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ON THE INCLUSION OF LARGE UNITS
IN SIMPLE RANDOM SAMPLING!

M.A. Hidiroglou?

Approximate cutoff rules for stratifying a population into a
take-all and take-some universe have been given by Dalenius
(1950) and Glasser (1962). They expressed the cutoff value
(that value which delineates the boundary of the take-all and
take-some) as a function of the mean, the sampling weight
and the population variance. Their cutoff values were derived
on the assumption that a single random sample of size n was to
be drawn without replacement from the population of size N.

In the present context, exact and approximate cutoff rules have
been worked out for a similar situation. Rather than providing
the sample size of the sample, the precision (coefficient of
variation) is given. Note that in many sampling situations,

the sampler is given a set of objectives in terms of reliability
and not sample size. The result is particularly useful for deter-
mining the take-all - take-some boundary for samples drawn from

a known population. The procedure is also extended to ratio
estimation.

1. INTRODUCTION

The stratification of a population is a technique often used in survey
sampling. This technique may produce gains in precision in estimating
characteristics of the population. The problem considered in this paper

is the stratification of a population into two strata, the take-all and
take-some strata. The take-all stratum contains some of the largest units
in the population while the take-some stratum contains the remaining units.
The take-all stratum units are surveyed entirely while a simple random

sample is drawn from the take-some stratum. This type of stratification is
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particularly useful for populations whose distribution exhibits a marked
positive skewness, with a few large units and many small units. Failure
to recognize that such highly skewed populations should be stratified in
the above manner may result in over-estimation of the population char-
acteristics. This last point has been studied by Hidiroglou and

Srinath (1977).

Approximate cutoff rules for stratifying a population into take-all and
take-some universes have been given by Dalenius (1950) and Glasser (1962).
Glasser (1962) expressed the cutoff value (that value which delineates the
boundary of the take-all and take-some subuniverses) as a function of the
mean, the sampling weight and the population variance. Their cutoff values
were derived on the assumption that a prespecified sample size n was to be
drawn without replacement from a population of size N. In the present
context, exact and approximate cutoff rules have been worked out for a
similar situation. Rather than providing the sample size, the desired
level of precision ¢ (coefficient of variation) of the estimates is given.
Note that in many sampling situations, the sampler is given a set of

objectives in terms of reliability of the estimates.

Singh and Singh (1975) have adapted Glasser's result to the case where
pps with replacement sampling was used. The number of units n to be
drawn from the population is prespecified. They delineate the take-all
and take-some universes by providing a lower and upper bound for the
boundary point. These bounds are strictly a function of the measures of
size used to compute the selection probabilities. The reason that the
bounds do not involve any values concerning the study variable is that
the study variable is expressed as a function of the measures of size
through a regression model. |In the present paper, the results are also
extended to the case of the ratio estimator. Provided that a linear model
exists between the study variable and the known auxiliary variable, a
cutoff point can be constructed. This cutoff point will strictly be a

function of the auxiliary variable.
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2. THE SAMPLING PROCEDURE AND METHOD OF ESTIMATION

Consider a finite population ¢, consisting of N units labelled s Yoo
N (AR

S Yy Define ordered statistics y(N), y(N_]), ey y(]) where

Y(N) < Y(N_]) < ... 2 \/(])

Let a simple random sampie of size n(2) be selected. Note that n{2) is
no longer a fixed sample size. Rather, it is a variable which depends

on the number of take-all units & to be included in the sample. Assume
that the desired level of precision for the estimated total is given as

c. The total Y may be written as:

2 N
Y= 2 N fy - (2.1)
SO

Given that % units are take-all and n{e)-2 units are take-some, an

estimator of the total Y would be:

- ) N-2 n(2)-¢
Y= vy *amer P z. (2.2)
i=] i=1
where Y (N) <z g Y (241) for i=1,2,...,n(2)-2.
The variance of Q is
oy _ AN=2){N-n(0)} (2

V(Y) = ~ P SN-1 (2.3)

where
N
2 _ 2
SN-¢ T NTEST .=i+1(y(') LNy
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A

In terms of reliability c, V(Y) may be re-expressed as V(Y)

Substituting V(Y) = ¢2Y2 into (2.3) and solving for n(2):

c?y2,

]

