L'estimation des flux bruts mensuels
de l'activité sur le marché du travail

Stephen E. Fienberg et Elizabeth A. Stasny

L'enquête sur la population active au Canada est une enquête sur les ménages effectuée chaque mois dans le but de fournir des estimations ponctuelles du nombre de personnes occupées, en chômage ou inactives. L'enquête utilise une technique de groupe constant avec renouvellement dans laquelle tous les individus d'un ménage inclus dans l'échantillon sont interviewés chaque mois, six mois de suite. Dans le passé, cette structure longitudinale a été peu exploitée, bien qu'on ait montré beaucoup d'intérêt pour les flux bruts d'un mois à l'autre (transitions) entre ces diverses catégories d'activité. Dans le présent texte, nous discutons des méthodes de production des estimations des flux bruts à l'étude à Statistique Canada, mais à partir du point de vue de la production d'un modèle.

1. INTRODUCTION

L'enquête sur la population active au Canada est une enquête mensuelle sur les ménages utilisée pour produire des estimations ponctuelles, ou transversales, de l'activité sur le marché du travail. Cette enquête, cependant, comme la Current Population Survey aux États-Unis et beaucoup d'autres enquêtes par échantillonnage d'envergure, utilise la technique du panel où les sujets sont interviewés plusieurs fois avant d'être retirés de l'échantillon. Bien que le principal but de l'enquête soit l'obtention d'estimations ponctuelles, on a depuis longtemps constaté que les renseignements provenant de ces interviews...

1 Cette recherche a été financée en partie par un contrat avec Statistique Canada. Les auteurs désirent remercier Murray Lawes, Larry Swain et Richard Veevers pour leurs explications de la méthodologie de l'enquête sur la population active et de ses données ainsi que l'éditeur et un évaluateur pour leurs commentaires et suggestions utiles.

multiples des sujets fournissent une base de données longitudinales additionnelle qui pourrait être exploitée pour fournir des estimations des changements dans le temps pour des coûts supplémentaires minimes (voir, par exemple, Kalachek, 1979, et Fienberg et Tanur, 1983).

Récemment, Statistique Canada a commencé une étude sur les utilisations possibles des données longitudinales disponibles comme sous-produits de l'enquête sur la population active. Eux aussi souhaiteraient trouver une méthode de production d'estimations fiables des mouvements bruts entre les catégories de la population active. Dans le présent document, nous discutons les méthodes à l'étude à Statistique Canada pour la production de ces données des variations brutes.

Dans la section 2, nous donnons une brève description du champ d'application et de la conception de l'enquête sur la population active, et nous décrivons la structure des données produites. À la section 3, nous décrivons les méthodes proposées d'estimation des flux bruts mises au point par Statistique Canada, qui nécessitent l'utilisation de poids fonction de l'échantillon, de corrections pour les entrées dans la population étudiée et les sorties de celle-ci, de corrections pour l'homogénéité et de corrections pour le biais causé par les erreurs de classification. En mettant au point certains modèles simples pour le processus des flux bruts, nous analysons dans la section 4 les conséquences de la méthode proposée par Statistique Canada. Finalement, dans la section 5, nous décrivons certains travaux sur le traitement de la non-réponse dans les estimations des flux bruts.
2. DESCRIPTION DE L'ENQUÊTE SUR LA POPULATION ACTIVE

2.1 Champ d'application de l'enquête

Environ 56,000 ménages, choisis dans les dix provinces canadiennes, sont inclus chaque mois dans l'échantillon de l'enquête sur la population active. Un questionnaire est rempli pour chaque membre des ménages de l'échantillon âgé de 15 ans et plus, ne faisant pas partie des forces armées et ne vivant pas en institution. Les questions de l'enquête concernent principalement les activités du sujet reliées au travail au cours de la semaine de référence, qui est la semaine précédant la semaine de l'enquête et qui contient généralement le 15e jour du mois. Les réponses aux questions de l'enquête sont utilisées pour classer les sujets comme occupés, chômeurs ou inactifs. Pour une discussion sur la classification de l'activité, voir Guide d'utilisation des données de l'enquête sur la population active, Statistique Canada (1979).

2.2 Conception de l'enquête

L'enquête sur la population active a été conçue pour permettre l'estimation des niveaux et des taux de l'emploi et du chômage pour chacune des dix provinces individuellement. Ainsi, excepté en ce qui concerne les exigences pour la taille totale de l'échantillon, les échantillons de chaque province sont indépendants.

Les régions économiques (RÉ), zones de structure économique semblables, forment la strate fondamentale à l'intérieur des provinces. Les RÉ sont divisées en unités autreprésentatives (UAR) et unités non autreprésentatives (UNAR). Les UAR sont des centres urbains importants et les UNAR sont généralement composées d'un petit centre urbain et d'une zone rurale. L'échantillonnage est effectué séparément pour les UAR et les UNAR.

L'échantillon des UAR est un échantillon stratifié à deux degrés. L'échantillonnage des UNAR est effectué selon un schéma d'échantillonnage stratifié à plusieurs degrés. En plus des UAR et des UNAR, certaines unités d'échantillonnage sont tirées d'un univers des immeubles d'appartements et d'un univers des zones spéciales. Les unités d'échantillonnage finales de l'enquête sur la

Les ménages choisis pour l'enquête sur la population active font partie de l'enquête pendant six mois consécutifs et sont ensuite retirés de l'échantillon. Par exemple, les ménages intégrés à l'échantillon en janvier sont interviewés six mois de suite, et ensuite retirés de l'échantillon après l'entrevue de juin. Chaque groupe de ménages ainsi intégré à l'échantillon et retiré ensuite constitue un panel. Chaque mois, l'échantillon de l'enquête sur la population active comprend des sujets de six groupes constants différents.

2.3 Pondération basée sur l'échantillon

Les données ponctuelles, les renseignements d'un mois donné pour tous les sujets dans les six panels interviewés au cours de ce mois, sont utilisées pour produire les estimations mensuelles de l'activité sur le marché du travail. Les estimations mensuelles sont des moyennes pondérées des valeurs pour chaque individu de l'échantillon. On utilise une moyenne pondérée parce que chaque sujet est considéré comme "représentant" un certain nombre de personnes dans la population étudiée. Le poids attribué au dossier d'un individu correspond au nombre de personnes de la population que cet individu de l'échantillon représente.

