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NOTES ON INFERENCE BASED ON DATA
FROM COMPLEX SAMPLE DESIGNS

Gad Nathan!

The problems associated with making analytical inferences
from data based on complex sample designs are reviewed.
A basic issue is the definition of the parameter of inter-
est and whether it is a superpopulation model parameter or
a finite population parameter. General methods based on a
generalized Wald Statistics and its modification or on mod-
ifications of classical test statistics are discussed.
More detail is given on specific methods-on linear models
and regression and on categorical data analysis.

1. INTRODUCTION

Standard methods of inference, such as regression, analysis of vari-
ance or tests of independence, are, in general, based on the assump-
tion that the data are obtained by simple random sampling from an
infinite population with a probability distribution belonging to some
hypothetical family. The wide dissemination of standard computer
packages has made the use of these methods extremely easy. However
standard methods cannot usually be simply applied to data from complex

sample designs without any modification.

In the following we attempt to provide a selection of some practical
hints on what can be done and of some warnings against what should not
be done in these situations. This is based on the selected list of
references to recent work in the area, which include many examples of

applications.

The first question which must be answared by anyone who intends to
carry out statistical analysis is what exactly are the parameters

about which inference is required.

]G. Nathan, Hebrew University, Jerusalem and lIsreal Central Bureau
of Statistics
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One of two extreme answers to this question is often given (Brewer and
Mellor (1973); Smith (1976)). One, as advanced for instance by Kish
and Frankel (1974), considers that the only relevant inference concerns

finite population parameters, such as the population regression

coefficient:

5= 3 (x.->‘<)(y.-\?)/;l (x.-X)7,
i=1 ! ' i=1
similarly defined multiple or partial correlation coefficients or other
measures, defined with respect to the finite population only, with no
recourse to any superpopulation model. Inference in this case would
usually be design-based (Sarndal (1978)), that is based only on proper-
ties of the sample distribution. However model-based inference about

a finite population parameter is also possible (Hartley and Sielken

(1975) ).

The other extreme position, as stated, for instance, by Fienberg (1980),

considers all inference as relating to the parameters of a probability

distribution (a superpopulation) of which the finite population re-

presents a realization. Examples of such inference can be found in
Konijn (1962), Fuller (1975), Thomsen (1978) and Pfeffermann and
Nathan (1981). !f the parameters about which inference is made relate
to a superpopulation model, design-based inference cannot be used
alone and inference must be model-based, Sarndal (1978), or jointly
model- and design-based. Under assumptions of independence between
the model distribution and the sampling distribution, standard (model-
based) inference is valid and the sample design only affects the

efficiency of inference.

Serious objections can be raised with respect to each of these extreme
approaches. Model-based inference relies heavily on assumptions about
a theoretical model which are usually difficult to ensure and the in-
ference will not, ingeneral, be robust to departures from this model.

On the other hand, the finite population parameters, on which design-
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based inference is made, are usually ''copies'' of theoretical model

parameters with little descriptive value in themselves, unless some
basic model is assumed. For instance, a finite population correlation
coefficient is a useful measure of the relationship between two vari-

ables only if the relationship is approximately linear.

In many cases some balance between these approaches may be preferable.
This can be attained, for instance, by considering as the objects of
inference only finite population parameters which closely approximate
superpopulation parameters of a suitable model,to which the data fit.
For instance, if separate regression equations are fitted to relevant
sub-populations a better linear fit may be obtained than from an over-
regression. |f the sub-populations are large enough this will ensure
that the finite population regression coefficients closely approximate
the superpopulation parameters, so that any inference relating to the
finite population parameters can be considered as relating to the

superpopulation parameters.

To ensure close correspondence between model parameters and finite
population parameters extensive exploratory analysis to check the
model should be carried out,before entering into any formal analysis.
This analysis to explore various alternative models can often be based
on simple descriptive measures for which the sample design can be
taken into account or on graphical displays. However the results have
to be carefully interpreted in the 1light of the sample design. For
example, a few large residuals with small sample weights may be much
less important than many smaller residuals with large weights. A use-
ful diagnostic tool to consider in the case of regression is the dif-
ference between a weighted and an unweighted regression coefficient.

A large difference will often indicate that the model is inadequate.