2 2
(N-2) S

2.2 2
cY +(N_2)SN-2

n(g) = & +

3. THE OPTIMUM POINT

The objective is to find the optimum value of y which minimizes the
sample size n(2) for the given level of precision c. A necessary
condition for the optimum point is that (2.4) with 2=m shall not

exceed (2.4) with 2=m-1 or 2=m+1. This means that the optimum value of
y(y*) is found whenever n(m-1) > n(m) and n(m) < n(m+1). This condition
can be made more flexible if we introduce a real number b into the

inequalities, that is,

n(m-1) > n(m) + b - 1

and

n(m) < n(mkl) +b -1,

where b can be used to control the number of units to include in the

take-all stratum.

Stopping rule (3.1) is the exact one for finding the optimal cutoff for a

given b. To express (3.1) in terms of the optimal cutoff neighbouring

values y(m) and Y (m+1) ? we need the following two relations.

2 . 1ve2 . N-m 2
(N-m)Sy ., = (N-m=1)S_ + =7 (y(m) u)
and
2 R A Z_N_m _ 2
(N-m Z)Sv-] = (N-m ])Sv N-m-1 (y(m+l) Uv) ’

(2.4)
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where
N
2 1 2
S ey S (Yooy = u o)
vk N=mkoTL (i) v+k
and
N
u S z y
vk Nembke LT (1)
for k = -1,0,1 and v = N-m.

Substituting (2.4), (3.2) into (3.1) one can show that:

) [bN-nm—(b-l)m](N-m) ] )
(y(m) B “v) z {(nm-m)(N-nm-b+l) * N—m} sv
and
[bN-n - (b-1)m] (N-m-2) . )
- )< o -~ +—3 s°,
(y(m+]) Myl s Yﬁm-m)(N-nm+b-l) N-m v

The compromise for (3.3) if m is the optimum number of units to include

with certainty is

2 b(N-m-1) 1, (b-1) (N-m) (b-1) (N-m-2)
(Y“‘UV) ={ n —2 * E{ N-n -b+lm M N-n +b-T ]
m m m

_‘_ b(b']) [ N-m
2 (n_-m) "N-n_-b+]
m m

-m-2
* -n +b-l]}

m

(3.3)

(3.4)
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Note that if m is the optimum number of units to be included in the

sample with certainty, then Y (me1) < vy < Y (m) * Also, equation (3.4)
is one solution of the system of inequalities given by (3.3).
(3.4) is a necessary condition for an optimum, it is not necessarily

sufficient. More than one solution may exist, in which case the one

that minimizes n(2) for given b would be chosen. As Glasser (1962) points

out, while it may not pay to include with certainty a given unit by itself,

it may pay to include it with several other units.

Noting that

(N_m)ZSZ
n =m+ =
m 2v24 (N-m) $°
V
and

N _ (N-m)czY2
" T 22 2
cY +(N—m)Sv

substitution of (3.5) and (3.6) into (3.4) yields

L
2,2 (N-m) (b-1)S
. 2 . bcy _1\e2 v
(y#-u )" = + (2b 1)Sv + 7.7 ,

v N=-m

provided that b-1 is very much smaller in magnitude than
Nch/(cY2+NSi).

An upper limit for y* can be obtained in terms of the population variance

Sﬁ, population size N and mean Hy by using the following inequalities:

N(y*-UN) < (N-m)(y*-uv),

e 2

) 2 mN (y*=1y)
(N-m-1)S < (N-1)S5 = ——
vooo- N N-
m

(3.5)

(3.6)
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where it is true that for m>0, y*<um, u being the mean of the m largest
units in the population. Substituting inequalities (3.8) and (3.9) into

(3.7), we obtain after some simplification the approximate cutoff rule

Yz
—2——2—“‘—'} ] . (3.10)
cyY

2,2 N(b-1)S
y:': < UN + [P—C—Y—- + Sﬁ {(Zb"‘) +
N

This inequality depends only on the population size, the coefficient

of variation ¢, b, u . and SN. This approximation will be good only

when m is relativelyNsmaII compared to N. The more extreme and the more
variable the large units, the less well the limit approximates the exact
solution. Although the computer programming and time involved in obtaining
the exact cutoff point is quite minimal, it is nevertheless instructive

to characterize the bound in terms of known population values.