Soit $w_{t,i}$ le poids attribué à l'individu i au mois t. Si l'individu i est classé comme à l'extérieur de la population étudiée au cours du mois t, alors $w_{t,i}=0$. Sinon, les poids attribués sont fixés par la probabilité de sélection de la grappe, la probabilité de sélection du ménage à l'intérieur de la grappe, la non-réponse à l'intérieur du mois, les facteurs rural/urbain, les corrections de sous-échantillonnage pour les zones dont la croissance est rapide et l'ajustement des rapports pour les facteurs province, âge, sexe.

Le poids attribué à un individu peut changer d'un mois à l'autre à cause du fait que chaque mois, on remplace un sixième de l'échantillon, à cause également de la non-réponse et, dans une moindre mesure, à cause des changements de la taille de la population étudiée. Ainsi, pour un individu donné, i, il
n'est pas nécessairement vrai que $W_{t-1,i} = W_{t,i}$.

2.4 Structure longitudinale et estimation des flux bruts

Bien que l'objectif principal de l'enquête sur la population active soit de produire des estimations ponctuelles de l'activité sur le marché du travail, la technique du panel de l'enquête produit une base de données longitudinales dans laquelle environ les cinq sixièmes des ménages enquêtés un mois donné se retrouvent dans l'échantillon le mois suivant. Évidemment, on rejoint moins des cinq sixièmes des individus ou des ménages de l'échantillon au cours de deux mois consécutifs à cause de la non-réponse et des déménagements. Cependant, Statistique Canada s'intéresse à la possibilité d'utiliser les renseignements des individus qui ont répondu deux mois consécutifs pour produire des estimations des flux bruts entre les catégories de la population active.

Les estimations des flux bruts servent à répondre à des questions telles que a) quelle proportion de l'augmentation du chômage est due à des pertes d'emploi et quelle proportion est due à des personnes non auparavant actives commençant à se chercher un emploi? ou b) combien de personnes en chômage se découragent et quittent la population active?

Nous discutons du problème de l'estimation des flux bruts entre les catégories de la population active dans les deux prochaines sections.

3. MÉTHODE PROPOSÉE PAR STATISTIQUE CANADA POUR L'ESTIMATION DES FLUX BRUTS

Dans cette section, nous décrivons la procédure à plusieurs degrés d'estimation des flux bruts mise au point par Statistique Canada (voir Macredie et Veevers, 1977; Wong, 1983). Notre description de la procédure comprend diverses interprétations de l'effet des divers degrés.

3.1 Données nécessaires à l'estimation des flux bruts

Statistique Canada a proposé d'estimer les flux bruts à l'aide d'une matrice
4x4 comme ci-dessous:

Statut d'activité pour le mois t

<table>
<thead>
<tr>
<th></th>
<th>O</th>
<th>C</th>
<th>I</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>X_{00}</td>
<td>X_{0C}</td>
<td>X_{0I}</td>
<td>X_{0H}</td>
</tr>
<tr>
<td>C</td>
<td>X_{CO}</td>
<td>X_{CC}</td>
<td>X_{CI}</td>
<td>X_{CH}</td>
</tr>
<tr>
<td>I</td>
<td>X_{IO}</td>
<td>X_{IC}</td>
<td>X_{II}</td>
<td>X_{IH}</td>
</tr>
<tr>
<td>H</td>
<td>X_{HO}</td>
<td>X_{HC}</td>
<td>X_{HI}</td>
<td>X_{HH}</td>
</tr>
</tbody>
</table>

où:
O = Occupé
C = Chômeur
I = Inactif
H = Hors de la population étudiée, et
X_{ij} = nombre estimé de personnes ayant le statut d'activité i dans le mois t-1 et le statut j dans le mois t.

On peut utiliser les dossiers finals de l'enquête sur la population active pour deux mois consécutifs pour obtenir les données d'estimation des flux bruts de la matrice 4x4. Pour utiliser ces données pour la production des estimations des flux bruts, Statistique Canada doit apparier les dossiers individuels extraits des deux fichiers mensuels consécutifs à l'aide des numéros d'identification personnels attribués aux individus enquêtés pour la durée de leur passage dans l'enquête.

Un individu présent dans le fichier des données dans un mois donné peut être absent du fichier dans un autre mois à cause de son insertion dans l'échantillon ou de son retrait de celui-ci ou pour avoir déménagé, avoir été absent de la maison ou avoir refusé de répondre. La pondération de l'échantillon décrite dans la section 2.4 comprend une correction pour la non-réponse chaque mois. Dans le traitement des flux bruts, nous devons également considérer la
non-réponse d'un mois à l'autre. Statistique Canada propose de repondérer les fichiers des individus qui ont répondu dans les deux mois t-1 et t pour compenser pour cette non-réponse supplémentaire.

Lorsque la repondération sera terminée, Statistique Canada aura en main un fichier de données uniques comprenant des renseignements provenant de toutes les personnes qui ont répondu deux mois consécutifs. Ce fichier contiendra des renseignements géographiques et démographiques pour chaque individu ainsi que le statut d'activité de l'individu et la pondération qui lui est attribuée pour les mois t-1 et t.

3.2 Différences de poids

Comme nous l'avons noté dans la section 2.3, le poids attribué à un individu peut changer d'un mois à l'autre à cause de la technique de rotation utilisée, de la non-réponse et des changements dans la taille de la population étudiée. Même lorsque le facteur de correction pour la non-réponse est calculé sur les données d'un mois à l'autre, il peut encore arriver, pour un individu quelconque i, que $W_{t-1,i} \neq W_{t,i}$. Si l'on veut utiliser les données pour estimer les flux bruts, il est essentiel d'avoir une méthode pour traiter cette différence de pondération.

Statistique Canada propose de résoudre ce dilemme en postulant que les différences entre les deux poids ne se produisent que comme résultat des entrées et des sorties de la population étudiée. Ainsi, les différences des poids sont ajoutées à la cellule appropriée soit dans la dernière rangée ou la dernière colonne de la matrice des flux bruts. Cette procédure est fortement dépendante de l'interprétation des poids suggérés à la section 2.3, c'est-à-dire que l'individu i de l'échantillon représente $W_{t,i}$ personnes de la population au cours du mois t.