Once the parameters have been determined,we should consider what type

of inference is required (point estimation, interval inference or tests

of hypotheses). While point estimation and confidence intervals would
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be most appropriate for finite population parameters,tests of hypoth-
eses, and in particular simple hypotheses, are strictly relevant only
with respect to superpopulation parameters of a well-defined model.
For example the hypothesis that two domain means are equal can only be
seriously entertained with respect to the superpopulation means rather
than their finite population realizations. If one wishes to avoid the
formulation of a model it would be preferable to use point estimation
or confidence intervals for the difference between the domain means
rather than tests of hypotheses. If hypothesis testing about finite
population parameters is required,testing acomposite hypothesis (e.g.
that the difference between the means is in a given range of values)
would be more appropriate than testing the simple hypothesis(that the
difference is zero). Note that for sufficiently large samples, any
non-zero difference, no matter how small, will be found significantly

different from zero.

In the following, we discuss some basic general methods of analysis of
data from complex sample designs and some specific methods for linear
models and for tests of goodness of fit and of independence in contin-
gency tables. In general we shall consider the inference as relating
to finite population parameters. However we consider this inference
as relevant only if the finite population parameters closely approxi-
mate superpopulation model parameters. This leaves open the possibil-
ities of tending either towards a purely design-based approach or to-
wards a purely model-based approach, according to one's personal de-

gree of belief in the validity of an underlying model.

2. BASIC GENERAL METHODS

2.1 Generalized Wald Statistic

If the hypothesis to be tested is linear (or can be linearized)

in the expected values of asymptotically normal statistics, for which
a consistent estimator of the variance matrix is available, the gen-

eralized Wald Statistic can be used (Grizzle, Starmer and Koch (1969)),
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Koch, Freeman and Freeman (1976), Freeman, Freeman, Brock and Koch

(1976), Shah, Holt and Folsom (1977) and Koch, Stokes and Brock (1980)).

We assume that we wish to test the hypothesis:

Ho: Xg = eo, (2.1.1)

where X is a known rxp design matrix of full rank. B 1is a px]
unknown parameter vector (either finite population parameters or super-
population parameters) and eo is a known rx1 vector of constants. In
case the hypothesis is not lineara first~order Taylor series approxi-
mation can be used (Nathan (1972) and Shuster and Downing (1976)).

We assume that a consistent asymptotically normal estimator é,

of 3 is available, as well as a consistent estimator, V, of the cov-

ariance matrix of é, whose distribution is independent of that of 8.

Then the generalized Wald Statistic, defined as:
2 - . -1, 4
= - 1 1 _
X, (X8 eo) (XvXx')y " (XB eo) (2.1.2)
is asymptotically distributed, under the null hypothesis, as chi-

square with degrees of freedom equal to the dimension of the hypoth-

esis (p-r).

The consistency of B and of V and the asymptotic distributions of
8 and of Xi can all be considered with respect to the samplingdistri-

bution or with respect to the superpopulation distribution.

The major problem associated with this approach is in obtaining

the consistent estimator, V, of the covariance matrix when B is non-
linear in the sample observations (as will often be the case). Rao
(1975) surveys the various methods of variance estimation which can be
used: linearization (Tepping (1968)); Balanced Repeated Replication
(McCarthy (1969)); and Jackknife (Miller (1974)). Several general comput-
er programmes are available for their implementation - e.g. SUPERCARP
(Hidiroglou, Fuller and Hickman (1980)), SUDAAN (Shah (1978)) for
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linearization and OSIRIS IV: PSALMS for balanced repeated replication.
A complete listing and comparison of programs is given by Kaplan,

Francis and Sedransk (1979).

Empirical comparisons of the variance estimators are given by Kish
and Frankel (1974) and by Richards and Freeman (1980) and theoretical

comparisons by Krewski and Rao (1981).

However, attention should be given to the stability of the variance
estimator, especially when the number of parameters is large. In
addition, care must be taken with respect to the conditions under
which consistency and asymptotic properties hold for complex designs.
For instance, for a two-stage design asymptotic results may require

both a large number of PSU's and a large number of final units per PSU.

2.2 Approximation and Modelling of the Covariances

The practical difficulties involved in obtaining a stable consistent

estimator of the covariance matrix have led to attempts to use simp-

lified approximations to such estimators. The basic idea is that

by assuming some structure for the covariance matrix, more stable

estimators of fewer parameters can be used.