Approximation (3.10) reveals one point about b's effect on the boundary
point. If b2 > b], then the boundary point associated with b2 will be
higher than the one associated with b]. Note that the converse also
follows. The choice of b is user dependent. Under various situations,
the number of units in the take-all stratum may be varied. For instance,
in business surveys, a possible determining factor affecting the cutoff
rule could be the portion of the population that the take-all units
represent in terms of the study variable. In this case, the user would
probably take b < 1. Another factor could be response burden. The user
would most likely introduce a rotation scheme which would permit some

of the large units to rotate in and out of the sample. For this case,

fewer units would be included in the take-all by choosing b > 2.



- 103 -

L. APPLICATION TO RATIO ESTIMATION

Suppose that the population ¢N consists of N two dimensional vectors

labelled (yl,x]), (y2,x2), e (yN,xN). Define ordered statistics

X(N)’ X(N—])’ ceey x(]), where X(N) < X(N-l) < ... < x(]). Let the
corresponding y values be y(N), y(N_]), e y(]), where y(i) is the
value associated with X (1) in the two dimensional vector (y(i),x(i)).
If a sample of size n(%) is selected without replacement using simple
random sampling, % being the number of take-all units, an estimator for

the total Y would be:

~ L y
_ n(2)-2
YR iil Y i . XN-Q
*n(2)-2
n(g)-2

N
X,_, = L X ’
N2 ()
XNy S Y < X (541) and Y (N) <z, g Y (441) for i=1,2,...,n(2)-2. The

variance of the total given by (4.1) is:

oy _ (N-g){N-n(2)} 1
VYR) = == - N-2-1 Iy T Rycg (i)

N
z y(.), is the ratio of the vy
=g+l !

where RN-Q = YN—Q/XN-Q’YN—Q =
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population total to the x population total. Note that the optimal value

of y(y*), will be found whenever for some r, n{(r-1)>n(r) and n(r)2n(r+1),

where
(N-2)° 52R-N—;L
n(g) = 2 + ) 5 , (4.2)
c Y +(N-2) SR N-9
N
2 1 2
S e r (y - R, . X )
R-N-2  N-g f=g4] (i) N-¢ (1)

Note that expression (4.2) involves the study variable y. Consider the
finite population ¢N as a sample from a superpopulation where the

following model holds:

Yi = B X+ ey
where
E(ei[xi) =0,
E(ei,ej{xi,xj) = 0, (4.3)
E(e 1xi) = ax, .
for a>0 and i=1,2,..., N. Under this model, n(2) can be expressed as

a function of the x's. That is,

N

2 2 2
(N-0)° afX - - X,
N-¢ =0+1 (i)
! 'N 5 . (4.4)

+ (N-2)af xﬁ_q -y x(i)}/(N—z—l)

n(:) = 2 + > N
c g N
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where g = oX + ezxz. The above relationship is easily derived by noting

that under model (4.3),

and

E S, neo™ X, - —— I X

XN—Q i=9+1 (

i)

When the optimal y has been found, it can be shown that n(r-1)zn(r) is

equivalent to

2 2 2 4 2
{(N-r+1) a c g [Xp + (N-r) SX-p] cg Xp} X ()
4 2.2 N-r+1 2 3 2 2
_ e 1) o
> c g x>+ o % ¢ 9 Xp (N-r+1) o c” g SX-p Xp
where
N
= X X/un s
ok e ()
2
82 = ! [ g x2 XO+k 1
X+ p+k N-r=T (i) N-r+k
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Note that use of the following two relations is needed to derive (4.5):

X = X +
o+] o = %(r)
and
N N
X2+'l - Z XZ(.) = X2 - Z X(i) + 2 X( ) X .
© i=r ' 0 i=r+l o
Similarly, using
X = X -
o1 o~ X(r)
and
N N
Xz_.l - Z X%i) = X2 - Z X%i) + 2X2(r+.|) - 2X(r+]) X >
o i=r+2 P =l 0

it can be shown that n(r) < n{(r+1) is equivalent to

_ L 2 _ N-r-1 o 2 2 _ o 2 2
{ g Xp N (N-r-2) o c gXp (N-r) (N-r-1) o c gSX.p
(N=r) (N-r-1) 2
FE TN @ COX Xy X ()
_ k2 _ 2 ,3 N-r-1 (N-1) (N~-r-1) 2 2
<=-cgX a c gXp p— A Vi a c gXpSX o (4.6)