Pour illustrer cette procédure, supposons qu'un individu soit classé comme Occupé dans les mois t-1 et t, mais que $W_{t-1,i} = 300$ et $W_{t,i} = 305$. Le poids minimum, 300, est ajouté à la cellule 00 du tableau des flux bruts. Cette
différence, $W_{t,i} - W_{t-1,i}$, est ajoutée à la cellule HO, étant donné qu'on estimerait que ces cinq personnes se trouvaient en dehors de la population étudiée au cours du mois t-1 et se sont ajoutées à la population comme personnes occupées au cours du mois t.

Si, par ailleurs, l'individu est Occupé les deux mois, mais que $W_{t-1,i} = 305$ et que $W_{t,i} = 300$, alors on ajoute encore une fois le 300 à la cellule OO mais le poids supplémentaire de 5 est ajouté à la cellule OH. Ici, la différence entre les poids représente 5 personnes qui étaient Occupées au cours du mois t-1 et qui sont sorties (Hors) de la population étudiée au cours du mois t.

Un individu classé comme Hors de la population étudiée dans le mois t-1 et qui est ensuite, disons, Occupé dans le mois t, aura un $W_{t-1,i} = 0$. Si $W_{t,i} = 300$ alors on ajoute 300 à la cellule HO. Les individus classés comme Hors-de-la-population étudiée au cours du mois t sont traités de la même façon, en ajoutant $W_{t-1,i}$ à la cellule appropriée dans la dernière colonne de la matrice des flux bruts.

Parce que les personnes Hors de la population étudiée se voient attribuer un poids zéro, une personne classée ainsi dans les deux mois t-1 et t aurait donc $W_{t-1,i} = 0$ et $W_{t,i} = 0$. Par conséquent, x_{HH}, la valeur de la cellule HH de la matrice des flux bruts doit toujours être de zéro.

3.3 Correction des cellules d'entrée et de sortie

L'addition des différences des poids aux cellules d'entrée et de sortie de la matrice des flux bruts fournit une méthode de traitement des changements des poids basés sur l'échantillon d'un mois à l'autre et fournit des estimations des entrées dans la population étudiée et des sorties de celle-ci. Des estimations indépendantes des entrées et des sorties, disponibles à partir des données du recensement, laissent croire que cette méthode surestime la valeur réelle des mouvements dans et hors de la population étudiée. Ainsi, Statistique Canada a l'intention d'ajuster les X_{HO}, X_{HC}, X_{HI}, X_{OH}, X_{CH}, et X_{IH} dans la matrice des flux bruts. Ces cellules seront corrigées.
proportionnellement de façon que les entrées et les sorties totales indicées dans la matrice des flux bruts soient égales aux estimations du recensement des entrées et des sorties respectivement.

Soit I l'estimation indépendante du recensement des entrées dans la population étudiée et F les estimations du recensement des sorties de cette population. Appelons la somme des entrées estimées $X_{H+} = X_{H0} + X_{HC} + X_{HI}$ et la somme des sorties estimées $X_{+H} = X_{DH} + X_{CH} + X_{IH}$. Les entrées ajustées proportionnellement sont

$$y_{Hj} = \frac{x_{Hj} I}{X_{H+}} \quad \text{pour } j = 0, C, I. \quad (1)$$

Les sorties ajustées proportionnellement sont

$$y_{jH} = \frac{x_{jH} F}{X_{+H}} \quad \text{pour } j = 0, C, I. \quad (2)$$

3.4 Convergence des estimations des flux bruts avec les totalisations mensuelles

Statistique Canada aimerait que les estimations des flux bruts convergent avec les estimations mensuelles publiées des taux d'activité totaux. Ainsi, les totaux des lignes de la matrice des flux bruts doivent être les estimations du taux d'activité du mois $t-1$ et les totaux des colonnes doivent être les estimations ponctuelles du mois t. Les totaux marginaux de la matrice des flux bruts établis comme on l'a décrit ci-haut ne convergent pas avec les totaux mensuels de la population active.

Statistique Canada a l'intention d'utiliser la méthode de remise à l'échelle proportionnelle itérative, originellement proposée par Deming et Stephan (1940) et décrite en détail par Bishop, Fienberg et Holland (1975), pour corriger la matrice des flux bruts en fonction des totaux mensuels de la population active. Lorsqu'elle est utilisée pour corriger la matrice des flux bruts, la remise à l'échelle proportionnelle itérative successivement 1) ajuste les lignes de la matrice à la somme des estimations $t-1$ et ensuite 2) ajuste les colonnes à la somme des estimations du mois t. On répète les étapes 1) et 2) jusqu'à ce que les données de la matrice ne changent pas
d'une étape à l'autre.

Des vérifications à Statistique Canada ont montré que les changements de cellules résultant de l'application de la remise à l'échelle proportionnelle itérative étaient petits en valeur absolue et en valeur relative et se situaient généralement à l'intérieur des limites de variation de l'échantillon associées aux cellules. Ceci laisse croire que la correction pour la convergence ne biaise pas sérieusement les estimations des flux bruts.

3.5 Correction du biais d'erreur de classification

La méthode proposée par Statistique Canada pour l'estimation des flux bruts comprend également une étape de correction du biais d'erreur de classification. Il s'agit du biais qui résulte de la mauvaise attribution du statut d'activité d'un individu. Une technique mise au point par Fred Wong (1983) à Statistique Canada utilise les données d'une nouvelle entrevue pour corriger le biais d'erreur de classification.