The approximation can be carried out under a pure design-based
approach, directly with respect to the covariance matrix. If assump-
tions can be made on equality of design effects for variances and
covariances within a given sub-group of parameters,overall estimators
of covariance can be used. This approach is used, for instance, by
Nathan (1973), Fuller and Rao (1978), Fellegi (1980) and Lepkowski
and Landis (1980).

Alternatively modelling of the population structure itself can

lead to simplified covariance matrices which can easily be estimated
(see, e.q., Altham (1976), Fuller and Battese (1973), Tomberlin (1979).
Holt, Richardson and Mitchell (1980), Imrey, Sobel and Francis (1980)
and Pfeffermann and Nathan (1981)).
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2.3 Modifications of Standard Tests

The widespread use of standard computer packages has encouraged

the search for simple modifications to standard test procedures to take
into account complex sample design. The idea can be regarded as a
natural extension of the use of design effects asmultiplicative factors
for variances based onasimple random sample of the same size,in order

to correct for the complex design used.

The correction may indeed be based on design effects of various
estimators or on average design effects -(see, e.g., Cowan and Binder
(1978), Fay (1979), Fellegi (1980) , Rao and Scott (1981) and Scott
and Holt (1981) .

Another alternative is to investigate the behaviours of standard

test statistics under some superpopulation model and to modify the

standard statistic accordingly (Cohen (1976) and Campbell (1977)).

3. SPECIFIC METHODS

3.1 Linear Models and Regression

The prior determination of the model and of the parameters of inte-
rest is extremely important for the case of regression analysis and
of linear models. For instance, when different regression relation-
ships must be assumed for different strata or for different PSU's in a
two-stage design, the parameter of interest could be a simple average
of the regression coefficients (Konijn (1962)); a weighted average of
the coefficients (Pfeffermann and Nathan (1981)); or their expected

value (under some prior distribution) (Porter (1973)).

The model and the parameters of interest should, in general, be
determined on the basis of the assumed overall population structure and
should not reflect to the structure of the sample design. However in

many cases the sample design will reflect population structure so that
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sample design variables may be part of the model. For example consider

the model:

ECY[X)2X,) = X, B) 5 + X, By 4 (3.1.1)

where X] includes only variables which do not relate to the sample

design and X2 includes all the variables which enter into the complex

sample design, i.e. the sample distribution depends only on XZ:

P(s|X,,X,) = P(s]|X,). (3.1.2)

The estimation of 6] , and of 62 | in (3.1.1) and inference

about them can proceed in the classical way, as if sampling were

simple random, if indeed (3.1.1) holds.

However if the design variables, X2, are not included in the

regression equation of interest:

E(Y[X,) = X;8 (3.1.3)

171
and the design variable X2 is correlated with Y (conditional on
X]) then the standard OLS estimator of B] is not consistent (see
Nathan and Holt (1980) and Holt and Smith (1979), who propose modified
weighted and unweighted estimates of 8], which are consistent). Holt,
Smith and Winter (1980) give an example of the application of these

estimators.

1f the linear model:

x. B (3.1.4)

E(Yi[xi)

o2
{o 4] (3.1.5)

cov(Yi,Yj[xi,xj)

indeed holds for all population units (i, j=1, ..., N) of a finite
population and the px1 column vector X, includes all the sample design

variables, then the OLS unweighted estimator:

,\_ 1 _'I I
g = (xn xn) xn Yn (3.1.6)
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]
based on the sampled values Xn = (x], ey xn) and Y = (Y], vy Yn)
pxn :
is the 'best'" linear model-unbiased estimator of B irrespective of
the sample design. "Best"' here is in the sense of minimal model -

~

variance. However R s, in general, not a design-unbiased, nor even
a design-consistent, estimator of the population parameter:

'

IRV
8 = (X X)Xy Yy (3.1.7)

Y)-

X, _ '
where "N = (x], ceey xN) and Y, = (Y], cees Yy

pxN N

The design-consistent estimator of B is the weighted estimator:

~ _ ] _'l I
By = (xn W xn) xn W LA (3.1.8)

where the weight matrix, W= diag (H;], v H;]), is the nxn
diagonal matrix of the reciprocals of the sample inclusion probabili -

ties I, = Pr(ies).