If r is the optimum number of large units to include with certainty,

and this is satisfied whenever the following

then x(r) > x* > X(r+1)

gquadratic equation holds,
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2 N-r 2 ol - b2yl
X*p N-r-2 ¢ ¢ 9% %

{(N-v) o cgs

+ (N—;Zﬁ?;r'l) o cng[D X%} X
a ngX3 a cng 52 (4.7)
- - P + p Xp ’
(N-r) (N-r-2) (N-r-2)

Note that the above expression depends on knowledge of a and B. Thus,
any estimate of o and B values obtained from some earlier surveys or

other sources may be utilized to great advantage.

5. SOME PRACTICAL ILLUSTRATIONS

The use of the procedure given in section 2 presumes that the population
from which the sample is to be drawn, is to be a good proxy for the

target population. An example where such a procedure may be used is the
following. All the values associated with the units of a business universe
are known at time t]. A sample is drawn from this universe at time t]+k],

k]20, and to be used as a basis for inference to the universe characteristics
from t]+k] to t]+k2 where k2>k].

¢(t]), may be different from the universe at time tys ¢(t2), >t

However, if it can be assumed that the cutoff value computed at time t

In this instance, the universe at time t],

1

is not too different from the one that would be computed at time t then

2’
partitioning of the population ¢(t]) will still yield gains.
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The data used to illustrate the results given in section 3 is from

the 1976 Food and Beverage Annual Survey. This survey is essentially

a census of all eating and drinking establishments covered by the
Merchandising and Services Division of Statistics Canada. Establishments
covered in this survey includes all known businesses with establishments
classified to the Standard !ndustrial Classification code 886(1970).

The Standard Industrial Classification code is broken down further

into seven kinds of businesses that range from licenced restaurants to
beverage rooms, bars and night clubs. Data for this survey is presently
being published at a subprovincial by kind of business cross-classification.
The example takes a situation where the business universe is known at
time t] (the 1976 Food and Beverage Restaurant Survey) and a sample is

to be drawn at time t.+k, (the projected Monthly, Tavern, Caterers and

171
Restaurant Survey).

The cutoff rule that is illustrated is the one given by (3.1) with b
chosen equal to 1 and 2 respectively. Four subprovincial by kind of
business strata have been chosen to provide the examples. They are
respectively: Beverage Rooms, Bars and Night Clubs in Newfoundland
(stratum 1), Beverage Rooms, Bars and Night Clubs in the non-metropolitan
areas of New Brunswick (stratum 2), Licenced Restaurants in Halifax-
Dartmouth (stratum 3), and Beverage Rooms, Bars, Night Clubs in the
non-metropolitan areas of Quebec (stratum 4). Some of the statistical
characteristics for those strata are given in Table 5.1. These are

the minimum, maximum and mean sales for each of the strata. The
standard deviation, SN’ is also provided with the associated population
size. Note that these statistics imply that the associated frequency

distributions are positively skewed. This remark is supported by Fig. 5.1

through Fig. 5.4,
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Table 5.1: Statistical Characteristics for the Strata of Interest

Stratum Minimum Maximum Mean Standard Dev. N
1 3,000 476,141 139,380 67,800 170
2 4,000 463,000 181,930 90,160 61
3 15,045 1,223,360 350,250 263,830 63
L 3,345 885,333 132,770 72,520 632

For each of the strata in question and given the coefficient of variation
desired, we provide the number of units to be included in the take-all
substratum, the exact and approximate cutoff and the sample that would
have been selected had no take-all substratum been formed. This
information is displayed in Table 5.2. Note that the approximate cutoff
point is given by inequality (3.10) and the exact cutoff point by
equation (3.3) with b=l.