4. CONSÉQUENCE DE LA MÉTHODE PROPOSÉE PAR STATISTIQUE CANADA

4.1 Les modèles des flux bruts

Chaque étape de la méthode proposée par Statistique Canada décrite dans la section précédente constitue une tentative logique de corriger des problèmes concernant la production d'estimations valides des flux bruts. On ne connaît pas exactement, cependant, l'effet des diverses corrections sur les estimations finales de la matrice des flux bruts. Pour mieux comprendre la proposition de Statistique Canada de traiter les différences de poids comme étant attribuables aux entrées dans la population étudiée et aux sorties de celle-ci, nous exposerons dans la présente section un modèle du processus de flux bruts. Notre discussion se centrera sur les valeurs des cellules d'entrée et de sortie de la matrice des flux bruts estimés, étant donné que les problèmes affectant la méthode proposée par Statistique Canada semblent se produire dans ces cellules.
Étant donné que le plan de l'enquête sur la population active est plutôt complexe, nous commençons avec une série de postulats simplificateurs. Dans notre modèle, nous postulons que:

1. on choisit un échantillon stratifié à un seul degré

2. il n'y a pas d'erreur de réponse et

3. les non-réponses ne se produisent que parce que des individus au hasard changent de strates ou à cause de leur insertion ou de leur retrait de l'échantillon.

4.2 Attribution des changements nets de population aux cellules d'entrée et et sortie

Supposons que la population étudiée est divisée en S strates identifiées par $s = 1, 2, \ldots, S$. Soit

$$N_k^S = \text{taille de la population dans la strate } s \text{ au mois } k.$$

Chaque mois, un échantillon aléatoire simple est choisi de chaque strate pour l'enquête et les individus choisis sont interviewés six mois consécutifs avant d'être retirés de l'échantillon. Notre but est d'estimer les flux bruts entre le mois $t-1$ et le mois t.

Aux fins de l'estimation des flux bruts, seuls les individus qui sont interviewés dans les deux mois $t-1$ et t seront utilisés. Ceci exclut les individus qui sont insérés dans l'échantillon ou retirés de celui-ci et les personnes qui passent d'une strate à l'autre. Soit

$$r_{t-1,t}^S = \text{le nombre d'individus inclus dans l'échantillon de la strate } s \text{ interviewée dans les mois } t-1 \text{ et } t.$$

Chacun des $r_{t-1,t}^S$ répondants de la strate s reçoit les poids suivants dans les mois $t-1$ et t respectivement aux fins de l'estimation des flux bruts:
\[w^S_{t-1} = \frac{N^S_{t-1}}{r^S_{t-1,t}} \text{ et } w^S_t = \frac{N^S_t}{r^S_{t-1,t}}. \] (3)

Aussi longtemps que ces mouvements entre les strates et la sélection des groupes constants sont des "processus aléatoires", ces poids représentent l'inverse de la probabilité qu'un individu à l'intérieur d'une strate soit interviewé dans les deux mois t-1 et t. Étant donné que tous les individus à l'intérieur d'une strate ont le même poids un mois donné, on peut utiliser des agrégats pour chaque strate. Par conséquent, nous définissons:

\[n^S_{ij} = \text{nombre d'individus inclus dans l'échantillon de la strate } s \text{ classée dans la catégorie d'activité } i \text{ au mois } t-1 \text{ et à la catégorie } j \text{ au mois } t \text{ pour } i, j = 0, C, I, H. \]

La méthodologie proposée par Statistique Canada exige que le minimum des poids des mois t-1 et t de chaque individu soit ajouté à la cellule appropriée dans la matrice des flux bruts. Cette différence est ajoutée à la cellule d'entrée appropriée si le poids du mois t est supérieur au poids du mois t-1 et à la cellule de sortie appropriée dans le cas contraire. Ainsi, par exemple, l'entrée de la strate s dans la cellule 00 (occupés à occupés) de la matrice des flux bruts est:

\[
\min(w^S_{t-1}, w^S_t) n^S_{00} = \min \left[\frac{N^S_{t-1}}{r^S_{t-1,t}}, \left(\frac{N^S_t}{r^S_{t-1,t}} \right) \right] n^S_{00} \\
= \min \left(N^S_{t-1}, N^S_t \right) n^S_{00} / r^S_{t-1,t} \\
= \min \left(N^S_{t-1}, N^S_t \right) f^S_{00}
\] (4)

où \(f^S_{00} \) = fraction de tous les individus de la strate s, interviewés les deux mois t-1 et t, qui étaient Occupés ces deux mois.

La contribution de la strate s à la cellule 00 de la matrice des individus occupés dans le mois t est:

\[
\max(0, w^S_t - w^S_{t-1}) n^S_{00} = \max[0, (N^S_t - N^S_{t-1}) / r^S_{t-1,t}] n^S_{00}
\] (5)
\[= \max(0, N_t - N_{t-1}) \frac{n_{00}}{r_{t-1,t}}. \]

Les différences des individus tombant dans les cellules CO et IO contribueraient également à la cellule HO. Ainsi, la contribution totale de la cellule HO de la strate est:

\[
\max(0, N_t^s - N_{t-1}^s) \{ (n_{00}/r_{t-1,t}) + (n_{CO}/r_{t-1,t}) + (n_{IO}/r_{t-1,t}) \} \\
= \max(0, N_t^s - N_{t-1}^s) \frac{n_{s0}}{r_{t-1,t}} \\
= \max(0, N_t^s - N_{t-1}^s) f_{s0}^s \tag{6}
\]

où \(f_{s0}^s \) = fraction de tous les individus de la strate \(s \), interviewés dans les deux mois \(t-1 \) et \(t \), qui étaient occupés dans le mois \(t \).

On obtient les totaux de toutes les cellules de la matrice des flux bruts de façon semblable. La matrice des flux bruts qui en résulte est la suivante:

Matrice des flux bruts - Mois \(t-1 \) à mois \(t \)

<table>
<thead>
<tr>
<th>Mois t</th>
<th>O</th>
<th>C</th>
<th>I</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>S</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td></td>
<td>(\Sigma \min(N, N)) (f)</td>
<td>s = 1</td>
<td>t = 1</td>
<td>t = t</td>
</tr>
<tr>
<td></td>
<td>(\Sigma \min(N, N)) (f)</td>
<td>s = 1</td>
<td>t = 1</td>
<td>t = t</td>
</tr>
<tr>
<td></td>
<td>(\Sigma \min(N, N)) (f)</td>
<td>s = 1</td>
<td>t = 1</td>
<td>t = t</td>
</tr>
<tr>
<td></td>
<td>(\Sigma \max(0, N - N)) (f)</td>
<td>s = 1</td>
<td>t = 1</td>
<td>t = t</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mois t-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

