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ON THE VARIANCES OF ASYMPTOTICALLY
NORMAL ESTIMATORS FROM COMPLEX SURVEYS

David A. Binder]

The problem of specifying and estimating the variance of
estimated parameters based on complex sample designs from
finite populations is considered. The results of this
paper are particularly useful when the paramtere estima-
tors cannot be defined explicitly as a function of other
statistics from the sample. It is shown how these results
can be applied to linear regression, logistic regression
and loglinear contingency table models.

1. [INTRODUCTION

In recent years, there has been an increasing demand for using survey
data to estimate the parameters of traditional models such as regres-
sion parameters, discriminant functions, logit and probit parameters
and others. However, for many such surveys, the primary objectives

of the survey is the estimation of population or sub~population means,
totals, trends and so on. For this reason and because of operational
considerations, the survey design is often not a simple random sample,
but is more typically stratified and often multi-stage with possibly

unequal probabilities at certain stages of sampling.

Because of this, there has been much discussion (see, for example,
Sarndal;1978) on whether the sampling weights should be used in making
inferences about these model parameters. The answer seems to depend on
whether a superpopulation model is appropriate for all population units.
If this is the case, the inference on the superpopulation parameters is
often the primary concern. This leads to model-based inference, where,
for a given sample, the inferences do not depend on the sampling weights.
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The question that comes to mind is: If the superpopulation model is
not appropriate, what parameters are we estimating? |t must be recog-
nized that for many studies, particularly in the social sciences, the
model (e.g. linear regression) is only a convenient approximation of
the real world and the parameters of that model (e.g. correlations and
partial correlations) are often used to understand the approximate
interdependencies of the variables rather than having a particular
scientific interpretation. Therefore, the parameters we are estimat-
ing do not necessarily refer to a true superpopulation model, but are

of a more descriptive nature.

In this paper, we adopt the view that we are interested in making in-
ferences about these ''descriptive'' parameters of the population. For
example, suppose X and Y are N x p and N X 1 matrices respectively,
where each row of X and Y corresponds to a different individual of the
population. We are interested in the descriptive parameter, B, a px]

vector satisfying the equations:

x'x8 = XY (1.1)

This view of descriptive parameters is the same as that taken by

Frankel (1971) and Kish and Frankel (1974).

The usual estimation of such parameters normally takes into account
the sampling weights. |If we denote by u the probability that the i-th
unit in the sample is sampled and let I = diag (w], ey ﬁn), then the

weighted parameter estimate for B satisfies:

X1 B =]

~ ~

1!y, (1.2)

where x and y are nxp and nxl matrices respectively, the rows of which

correspond to the sampled rows of X and Y.

Suppose, now, an estimator of a population parameter can be expressed

as:

g = g(z], ey Z (1.3)

By



_]59_

A

where E(Zi) = Z,. Here, © is an estimator of g(Z], e, Zk). Follow-
ing Tepping (1968) and Woodruff (1971), a Taylor series expansion for
8 yields:

A k 9
VIBl = vl s (@D (7)1 . (1.4)

These formulae are exemplified for estimation of regression coeffi-
cients (1.1) by Tepping (1968). However, the expressions resulting
from (1.4) for the variances of the regression coefficients are some-

what complicated compared to those derived by Fuller (1975).

In this paper we consider parameters which are not defined through an
explicit equation such as (1.3), but instead are defined implicitly as
U(Z,Q) = 0. A simple example showing the distinction would be the

~ o~

ratio parameter:

R = ——

ZYk
ZXk

b

which could also be defined implicitly as:

ZYk - RZXk = 0.

When we deal with some models such as indirect loglinear models or
logistic regression models, the parameters can be defined only through
implicit relationships. The extension of Tepping's (1968) results for
this case is fairly straightforward,but does not appear in its general
form at present in the literature. There are, however, specific
examples of its application; see, for example Fuller (1975) and

Freeman and Koch (1976).

