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ALTERNATIVE ESTIMATORS IN PPS SAMPLING 

M.P. Singhl 

Some estimators alternative to the usual PPS estimator 
are suggested in this paper for situations where the size 
measure used for PPS sampling is not correlated with the 
study variable and where data are available on another 
supplementary variable (size measure). Properties of 
these estimators are studied under super-population models 
and also empirically. 

1. INTRODUCTION 

It is well known that selection with probability proportional to size 

(PPS) generally improves the efficiency of the estimate of the population 

total for the characteristic under study provided the auxiliary variable 

(x) used as size measure is highly positively correlated with the study 

variable. Usually, therefore, in large scale multipurpose surveys where 

data are collected on several characteristics on a continuous basis, 

PPS sampling is used. The size measure (x) chosen for PPS selection 

in such surveys is such that it is highly correlated with the most 

important variable(s) under study at the time of designing the survey. 

However, as the time passes the initial size measure used to determine 

the initial selection probabilities becomes more and more out of date result-

ing in loss of correlation and hence the loss in efficiency of the 

survey estimates. In order to prevent such dec! ine in efficiency quite 

often more up to date data on new size measure (z) are collected. Such 

data may be used either for reselection (updating) of the sample or for 

improving the estimation procedure. Use of new size measures in updating 

the sample has been discussed earlier for different sampling schemes by 

Keyfitz [4], Fellegi [3], Kish and Scott [5], Platek and Singh [6] and 
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Drew, Chaudhry and Gray [2]. In this paper, data on new size measures 

have been used at the estimation stage and the properties of the esti­

mators which were introduced earlier by Singh [8] are studied. 

Such estimators may also be used in the context of multi-purpose survey 

for those characteristics (y) that are not correlated with the size 

measure chosen for PPS sampling. Rao [7] has suggested an estimator 

alternative to the usual PPS estimator for such situations. The estimators 

suggested in this paper are compared with Rao•s estimator and the usual 

PPS with replacement estimator under super-population models followed 

by an empirical study. 

2. ALTERNATIVE ESTIMATOR 

For a sample of size n selected with replacement with PPS of x, the 
N 

usual unbiased estimator of the total y = L: y. is 
l I 

y 
n yi 

( 2. 1 ) L: -p n l p. 
I 

with variance N 
2 

y2 y. 
v L: 

I (2.2) p n 1 p. n 
I 

N 
where P· = x./X and N is the number of units in the population, X=L: x .. 

I I I 
1 

An unbiased estimator of y in equal probability sampling (SRS) is 

N 
n 

vs L: y. 
n l 

I 
(2.3) 

with variance N 
2 - Y2) vs (N L: y. n 

1 
I 

(2.4) 
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If y is uncorrelated with x then V would be smaller than V s p 
(Cochran, [1]). On this consideration, Rao [7] suggested an estimator 

alternative toY for situations where y and x are unrelated even if 
p 

the sample is selected with PPS. Rao's estimator entails 'undoing' of 

the PPS weights and is obtained by replacing x. by l in the expression 
I 

for Y . Thus Rao's estimator is 
p 

and has variance 

y 
0 

v 
0 

N 
n 

n 
L: y. 
l I 

N2 N 2 N 2 
[L: y. p. - ( L: y. p.) -] . 

n l I I l I I 

Note that although Y5 and Y
0 

have the same form, their variances v5 
and V are different due to difference in selection procedures. 

0 

(2. 5) 

(2. 6) 

Using the same reasoning, that is, whenever y and x are highly positively 
A 

correlated substantial gains are achieved in using Y with PPS in contrast 
p 

to v
5 

with SRS, we consider an alternative estimator 

where 

n 
y I = L; 

p n 1 

z. 
p. 

I z 
I 

' z 

y. 
I 

p. 
I 

N 
L: 
1 

z .. 
I 

Note that this estimator assumes the knowledge of an additional size 

measure z which is highly positively correlated withy. 

The estimator Y , like Y is biased and their biases respectively are p 0 

B I p 

N p. 
L: y. (-: - 1) 
l I pi 

(2. 7) 

(2. 8) 
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N 
l: y. (Np.- 1). 
l I I 

(2. 9) 

I 

Variance of Y 1 is obtained by simply replacing y. in (2.2) by y.p./p .. 
p I I I I 

Thus 

v I p 

N 
[;:: 

n l 

2 
y.