I	S	s	s	s	s	s	s	s
	\(\Sigma \min(N, N) \) \(f \)	s = 1	t = 1	t = t	0			
	\(\Sigma \min(N, N) \) \(f \)	s = 1	t = 1	t = t	0			
	\(\Sigma \min(N, N) \) \(f \)	s = 1	t = 1	t = t	0			
	\(\Sigma \max(0, N - N) \) \(f \)	s = 1	t = 1	t = t	0			

H	S	s	s	s	s	s	s	s
	\(\Sigma \max(0, N - N) \) \(f \)	s = 1	t = t	t = 0				
	\(\Sigma \max(0, N - N) \) \(f \)	s = 1	t = t	t = 0				
	\(\Sigma \max(0, N - N) \) \(f \)	s = 1	t = t	t = 0				
	\(\Sigma \max(0, N - N) \) \(f \)	s = 1	t = t	t = 0				

\[
\sum N f \quad \sum N f \quad \sum N f \\
s = 1 \quad t = 0 \quad s = 1 \quad t = 0 \quad s = 1 \quad t = 0 \]
À noter que chaque terme de la somme des neuf cellules de sujets dans la population active (les cellules qui indiquent les flux bruts entre Occupés, Chômeurs, et Inactifs) est le produit de la taille nette de la strate et de la fraction observée des sujets qui avaient les diverses classifications de la population active dans les mois t-1 et t. La cellule Hors-de-la-population vers Occupés de la matrice des flux bruts contient la somme des termes de chaque strate qui a augmenté entre le mois t-1 et le mois t. Chaque terme est le produit de l'augmentation nette de la taille de la strate et de la fraction des sujets de la strate qui se sont déclarés Occupés le mois t. Les cellules Hors-de-la-population à Chômeurs et à Inactifs contiennent les sommes de termes semblables sauf que l'augmentation nette de la taille de chaque strate est multipliée par la fraction des sujets de la strate qui étaient Chômeurs ou Inactifs respectivement le mois t. En d'autres mots, l'augmentation nette de la taille de chaque strate est attribuée proportionnellement aux trois cellules d'entrée de la matrice des flux bruts sur la base des fractions observées des Occupés, des Chômeurs et des Inactifs au cours du mois t. De même, la diminution nette de la taille de chaque strate qui a diminué entre les mois t-1 et t est attribuée proportionnellement aux cellules de sortie de la matrice sur la base des fractions observées des Occupés, des Chômeurs et des Inactifs au cours du mois t-1.

Dans ce modèle, nous avons postulé que la seule façon pour des chiffres d'apparaître dans les cellules d'entrée et de sortie est une différence de poids. En pratique, un petit nombre d'individus qui entrent et sortent de la population étudiée apparaissent dans l'échantillon et les poids qui leur sont attribués sont ajoutés aux cellules d'entrée et de sortie appropriées. L'effet de ces individus sur les estimations est très petit.

Les fractions \(f_{+0}^S, f_{+C}^S, f_{+I}^S, f_{0+}^S, f_{C+}^S, f_{I+}^S \) sont estimées en utilisant les individus qui apparaissent dans l'échantillon au cours des deux mois. Presque tous les individus classés, par exemple comme HD, ne pourraient pas être répondants dans les deux mois parce qu'ils n'ont pas été choisis comme sujet à cause du plan ou parce qu'ils ont déménagé. Ainsi, les gens qui n'auraient pu être répondants les deux mois sont représentées par des individus qui ont été répondants ces deux mois. Dans la mesure où ces groupes sont différents, l'allocation proportionnelle des augmentations et des diminutions nettes de la
la taille des strates peut produire des estimations biaisées des cellules d'entrée et de sortie de la matrice des flux bruts.

4.3 Effets des mouvements entre les strates

Les poids utilisés aux fins de l'estimation des flux bruts figurant dans l'expression (3) sont déterminés par le nombre de répondants des deux mois t-1 et t, une quantité qui demeure constante pour les deux mois, et par la population des strates. La population d'une strate change si a) des individus y entrent venant de l'extérieur de la population étudiée, comme lorsque les gens atteignent leur quinzième année ou quittent les Forces armées à plein temps, b) des individus sortent de la population étudiée, comme lorsqu'ils entrent dans les Forces armées ou une institution, ou c) des individus de la population étudiée changent de strate. La présente sous-section décrit les effets de ces changements de la taille de la population sur les valeurs de la matrice des flux bruts.

Comme dans la sous-section précédente, nous supposons que la population étudiée est divisée en S strates. Encore une fois, les individus de l'échantillon sont tirés au hasard de chaque strate chaque mois, sont interviewés six mois consécutifs et sont ensuite retirés de l'échantillon. Soit N_{t-1}^S, comme auparavant, le nombre d'individus de la strate s qui sont interviewés dans les deux mois t-1 et t.

Ensuite, nous supposons qu'il y a N_{t-1}^S individus dans la strate s au cours du mois t-1. Indiquons les mouvements vers cette strate et hors de celle-ci entre les mois t-1 et t par:

\[m_{u,v} = \text{nombre d'individus qui passent de } u \text{ à } v, u \neq v, \text{ entre les entrevues pour les mois } t-1, \text{ et } t \text{ où } u \text{ et } v \text{ peuvent prendre les valeurs} \]

\[s = \text{strate } s \text{ pour } s = 1,2, \ldots S \text{ et} \]

\[H = \text{hors de la population étudiée.} \]

En employant cette notation, la population de la strate s dans le mois t est
\[N^S_t = N^S_{t-1} + \sum_{u \neq s} (m_{u,s} - m_{s,u}). \] (7)

Les poids attribués aux individus dans la strate \(s \) dans les mois \(t-1 \) et \(t \) respectivement sont

\[W^S_{t-1} = \frac{N^S_{t-1}}{r^S_{t-1,t}} \text{ et } W^S_t = \frac{N^S_{t-1} + \sum_{u \neq s} (m_{u,s} - m_{s,u})}{r^S_{t-1,t}}. \] (8)

État donné que nous nous attachons dans cette section au mouvement d'entrée dans la population étudiée et de sortie de celle-ci, il n'est pas nécessaire pour nous de diviser les membres de la population étudiée entre Occupés, Chômeurs et Inactifs. Ainsi, la matrice des flux bruts utilisée ici est une matrice \(2 \times 2 \) formée par la sommation des trois premières lignes et des trois premières colonnes de la matrice des flux bruts \(4 \times 4 \) utilisée dans la sous-section précédente.