In Section 2 we give the general framework and the main results of

the paper. A number of models are exemplified in Section 3.
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2. GENERAL FRAMEWORK

2.1 Framework
The population units are labelled 1, ..., N. Associated with the i-th

unit we have a g-dimensional data vector Xi' We have a parameter space

6 ) is defined by the p

P _
0 c R . The parameter 8, = (910, e O

equations:
N
U-(X’e ) = i ui()"(‘k’@‘o) - Vi(e ) = o’ (2-])

for i=1, ..., p. We assume that equations (2.1) define Qo uniquely
in ©. We also assume that Bui(X,Q)/aQ and Bvi(Q)/aﬁ exist in a

neighbourhood of Qo. A simple example of (2.1) is where 60 is a popu-
lation total, and we have U({,eo) = X, ~0,- Here, u(Xk,eo) = X,

and v(eo) = 60.
We select a sample of the units, according to some probability distri-
bution defined on the set of all non-empty subsets of {1, ..., N}. We

denote by x X the selected values of X X... We assume

12 e Xpo -o0s Xy
that for any 0 € 0, we can construct a consistent, asymptotically nor-
mal estimator of Ui(X,Q). We denote this estimator by Gi(§,Q). For

example, for many without replacement sampling schemes,

ﬂi(§,Q) =

i3

ui(§k’g)/ﬁk - vi(e) (2.2)

k=1 N

will be a consistent asymptotically normal estimator, where L is the

probability of inclusion for the k-th unit.

We let oij(g,g)
(2.2}, we have:

Cov[ﬂi(f,g), UJ(§,Q)]. For example, for estimator

4 (%50) Uy (X,,0) (np=mm )/ (2.3)
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where M is the probability that the k-th and &-th units in

sample.

We let £(X,8) be the pxp matrix with entries oij(g,Q), and 2(5,9) be a

consistent estimator for Z. Now, for any given 6,

~

N
U, (X,0) + v, (8) = = wu, (X ,8),
i ~7~ i~ i ~k’~
k=1
so that estimators Gi(g,g) and §(§,Q) can be specified for any design
in which we can derive consistent asymptotically normal estimators of

population totals and consistent estimators for the variances of the

estimators of the totals.

The Horvitz-Thompson estimator for (2.3) is:

n n

I X ui(x 8) u.(x

»6 Xy s (2.4%)
k=1 g=1 ' K Jjr

Q)(ﬂkl 'ﬂkﬁg)/ﬂkﬂgﬂkg.

In the case of fixed sample size, the Yates-Grundy estimator of (2.3)
is:

“j(’fk’g) _uj(>52,9)

Lz

k<z[ui(§k’g) ”i(§g’g)}

J (ﬂkﬂg -ﬂkg). (2.5)

TTk TT,Q,

m ™

k 2

Letting U(X,8) and Q(§,Q) be the p-dimensional vectors with components

Ui(g,@) and ﬂi(§,g) respectively, we define

J(X,0) = 3uU(X,0)/36 (2.6)

J(x,8) = 3U(x,8)/38, (2.7)

A

where J and J are pxp partial derivative matrices. Assume that the
matrices are continuous functions of § and that the partial deriva-
tives with respect to § exist in a neighbourhood of 6 . Also assume
J(x,9) is a consistent estimator of J(X,6). °

Our estimator for 8 is given by é, the solution to:

U.(x,8) =0, fer i=1, ..., p. (2.8)

D>
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We assume the sample size is sufficiently large so that the solution
to (2.8) is unique in 6. We show in the next section that the covar-
jance matrix of 6 can be consistently estimated by :

) 17,817

L D>

(x,8)1 (x,

2.2 Asymptotic Theory

Following the asymptotic arguments of Madow (1948), and H&jek (1960),
we consider a sequence of populations indexed by t, with sizes N(t)

(1) (t)

We assume N +o as t-+>», For population t, we sel-

(t) (t) (t) _ E(n(t))

and observe data x . We let v

and data X
ect a sample of size n

and assume

(t)

Timwv = o
t>w
1im (N(t) - v(t)) =
t>ow
For any 0 in a neighbourhood of Qgt) we assume

L2 16D, 0y - ux () ey
is asymptotically N[0,5(8)], where

s(e) = 1imlvt z(x(®) o) /en(t)4?
exists. We assume

K(6) = 1lim Q(X(t),g)/N(t) exists and also

prim 3,0t = k().
Also, we assume
. (t) - o e, () _
lim[rank {J(X*"7,8)}] = plim[rank {J(x""",8)}] = p.
We define é(t) to satisfy

(t)

(x*"7,

(t)y - 0.

1
D>

By a Taylor series expansion, we obtain

Q(§(t), Qét)) s j(g(t), (t)) (

(t) -e(t)). (2.9)

~0

D>
D>

Since the left hand side of (2.9) is asymptotically normal, we have that
(n(t))% (é(t) _ G(t))

is asymptotically N[0, G(8 )], where $(g_) = K(g ) g(go)[g(eo)]

(e]
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Therefore, 1

6(s,) = [k (e )1 s(a,) (&' (g )] (2.10)
and a consistent estimator for g(Qo) is:
T 6081 56,8 17817 (2.11)

Hence, when the functional form of ﬂ(§,9) and £(x,0) is specified, we
need only derive the matrix Q(X,QO) and its estimator Q(g,é) to use

these results.