1 
P·1 N Y·

1 
P·1 2 

--,.-12-- (J:: I ) ] • 

p. l p. 
I I 

(2. l 0) 

In the following section we compare these estimators under super-population 

models and then two other estimators are suggested in section 4 for 

similar situations and compared among themselves. 

3. COMPARISON UNDER SUPER-POPULATION MODEL 

The super-population model ~l often used when y is highly positively 

correlated with z is 

where 

and 

y. 
I 

z. + n. 
I I 

~:: 1 (n.[z.) 
I I 

0, El (n~jz.) 
I I 

= a 
g 

z.' 
I 

~:: 1 (n.n.[z.,z.) 
I J I J 

0, a > o, g > o. 

l, 2, .•. , N 

The smybol ~:: 1 denotes the average overall finite populations that can 

be drawn from the super-population. 

(3. l) 
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Under this model ~l 

p. 
€1 ( B I) SL: z. (-: - 1 ) p I 

p. 
I 

0 for any pi ' by substituting z. = p. z. 
I I 

Thus, Y 1 is unbiased under the model. However, in general, Y 1 , 1 ike 
p p 

Y , is biased and the bias does not depend on the sample size. Thus, 
0 

neither estimator is consistent. 

The expected variances of Y
0 

and Yp 1 under the model ~l 

and 

where z 
0 

A 

V(Z ) 
0 

N 
n 

= 
·l:. 

v = 
0 

N lg 
l: p. p. (1-p.) 
l I I I 

N lg-2 
l: p. p. (1-p.) 

N 
l: z. 
1 I 

1 I 

and 

N2 N 2 N 
[L: z.p. - (L: 

n l I I l 

I I 

2 z. p.) ] . 
I I 

are 

Further, in developing the estimators Y andY 1 the underlying 
0 p 

assumption is that y and x are unrelated. The super-population model 

(3.2) 

( 3. 3) 

(3.4) 

(3. 5) 

~often used for this situation (Rao, [7)) for comparison of estimators 

is y. =~+e., where s(e. [x.) = 0, s(e~[x.) = b, b > 6 and s(e.e. [x.,x.)=O 
I I I I I I I J I J 

and s is defined for~ 1 ike s 1 . Since Rao [7] has shown that 

s(V) < s(V ), it is enough to compare the average variances of Y
0 

and 
A 0 p 
Yp, under the model ~ 1 . In order to facilitate this comparison, we 

shall use the following model ~2 for the characteristic x, similar to 

the model ~ for y. 
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p. = m + e. 
I I 

i = 1, 2, •.. , N 

a 1
, a 1 >o 

I I 

t: 2 (e.e./z.,z.) = 0 
I I I J 

where t: 2 is defined as t: 1 . 

Thus, the expected variances 

·'· ·k."'k 2 A 

t:2(V~) = v B t:2 V (Z ) + 
0 0 

are 

N2 az9 
(m-m 

n 

N 
t:2(v:~) 

·k-;': az 9 2 lg-2 
v PI 

(m-m -a 1) l: p. 
n 1 I 

Therefore from (3. 7) and ( 3. 8) 

2 A az9 2 
B t:2 V (Z ) + (m-m -a 1) 

0 n 
;';;. ·k ~·~ ~· .. v - v"" 
0 PI 

Since t:2(pi) 
2 2 

= m, t:2(pi) m + al 

and 

except 1 or 0 , 

we have that (m-m2-a 1) > 0. 

N 

2 

N 
l: 

1 

12 
Also, l: p. > , w i t h eq ua 1 i t y w i t h a 1 1 

I - N 1 

-a I) 

p 
lg 

p. 
I 

N lg 
l: p. 
1 I 

and 

2 1 
(N - -~2-). 

p. 
I 

= 1/N 

(3.9) 
az 2 2 For g = 2, the second term in becomes -- (m-m -a 1) 

n 

(3. 6) 

( 3. 7) 

(3.8) 

(3.9) 

(3. 1 0) 

( 3. 11) 

( 3. 12) 

~ (N
2 p: 2 -l) > 0 

1 I 

because of the inequalities in the expressions (3. 11) and (3.12). Therefore, 

for g = 2, in the model b in (3.1), the suggested estimator Y 1 performs 
p 

better than Rao 1s estimator Y . 
0 
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The conditions for the choice of Y , over Y for other values of g 
p 0 

are quite complex to interpret in practice. However, as seen from 

the empirical study, considerable gains would be achieved in using 

the suggested estimator for situations where y and z are highly cor­

related and the coefficient of variation for x is relatively higher than 

that of z. 