L'entrée pour la strate \(s \) dans la cellule Dans-la-population à Dans-la-population est de

\[\min(W^S_{t-1}, W^S_t)r^S_{t-1,t} = \min \left(\frac{N^S_{t-1}}{r^S_{t-1,t}}, \frac{N^S_{t-1} + \sum_{u \neq s} (m_{u,s} - m_{s,u})}{r^S_{t-1,t}} \right) r^S_{t-1,t} \]

\[= \min \left(N^S_{t-1}, N^S_{t-1} + \sum_{u \neq s} (m_{u,s} - m_{s,u}) \right) \]

\[= N^S_{t-1} + \min \left(0, \sum_{u \neq s} (m_{u,s} - m_{s,u}) \right). \] (9)

La valeur de la strate \(s \) dans la cellule Hors-de-la-population à Dans-la-population, ou entrée est

\[\max(0, W^S_t - W^S_{t-1})r^S_{t-1,t} = \max \left(0, \sum_{u \neq s} (m_{u,s} - m_{s,u}) \right) r^S_{t-1,t} \]

\[= \max \left(0, \sum_{u \neq s} (m_{u,s} - m_{s,u}) \right). \] (10)

La valeur de la cellule Dans-la-population à Hors-de-la-population, ou sortie
est trouvée de la même façon. Ainsi, la matrice des flux bruts 2×2 se présente comme suit

Mois t

<table>
<thead>
<tr>
<th>Dans-la-population</th>
<th>Hors-de-la-population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mois $t-1$</td>
<td></td>
</tr>
<tr>
<td>Dans-la-population</td>
<td>$\sum_{s=1}^{S} [N_{s-1}^{s} + \min {0, \sum_{u \neq s} (m_{u,s} - m_{s,u})}]$</td>
</tr>
<tr>
<td>Hors-de-la-population</td>
<td>$\sum_{s=1}^{S} \max {0, \sum_{u \neq s} (m_{u,s} - m_{s,u})}$</td>
</tr>
<tr>
<td>$\sum_{s=1}^{S} [N_{t-1}^{s} + \sum_{u \neq s} (m_{u,s} - m_{s,u})]$</td>
<td></td>
</tr>
</tbody>
</table>

Considérons la quantité qui se trouve dans la cellule entrée de cette matrice des flux bruts. Cette cellule devrait contenir l'augmentation nette de la population qui provient de l'extérieur de la population étudiée, $m_{0,s} - m_{s,0}$, pour chaque strate qui a reçu des sujets de l'extérieur de la population. Ce que cette cellule contient est $\sum_{u \neq s} (m_{u,s} - m_{s,u})$ pour chaque strate s qui a augmenté à la suite de mouvements entre les strates et en provenance de l'extérieur de la population étudiée. La somme $\sum_{u \neq s} (m_{u,s} - m_{s,u})$ inclut la quantité $m_{0,s} - m_{s,0}$ mais elle peut également contenir d'autres termes.

Par exemple, supposons que la population est constituée de trois strates appelées A, B et C. Si les strates A et B ont augmenté entre le mois $t-1$ et le mois t, et que la strate C a perdu des sujets, alors la cellule d'entrée contient...
\[\sum_{u \neq A} (m_{u,A} - m_{A,u}) + \sum_{u \neq B} (m_{u,B} - m_{B,u}) = m_{0,A} - m_{A,0} + m_{B,A} - m_{A,B} + m_{C,A} - m_{A,C} \\
+ m_{0,B} - m_{B,0} + m_{A,B} - m_{B,A} + m_{C,B} - m_{B,C} \\
= m_{0,A} - m_{A,0} + m_{0,B} - m_{B,0} + m_{C,A} - m_{A,C} + m_{C,B} - m_{B,C}. \]

À noter que les mouvements entre les strates A et B s'annulent, mais que les termes indiquant les mouvements entre les strates A et C et les strates B et C demeurent dans la somme.

En général, les cellules d'entrée contiennent des termes supplémentaires de forme \(m_{v,u} - m_{u,v} \) pour chaque strate \(v \) qui a perdu des sujets alors que la strate \(u \) a gagné des sujets. De même, la cellule de sortie contient des termes supplémentaires de forme \(m_{x,y} - m_{y,x} \) pour chaque strate \(y \) qui a augmenté alors que la strate \(x \) a perdu des sujets.

Dans la cellule d'entrée, la quantité \(\sum_{u \neq s} (m_{u,s} - m_{s,u}) \) pour chaque strate \(s \) qui a gagné des sujets entre les mois \(t-1 \) et \(t \) sera positive, bien que chaque terme distinct de la somme ne soit pas nécessairement positif. Si

\[\sum_{u \neq s} (m_{u,s} - m_{s,u}) > m_{0,s} - m_{s,0} \tag{12} \]

alors la contribution à la strate \(s \) est supérieure à l'entrée dans la strate \(s \) en provenance de l'extérieur de la population étudiée. Cet excédent provient des termes de forme \(m_{v,u} - m_{u,v} \) comme décrit ci-haut. C'est-à-dire que la surestimation est due à des mouvements entre les strates à l'intérieur de la population. On obtient un résultat semblable pour la cellule Dans-la-population à Hors-de-la-population de la matrice.

Les analystes de Statistique Canada signalent que la méthode qu'ils ont proposée pour le traitement des différences de poids entre les mois semble produire des surestimations des cellules d'entrée et de sortie de la matrice des flux bruts. Bien qu'ils soient basés sur des postulats simplificateurs, nos résultats indiquent une explication possible pour cette surestimation, qui peut être imputable à des mouvements à l'intérieur de la population étudiée.
Finalement, nous notons que dans la matrice des flux bruts 2x2 présentée ci-haut la cellule Dans-la-population à Dans-la-population doit contenir une sous-estimation égale à la surestimation de la cellule de sortie. Quelle que soit la taille de cette surestimation, elle est étalée sur les neuf cellules Dans-la-population à Dans-la-population de la matrice des flux bruts 4x4. De plus, la taille de la surestimation est petite en comparaison avec la taille totale des neuf cellules Dans-la-population.