Table 5.2: Information Concerning the Take-all Procedure Given
by Inequalities (3.1) for b=l

Stratum c Exact Cutoff ézg;??lmate m n(m) n(0)
] 0.1116 353,351 353,230 3 15 17
2 0.1063 339,071 357,840 L 13 16
3 0.1359 806,999 811,060 6 10 21
L 0.1209 598,192 542,450 3 12 20
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In the above table, m is equal to the number of units to be included

in the sample with certainty and n(m) is the corresponding overall

sample size required to achieve the desired reliability. Note that

n(m) < n(0) for all strata considered, where n(0) is the sample size

with no take-all units. Hence, if take-all units are to be found, the
overall sample size will be smaller than that of the sample with no
take-all units. Note that the approximate cutoff given by (3.10) is
quite close to the exact cutoff given by (3.3). Results for b=2 provided
in Table 5.3 highlight the effect of b on the boundary points.

Table 5.3: Information Concerning the Take-all Procedure
Given by Inequalities (3.1) for b=2

Stratum c Exact Cutoff ézi;??imate p n{p) n(0)
1 0.1116 476,141 450,133 1 16 17
2 0.1063 462,303 451,950 i 15 16
3 0.1359 1,223,360 1,077,048 1 19 21
L 0.1209 832,991 717,265 2 15 20

Note that p stands for the number of units in the take-all stratum and n(p)
is the corresponding overall sample size. Again, the approximate cutoff
given by (3.10) is quite close to the exact cutoff given by (3.3) with

b=2. The exact bound with b=2 tends to yield fewer take-all units than

the exact bound with b=l . The same conclusion is reached if the approximate

bound is used.
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6. COMCLUSION

It is desirable to stratify highly skewed populations on the basis of

the size of the units. The approach suggested in the present paper

is to put a certain number of large units into a take-all stratum and
sample those with certainty. The remaining units, those attached to

the take-some stratum, are sampled at an appropriate rate. The number

of units to include with certainty depends on the desired level of
precision c, the scalar b, the population mean L the population variance
Sﬁ and the number of units N when criteria (3.1) is used. Note that the
sampler may vary the number of units in the take-all stratum by varying b.
The approximate stopping rule (3.10) may be used as an initial estimate
for the corresponding exact cutoff given by (3.1) provided that the

necessary information on the population of interest is available.

There are several advantages in stratifying a highly skewed population

for the given method. For a fixed level of reliability, the overall
sample size associated with this procedure will invariably be lower than
the sample size associated with no stratification. Cochran (1963,

p. 38-39) points out that for frequency distributions that are not
reasonably close to normality, it is risky to use the normal approximation
as a basis for constructing confidence intervals. By separating some

of the largest observations from highly skewed distributions, confidence
intervals are essentially based on populations which are less skewed. This
last point should encourage the sampler in having more confidence in

using the normal approximation. Finally, this type of stratification
guards against overestimation of population characteristics when highly

skewed distributions are sampled.

Glasser (1962) has pointed out that the definition one should assign to
large units depends on the method of sampling the remainder of the
population and the method of estimation. For the case of ratio estimation,
the quadratic equation given by (4.7) should be solved sequentially to

obtain the cutoff point x%,
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RESUME

Dalenius (1950) et Glasser (1962) ont énoncé des régles
approximatives de partage pour la stratification d'une
population en un univers a4 tirage complet et un univers

a tirage partiel. 1Ils ont exprimé la valeur de partage
(gqui marque 1la frontiere entre les deux types d'univers)
en fonction de la moyenne, du poids de 1'échantillonnage
et de la variance de la population. Leurs valeurs de
partage ont été calculées & partir de 1'hypothése d'un
échantillon aléatoire unique de taille n tiré sans remise
d'une population de taille N.

Ici, 1'auteur a élaboré des régles de partage exactes

et approximatives pour une situation semblable. Au lieu
d'avoir la taille de 1l'échantillon, on dispose de la précision
(coefficient de variation). Il est a noter que dans de
nombreux cas d'échantillonnage le chercheur a un ensemble
d'objectifs exprimés en fonction de la fiabilité et non de

la taille de 1l'échantillon. Le résultat est particulierement
utile lorsqu'il s'agit de déterminer la limite de partage pour
des échantillons tirés d'une population connue. Cette méthode
est également utilisée dans le cas de l'estimation par quotient.
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