The consistency of éW’ as an estimator of B, obviously does not

depend on the model (3.1.4) holding, but the relevance of estimating
B when the model does not hold can be challenged. It can be shown
that under certain conditions for a non-linear model, which assumes
that the conditional expectation of Y (given X) is a differentiable
function of X, the model-expectation of B <can be expressed approxi-
mately as a weighted average of the slopes of this function at the
points X, (the weights depending only on X, -X). However this inter-

pretation is of limited practical value.

~

In any case Bw is a model-unbiased estimator of B, whenever
(3.1.4) does hold. It will not, in general, be an optimal estimator
of B wunder (3.1.5) for unequal probability sampling, but will be so

if the conditional model variance of Yi is proportional to Hi’
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i.e. V(Yilxi) =k, . (3.1.9)

-~

Since the weighted estimator, B W’ is more robust then the un-
weighted estimator, B, in the sense that it is both a model-unbiased
estimator of g, if the model holds and a design-consistent estimator

~

of B, if not, the use of the weighted estimator B8, , is recommended, for

W
estimation of B, whenever there is no assurance that the model (3.1.4)-
(3.1.5) holds. The question which must then be answered by the subject-

matter specialist is whether B 1is a relevant parameter to estimate.

It should be noted that for self-weighting designs B and éw coin-
cide. The estimator, éw (3.1.8),can be obtained directly fromstandard

computer programmes which provide for weighted regression (e.g.BMDP) by

using the weights ]/Hi; or from other programmes (e.g. SPSS) by carry-

ing out unweighted regression on the transformed variables Yi/»/I[i and

xi//_?, but not on the weighted variables Yi/ni’ xi/Hi. However, it

should be noted that under either alternative the reported variances

and covariances of the estimators are incorrect and that the standard

significance tests (e.g. F tests) are invalid, and can result in gros-

sly misleading conclusions.

Assuming the model (3.1.4) - (3.1.5), the model variance of B is:

A

)
= 2 -1
V(B[X ) = o X X)) ', (3.1.10)
which is the result given by standard unweighted regression programmes.
However, the model variance of éw is:
v(F

_ 20! -1, ! -1
w!xn) = o (X WX ) U X W oW X (oW X)L (3..00)

The weighted regression programme, with weights ]/Hi’ will give

1 - ~
a value of (Xn Wn Xn) ] for the model variance of Bw, which equals

(3.1.11) only if wn = In. Thus none of the standard outputs for stan-

dard errors or for tests of hypotheses are correct.
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However the estimator of the multiple correlation coefficient obtained

from weighted regression:

R = : , (3.1.12)

where ;n = (Zs Yi/Hi) / (ZS ]/Hi)’ is a design-consistent estimator of
the population multiple correlation coefficient:
I
5 (Y, - Xy B) (Y, =X B)

R = - ; (3.1.13)
(v, -V, 1

where YN = (1/N) lN YN.

A

The design-variance of Bw, which must be considered the relevant

measure of accuracy for as an estimator of B, cannot in general, be

B
W
obtained from only the first order inclusion probabilities, Hi' For

most sample designs used in practice, the design-variance of will

8
W
have to be estimated by one of the variance estimating techniques mention-
ed above i.e.linearization, Balanced Repeated Replication or Jackknife

(see, e.g., Jonrup and Remmermalm (1976) and Holt and Scott (1981)).

3.2 Categorical Data Analysis

The simplest analysis of categorical data relates to a single classi-
fication of the population into k <classes with probabilities

(relative frequencies) p = (p], ). In order to test the

.5 P
k-1
null hypothesis of goodness of fit to a known distribution
]
Po = (Pors +ovs Pyl
H: p=p_ , (3.2.1)

the approaches outlined in section two can be used.

~ 1 A ~
We assume that a consistent survey estimator p = (p], cee pk_])

]
of p is available. |If it is asymptotically normal:
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/n

A

and a consistent estimator, V, of V is available, then the generalized

-p) ~> N(0,V) (3.2.2)

10 >

Wald statistic:

2 . Voael
X, =nle-p) V' (p-p) > (3.2.3)

which is distributed asymptotically as sz-l under Ho’ can be used

to test H .
o}

For many simple designs consistent estimators of V are directly
available and for more complex designs they can be obtained by standard
methods. However if tests of hypotheses of goodness of fit have to be
carried out for a variety of variables and classifications, the use of
the standard X2 statistic:

2 k N 2 n 1 -1
X =n 1 (p;-p;) /e ; =nlp-p) P (p-p) » (3.2.4)

- oi o) o
where PO = diag (Eo) - Eo'%;’ with appropriate modification may be pre-
fered. Rao and Scott (1981) show that the asymptotic distribution of

2
X under Ho is that of a weighted sum of k-1 independent y? variables

with one degree of freedom each.