4.4 Commentaires sur la méthode d'estimation des flux bruts proposée

Les résultats décrits dans les deux sous-sections précédentes illustrent des problèmes de la méthode proposée pour le traitement des différences des poids entre les mois aux fins de l'estimation des flux bruts. Ces résultats ne constituent pas une surprise pour les chercheurs de Statistique Canada. Grâce à leur expérience des méthodes et des données de l'enquête sur la population active, ils savaient que les mouvements des individus à l'intérieur de la population pourraient expliquer une partie de la surestimation des cellules d'entrée et de sortie de la matrice des flux bruts. Les résultats obtenus en basant le processus sur un modèle confirment cette opinion et précisent dans quelle mesure les mouvements des individus influencent les estimations. De plus, l'établissement du modèle a fait surgir un problème dont Statistique Canada n'était pas conscient: la sous-estimation compensatoire étalée à travers les neuf cellules Dans-la-population à Dans-la-population de la matrice des flux bruts.

Dans la section 4.2, nous avons vu que les augmentations nettes des strates sont attribuées aux cellules d'entrée alors que les diminutions nettes sont attribuées aux cellules de sortie en fonction des fractions des individus observés classés comme Occupés, Chômeurs et Inactifs au cours du mois t et du mois t-1 respectivement. Cette technique d'estimation des entrées et des sorties n'est valable que si les individus qui entrent dans la population étudiée et qui en sortent constituent un échantillon aléatoire des individus et, par conséquent, sont "identiques" aux individus qui demeurent à l'intérieur de la population en question. Les individus inclus dans l'échantillon qui sont classés comme Hors-de-la-population étudiée apparaissent dans l'échantillon accidentellement plutôt qu'intentionnellement; l'enquête sur la population
active n'est pas conçue pour l'estimation de nombres de personnes à l'extérieur de la population étudiée. Si nous voulons obtenir des estimations raisonnables pour les cellules d'entrée et de sortie de la matrice, il peut devenir nécessaire d'inclure des individus de l'extérieur de la population étudiée dans l'échantillon de l'enquête sur la population active ou d'utiliser un échantillon spécial supplémentaire.

Dans la section 4.3, nous avons vu que les surestimations des cellules d'entrée et de sortie pouvaient résulter de mouvements des individus entre une strate dont la population a augmenté et une autre dont la population a diminué. Le fait que ce sont les mouvements entre les strates qui ont causé les problèmes résulte des postulats simplificateurs qui ont été posés. Nous avons postulé que l'échantillon final a été choisi au hasard à l'intérieur de chaque strate. Par conséquent, les poids attribués aux individus inclus dans l'échantillon provenant d'une même strate étaient égaux. Si, à la place, nous avions supposé que les strates avaient été divisées en grappes et que les échantillons aléatoires d'individus avaient été choisis dans ces grappes, alors tous les individus inclus dans l'échantillon provenant d'une même grappe se seraient vu attribuer le même poids et la surestimation aurait été produite par les mouvements entre les grappes.

Pour corriger cette surestimation et les sous-estimations correspondantes, directement lorsque les échantillons finals sont choisis au hasard de l'intérieur des strates, nous aurions besoin d'estimations du nombre de sujets qui se sont déplacés entre chaque paire de strates lorsque la population d'une strate a augmenté et que celle d'une autre a diminué. Si les échantillons finals sont choisis au hasard à l'intérieur de grappes, des estimations semblables seraient nécessaires pour chaque paire de grappes. Ceci exige une quantité considérable de renseignements. Une complication supplémentaire est que, en pratique, les corrections proportionnelles appliquées aux poids rendent possible l'attribution de poids différents aux divers membres d'un même ménage.

Comme il a été suggéré plus tôt, si des individus à l'extérieur de la population étudiée étaient inclus dans l'échantillon, nous pourrions obtenir directement des estimations des mouvements à l'intérieur de la population étudiée.
et à l'extérieur de celle-ci. Une autre possibilité qui devrait être prise en considération est l'élimination des poids mensuels aux fins de l'estimation des flux bruts, et le calcul d'un poids longitudinal pour chaque individu inclus dans l'échantillon de l'enquête sur la population active dans l'un ou l'autre des deux mois.

En tant que statisticiens, nous acceptons facilement des estimations des flux bruts dont les totaux marginaux ne correspondent pas aux totaux de l'activité sur le marché du travail publiés mensuellement; cependant, nous sommes conscients des problèmes qui pourraient être soulevés si on publiait des estimations des flux bruts non convergentes avec les totaux mensuels. Néanmoins, on ne devrait pas postuler automatiquement que les estimations mensuelles sont justes et que le problème se situe uniquement dans les estimations des flux bruts. Comme nous l'avons noté dans la section 3.5, la matrice des flux bruts est corrigée pour tenir compte des erreurs de classification. Les estimations mensuelles, cependant, ne sont pas corrigées pour le biais d'erreur de classification. En conséquence, lorsque l'ajustement proportionnel itératif est utilisé pour corriger la matrice des flux bruts pour la faire correspondre aux totaux mensuels, on change la matrice pour la faire converger avec des valeurs biaisées. Nous croyons qu'il serait plus approprié de faire face au problème des erreurs de classification du statut d'activité dans les données mensuelles là où elles se produisent plutôt qu'uniquement dans les estimations des flux bruts.