3. EXAMPLES

3.1 Introduction

In this section we consider in detail the implication of the general
formulation given in Section 2 with respect to estimating the vari-
ances of certain population parameter estimators. In particular, we
discuss ratios, regression coefficients and log linear models for cat-
egorical data. Other models, such as probit models could be analyzed

analogously.

In general, we use the following notation. |If w], vy WN are popula-
tion values, with W = Zwk, then on selecting a sample Wiy eens W, wWe
have an unbiased estimator of W given by W. We let y(@) represent the
covariance matrix for @ and g(@) a consistent estimator of y(@). The
particular form of this estimator will depend on the sample design;

for example, multi-stage stratified, pps with replacement, etc. .

3.2 Ratios

Suppose we are interested in R Zsz/ZXk We define

T

[y
—_
>
po.v)
~—
[]

X X, - REX, .

Therefore, for without replacement sampling, we have :
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Setting 0(§,§) = 0, we obtain

We define Wk = sz - R Xkl'

~ ~ 2
Since, J(X,R) = -ZXk], we have that V(R) is approximately V(W)/(ZXk]).
ALA A2
This is estimated by V(W)/X]. In the case of stratified sampling,
this yields the same result as in Woodruff (1971).

3.3 Regression Coefficients and R

Suppose our data matrix X is partitioned into [Z|Y], the first column
of Z being the vector of 1's. The vector Y is Nx1. We have parameters

of interest 6, B, and R2 defined by:

U =6-Y 1=0, (3.2a)
u,=228-2 Y=0, (3.2b)
Uy = (YTY-N 102)(R%-1) + Y'Y - ¥T z B =0, (3.2¢)

. . . 2,
Here, B denotes the vector of regression coefficients, R is the

coefficient of multiple determination and 6 is the total of the Y's

We first consider the case where N is known. We let SSY = YTY -N_] 62.
We also define §ZZ as the estimator for ZTg, SYY the estimator for YTY
and §ZY the estimator for gTY. We therefore have :
6=V, (3.3a)
~ -1
B - §ZZ §ZY, (3-3b)
T
S - B S
A2 YY ~ *ZY
RO =1 - -1 ~2 ° (3-3C)
SYY - N Y
and
o' 1
J = aU(Z,Y,B,R,0)/3(B,R,0) = | Z2'Z OQ 0o |,
T - 2
-Y'z ssY 2Y(1-R)

where Y = 8/N .
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Therefore,

T 0 @27 o ]
-1 Sy 2 T
J = [-2Y(1-R")/SSY B /SSY 1/SSY
A of o
Now, letting WT(B) = (Z, , e Z, e ), wheree =Y -1 Z . B
’ *k k1 Sk> “*7 “kp Sk k= kY ke
we obtain : J
T -
Vsl = (2’27 v 1z’ 7 (3.4)

This is a direct consequence of (2.10). Note that the set of wk(g)
vectors corresponds to Y, in (3.2b). Fuller (1975) obtains the same
4

result for stratified or two-stage stratified sampling.

To estimate (3.4) we use:

Vi8] = 550 T s))
We can also estimate the variance of ﬁz. I f wZ(B,RZ) = [Yk’ Zk] e,
IR v, (2 2 Bj - szk)] and gT = [-2Y(1-RHI/N, BT, 11/
(SYY-N_] 92), we obtain:
IRD = &7 UIWGE,R)T <. (3.5)

For the case where N is unknown (e.g. the primary sampling units are

geographic areas), we have the additional equation:

Uy =N-Z1. (3.6)

Adding the appropriate row and column to J and inverting, we obtain

the following results for estimating v[R?].

We let
T,. .2 2
wk(g,R ) = [Yk, 2y €r oo zkp e s Yk(§ ij Bj R Yk), 1]
and
AL aD A s N SN -1 ~
cl = 1-2v(1-RO)/N, BT, 1, YO (1-R )/N*1/ (s = N 192
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We then have U[R“] is given by (3.5) for these new values of

yk(g,Rz) and c.