2 k-l 2
X ~> 1 X Z.; Zi ~ N(0,1) independent (3.2.5)
i=1
where A], ey Ak—] are the eigenvalues of
_ -1
D =P V(Alzxzz...zkk_]>0). (3.2.6)

A conservative test of (3.2.1) can then be obtained by using the

statistic XZ/A] in conjunction with a Xi-l distribution. Ay can be
components of p. For example, for proportional stratified sampling
A] <1, so that X2 itself can be used as a conservative test statistic.

In other cases the use of Xz/i with:
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A=—ZA.=—Zdi(I-pi),

where di==V[§i]/[pi(I—pi)] is the design effect for ﬁi’ has been shown

to be a good approximative test by Hidiroglou and Rao (1981) for the

Canada Health Surveys and by Holt, Scott and Ewings (1980) for Tlarge
2

scale U.K. surveys. An alternative approximation - X /d, where

d =k £ d, - has been proposed by Fellegi (1980).

Direct modelling for p has been proposed by Altham (1976) and by

Cohen (1976), but their models have the serious limitation that they
imply A] = Az = .., = Ak-l = i, which is equivalent to a constant de-
sign effect over categories. This is not a realistic assumption, in
general, and results in XZ/X having exactly an asymptotic Xﬁ-] distri-

bution.

For testing independence in a two-way contingency table, the hypo-

theses can be formulated:

(i=1, ..., r=1; j-1, ..., c-1), (3.2.7)

where p.. is the population probability of cell (i,j) p..,, P.. are
J 1+ +]

the marginal probabilities and El = (p]], cees P ). The generali-

rc-1
zed Wald statistic for testing Ho is:
2 R I | ~
X, = nlb@®1 v a) (3.2.8)
! N A A i
where [h(p)] = [h]](g), cees hr-] -1 (p)] and Vh/n is a consistent

estimator of the covariance matrix of h(p). Versions of (3.2.8) for
specific designs with various methods for estimating Qh/n have been
used by Garza-Hernandez and McCarthy (1962), Nathan (1969, 1975)

Shuster and Downing (1976) and Fellegi (1980).
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A modified statistic similar to Xz/i has been proposed by Rao and

Scott (1981):

2 N r c " . - 2 . -
Xe; = (n/8) li] jil (Pis = Pis Pyj) /(Pyy pyy)s (3.2.9)
R | r.c PN
where § = =y B 2 vij(l'_\)/(pi+ p+j) and
i=1 j=1
v..(h)/n is an estimator of the variance of hij(é). § can be written
in terms of the estimated deffs of hij(é):
r c A A ~
5= 1 gy (e d(-p) 8,5, (3.2.10)
r-1) (c-1 i=1 j=1

where 8ij is an estimator of the deff, éij’ of hij(é)

6;5 = nVih (@17 [py,

i (l-pi+)(l-p+j) . (3.2.11)

J

Estimates of the design effects may be easier to obtain than estimates

of variances.

Empirical investiqations by Holt, Scott and Ewings (1980) and by
2
Hidiroglou and Rao (1981) indicate that the distribution of XCI is
2

close to X(I""’]) (C_]).

3.3 Other Types of Analysis

While linear models, tests of goodness of fit and tests of indepen-
dence cover many important analysis applications, other types of
analysis, such as principal component and factor analysis,discriminant
analysis, path analysis, logistic regression, log-linear models non-
parametric methods, etc. cannot be directly dealt with in the same

way. While the general techniques outlined in section two could be
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used, their application presents difficulties and only few cases of their

application have been reported.

Since correlation coefficients are a basic element in most multivariate
analysis, some empirical studies of the effect of sample design on their
estimation have been carried out by Kish and Frankel (1974), Bebbington
and Smith (1977) and Holt, Richardson and Mitchell (1980). No general
conclusions can be formulated, but design effects are definitely not
negligible. Bebbington and Smith (1977) have also studied the sampling

variability of principal components estimators.

In other areas design effects for logits have been studied by lLepkowski
and Landis (1980) and confidence intervals for quantiles by Woodruff

(1952) and by Sedransk and Meyer (1978).
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