5. NON-RÉPONSE ET ESTIMATION DES FLUX BRUTS

La méthode proposée par Statistique Canada d'estimation des flux bruts corrique la non-réponse en ajustant les poids des répondants en fonction de l'échantillon. Cette méthode de traitement de la non-réponse est correcte si les données manquantes sont distribuées au hasard (voir Rubin, 1976). Pour explorer le postulat de la répartition au hasard de la non-réponse, nous avons utilisé un fichier longitudinal pour un seul panel pour produire les données du tableau 1. Ce tableau indique les pourcentages non pondérés des individus interviewés occupés ou en chômage entre 0 à 6 mois selon le nombre de mois où ils ont répondu à l'enquête.
Considérons les probabilités sous-jacentes aux pourcentages observés présentés dans la partie a) du tableau 1. Soit

\[\pi_i = \text{la probabilité qu'un individu soit Occupé pendant } i \text{ de 6 mois pour } i = 0,1,\ldots,6. \]

En postulant que la non-réponse se produit au hasard, les probabilités correspondant à la première colonne de ce tableau peuvent s'écrire:

\[
P(\text{qu'on observe } 0 \text{ mois Occupé sur } 6-k \text{ mois de réponse}) = \sum_{j=1}^{k} \pi_j / \binom{6}{j}, \text{ pour } k = 0,1,\ldots,5. \tag{13}
\]

À noter que ces probabilités augmentent de la première à la dernière ligne de la colonne.

De même, on peut montrer que, si les données manquent au hasard, alors les probabilités sous-jacentes doivent augmenter de façon descendante dans chaque colonne dans les deux tableaux. La première colonne de chaque tableau dévie de ce comportement de façon très nette. Dans les deux cas, les pourcentages observés diminuent tout au long des quatre premières lignes du tableau et augmentent dans les deux dernières. Il ne semble pas probable que les variations d'échantillonnage par elles-mêmes puissent être responsables d'un tel comportement dans les deux tableaux. Par conséquent, il semble bien que la non-réponse ne se produise pas au hasard.

Bien entendu, cette analyse n'est basée que sur un seul panel des données de l'enquête sur la population active. Cependant, dans une étude plus considérable utilisant des données de 1980 et 1981, Paul et Lawes (1982) ont également trouvé des preuves d'une relation entre le statut d'activité et la non-réponse. Par conséquent, il est nécessaire d'envisager des méthodes d'estimation des flux bruts qui ne nécessitent pas le postulat que la non-réponse se produit au hasard.

La méthode que propose Statistique Canada pour l'estimation des flux bruts
n'utilise que les renseignements des individus qui ont répondu les deux mois. Il y a également des renseignements disponibles des individus qui n'ont répondu qu'un seul de ces deux mois. Stasny (1983) présente une méthode d'estimation des flux bruts d'un mois à l'autre qui emploie les renseignements disponibles des individus qui ont répondu seulement un de ces deux mois et qui peut être utilisée lorsque la non-réponse est reliée au temps ou au statut d'activité. Dans cette méthode, nous considérons les données de flux bruts observés comme le résultat final d'un processus à deux étapes. Dans la première étape du processus, que nous n'avons pas l'occasion d'observer, les individus sont distribués entre les 16 cellules de la matrice des flux bruts conformément à un schéma d'échantillonnage multinomial simple. Ensuite, dans la deuxième étape, chaque individu possède une probabilité quelconque de perdre son statut d'activité soit dans le mois t-1 ou dans le mois t. On peut établir le modèle de la probabilité de perdre le statut d'activité d'un mois selon le mois, ou le statut d'activité, ou les deux. Les estimations de probabilité maximale pour les paramètres de la distribution multinomiale de la première étape et les probabilités de perdre le statut d'un mois sont obtenues au moyen de méthodes itératives.

Lorsqu'on a appliqué ces modèles aux données de l'enquête sur la population active provenant d'un seul panel, Stasny (1983) a trouvé que le modèle où la probabilité de perdre le statut d'activité d'un mois dépend du statut d'activité correspond raisonnablement aux données pour toutes les matrices de flux bruts à l'exception de la matrice des mois 1-2. Pour les données du mois 1 au mois 2, la probabilité de la perte du statut d'activité d'un mois semble dépendre du mois. Ceci peut être dû au fait qu'il y a un taux de non-réponse plus élevé le premier mois qu'un panel est inséré dans l'enquête. Nous croyons qu'il vaudrait la peine d'appliquer ce genre de modèle à des données supplémentaires de l'enquête sur la population active pour vérifier si l'on obtient des résultats semblables avec d'autres panels.

Il est clair que le problème d'obtenir de bonnes estimations des flux bruts à partir des données de l'enquête sur la population active n'est pas un problème simple. L'enquête est organisée pour fournir des données pour la production des estimations mensuelles de l'activité sur le marché du travail, et non des estimations des flux bruts. Une enquête organisée spécifiquement dans
le but d'estimer des flux bruts entre les catégories de la population active serait certainement différente de l'enquête sur la population active. Ainsi, les données longitudinales de l'enquête ne sont pas idéales pour les estimations des flux bruts. Les données, cependant, sont disponibles, et si elles peuvent être utilisées pour fournir des estimations raisonnables des flux bruts, alors on produit des renseignements supplémentaires utiles à un coût relativement peu élevé.

RÉFÉRENCES

Tableau 1

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mois Occupé</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>52.23</td>
<td>3.22</td>
<td>1.93</td>
<td>2.21</td>
<td>2.45</td>
<td>3.55</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>51.48</td>
<td>3.04</td>
<td>2.17</td>
<td>3.36</td>
<td>4.22</td>
<td>35.73</td>
</tr>
<tr>
<td>Mois où les données sont présentes</td>
<td>4</td>
<td>49.26</td>
<td>4.15</td>
<td>3.16</td>
<td>4.83</td>
<td>38.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>46.31</td>
<td>6.18</td>
<td>5.62</td>
<td>41.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>51.40</td>
<td>8.32</td>
<td>40.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>52.87</td>
<td>47.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mois en Chômage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>92.43</td>
<td>3.63</td>
<td>1.65</td>
<td>0.93</td>
<td>0.57</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>91.23</td>
<td>4.46</td>
<td>2.08</td>
<td>1.13</td>
<td>0.72</td>
<td>0.38</td>
</tr>
<tr>
<td>Mois où les données sont présentes</td>
<td>4</td>
<td>89.28</td>
<td>5.76</td>
<td>2.17</td>
<td>1.43</td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>89.00</td>
<td>6.42</td>
<td>2.81</td>
<td>1.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>91.33</td>
<td>6.01</td>
<td>2.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>91.43</td>
<td>8.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>