3.4 Logistic Regression

As in the previous section, we assume the data matrix § can be parti-
tioned into [Z[Y], but now Y is a vector of 0's and 1's. |In the tra-
ditional statistical framework, the logistic regression model for !
conditional on Z asserts that Y], e YN are independent with

Pr(Yk= 1) = pk(§), where :

exp (8’ z,) (3.7)

P, (B) =

1+ exp(s’ 2,)

Letting B be the maximum likelihood estimator for g8, we have that B
satisfies

u=2z'p(e) -z y=o0, (3.8)

where P(B) = [p (B), ..., p(B)].

For a given finite population,we define B as our parameter of interest.

We let C(B) be our estimate for ;TE(Q) and S, our estimate for ZTX.
Therefore, E satisfies Q(E) = SZY' These equations must be solved
iteratively in general. We also have
el
:'=§§—

The (i,j)th component of J is i Z,; ij pk(E) [l-pk(g)]. We denote
the estimator of J by J.

To estimate the variance of @, we let

T _ ~ ~
W, = (Zk],ek, ey Zkr ek)
where ék = pk(é) - Yk' The estimator for y[é] is given by:
TR
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3.5 Loglinear Models for Categorical Data

Suppose that each member of the population belongs to exactly one of
g distinct categories. Associated with category i we have an rx]
vector a; such that the proportion of individuals in the i-th category
is approximately

exp(g? B)

p.(B) = ——m— .
' L exp(g} 8)

J

Ve Tet p(2)' = [p)(8), ..., p ()] and N'

is the number of individuals in the i-th category. Now, if the popu-

= (N], cees Nq), where Ni

lation were generated from a multinomial distribution with probabili-

ties p(B),the maximum likelihood estimator for B,given by B, satisfies:

u=a"N- AT p@1 1 N =0,

where A is a gxr matrix with i-th row being a? . We consider B as

our parameter of interest for any given finite population.

We let @ be a consistent asymptotically normal estimator of N, with
variance-covaraince matrix y[@] and estimated matrix U[N]. Our esti-

~

mator, B, satisfies:

A" N - AT )1 17§ = 0. (3.9)

This estimator was suggested by Freeman and Koch (1976). It may be
less efficient than Imrey, Koch and Stokes (1981, 1982) functional
asymptotic regression methodology; however, we need not calculate all

the components of V[N] to apply (3.9).

Let D(B) be diag[p(B)] and H(B) = D(B) - p(B) E(Q)T. We have:
ol
_ & T T
J = 3B - (l N) 6 H(g) 6

Therefore the asymptotic variance matrix for B is given by:
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T A T T -
AT(r-p(8)1T) VIR] (11 p(8)1) AGT H(B) AT (3.10)
This expression can sometimes be simplified as follows, If it can be

assumed that N/NT[ = p(B), then for ﬁ = @/@Tl we have:

viEl = (N2 (z-p(8)1) VINI(Z-] p(B)T),

so that
1

vIBl = (A" H(B) A)"' AT VIT] A(AT H(B) A) (3.11)

~ o~

~

We also have that the covariance matrix for p(B), the estimated cell

probabilities, is given by:

Vip(8)] = H(B) A VIB] AT

2T

H(B).

The estimators of y[é] and V[p(B)] are similar expressions, where N
and B are replaced by @ and § respectively. These assume that g[@] is
readily available. For some problems where g is relatively large com-

pared to r, it would be more efficient to proceed as follows. Let

Yki =1 if k-th unit in i-th category
= 0 otherwise,
= . T _
for k=1, , Ny i=1, , g. Let !k = (Ykl’ R qu), and
— alr+_ /8 T
W, =AlI-p(B) 1] Yo
We then obtain
A A ~ 2 ~ -1 ~ -
181 = (' @ uE A7 v T ae) A7

We remark that the methodology described in this section can be readi-
ly extended to product-multinomial type models, where we have a log-

linear model for {Nij}’ but the margins {Z Nij} are known.
j



- 169 -

L, DISCUSSION

The techniques described in the paper have been described for some
specific models; see, for example, Fuller (1975) and Freeman and Koch
(1976). However, the general results are not explicitly described.
Many standard statistical packages may be used for the estimation of
the parameters of the models described, but the variances and tests of

hypotheses given in these packages will not be valid.

The results of this paper depend on the assumption of asymptotic nor-
mality of the estimators. Empirical studies on the validity of these

approximations are important.

An alternative methodology to estimating many of the parameters des-
cribed here is given by Imrey, Koch and Stokes (1981, 1982). Their
functional asymptotic regression methodology also falls within the
general framework described here, with respect to variance derivation

and estimation.
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