .004
45 - 54 Unadjusted .534(.03%61) .625(.1712) .454(.N0505)
Fitted .525(.0293) .483(.0301) .483(.0301)

Difference .0n9 142 -.N29
55 -~ 64 Unadjusted .571(.0220) 563(.1240) .591(.0420)
Fitted .585(.0194) .543(.0217) .543(.0217)

Difference -.014 .020 .048

NOTE: Bracketed fiqures are Standard Errors
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Figure 1@ Observed Means from Sri Lanka Fertility Survey. 1975.
Data source: Little (1982).
YEARS SINCE
7] FIRST MARRIAGE
\\\
— . 25+ YRS
6= teme—e
---------- 20—-24 YRS
5 TTTTree——
) T 15-19 YRS
44 TTmeeee
"""""""" 10—14 YRS
3— -------
o 5— 9 YRS
—_—
‘].—.
0~ 4 YRS
O_
T T T i !
NONE 1-5 6-9 10+

YEARS OF SCHOOL ING
Figure 2:

Data source: Little (1982)

Adjusted Means from Sri Lanka Fertility Survey. 1975.
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Figure 3- Observed Mean Number of Physician Visits per Person
per Year. U.S.A.. 1973.
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Figure 4: Model Predicted Mean Number of Physician Visits per
Person per Year. H.S.A.. 1973.
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Figure 5 Observed Screening Rates, Disability Survey,
January 1983, Males 15-64.
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Fiqure 6: Predicted Screening Rates, Disability Survey.
January 1983. Males 15-64.