4. RATIO ESTIMATION 

Two estimators of Z,namely Z and Z ,similar toY in (2.1) and Y
0 

in 
p 0 p 

(2.5) may be obtained using data on the new size measure z. These esti-

mators are used to construct ratio estimators YRP and YRO for PPS with 

replacement sampling. Thus YRP is 

y 
_£ z 
z p 

where Y is defined in (2. 1) and Z 
p p 

n z. 
n -1 I I 

1 pi 

( 4. 1) 

YRP has usual ratio estimation bias and variance which are approximated 

by 

-1 ~ ~ ~ 

8RP z [RV (Z ) - R Cov(Y ,Z )] (4.2) p p p 

~ 

+ R2 
~ ~ ~ 

and VRP V(Y P) V (Z ) - 2R Cov (Yp,Zp) ( 4. 3) p 

" where R Y/Z, V (Y ) v in (2. 2) ' p p 

N 2 z2 
~ z. 

V (Z ) I 
I 

p n 
1 

p. n 
I 

and 
~ ~ N y.z. vz 

Cov (Y p' Zp) I 
I I ---n 

1 
p. n 

I 
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It is of interest to note that B 1 in (2.8) for PPS with replacement p 

sampling may be approximated by (see Appendix) 

B I p 

y. 
Cov(-1 

p. 
I 

(4.4) 

and Vp 1 in (2.10) mayA be approximated by VRP in (4.3). Therefore, YRP 

may be prefered over Y 1 on account of having less bias. 
p 

An alternative ratio estimator for situations when y and x are unrelated 

is 

where Y0 and z
0 

are as defined in (2.5) and (3.4) respectively. 

YRO 1 ike YRP is biased but it will contain additional terms in the 

bias due to the fact that Y0 and z0 themselves are biased estimates 

of Y and Z respectively. Approximate bias and variance of YRO may be 

written as (see Appendix) 

and 

A A 

where B
0

, V(Y
0
), V(Z

0
) are as defined in (2.9) and(2.6) and (3.5) 

respectively. 

Further, N 
t:

1
z. (Np. -1) 

I I 

N2 N N N 
[L: Y·

1
z·

1
P·

1 
- (2: y.p.) (2: z.p.)] · 

n l l I I l I I 

( 4. 5) 

(4. 7) 

(4. 8) 

(4.9) 



- 272 -

For comparing YRP and YRO' we obtain their expected variances under 

the model t.
1 

(ie., assuming that y and z are highly correlated). 

We find that 

A A 

E 
1 

Cov (Y Z ) 
p, p 

and 

s ( .!_ 
n 

2 
N z. z2 
I _I - -) 

1 pi n 

A 

S V (Z ) 
p 

N2 N 2 2 
S- [I z. p.- (I z.p.) ] 

n l I I I I 

Both (4.10) and (4.11) are obtained by substituting (3.1) and noting 

that En. I i = 0. 
I 

Thus, from (4.3) and (4.7), we have under model 6 1 

A A 

v(i. ) (R2 
E:l V(YRP) V(Yp) + - 2RS) p 

and A A 

+ V(Z0) (R2 - 2RS) El V(YRO) = V(Y0) 

Further, if s = R and 

A A A A 

V(Y ) = V(Z ) , p p V(Y0) v (z0) 

then, 
A A 

- R2) EJ V(YRP) = V (Y ) ( 1 p 

and 
A A 

- R2)' El V(YRO) V(Y0)(l 

( 4. 1 0) 

( 4. 11) 

( 4. 12) 

( 4. 1 3) 

( 4. 14) 

( 4. 1 5) 

( 4. 16) 
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which shows that under the condition (4.i4) 

A 

< V(Y) under the model t:, (Rao [7]). 
p 

However, in general, that is if (4.14) is not satisifed, then, 

A 

2 1 V(YRO) ; 2 1 V(YRp) 

depending on 

A A 

V(Zp)- V(z0 )}~ 0. 

Note that this comparison does not depend on the value of g. 

Further, from (4.16), it is observed that YRO is more efficient than 

y0 under usual conditions of ratio estimation. As both YRO and YRP 

are biased, the choice between them may be made on the basis of their 

biases as well. These estimators may be made unbiased or almost un­

biased following usual techniques of bias reduction. In the following 

section, examples are given in which efficiency of Y0 and Yp• are 

compared. 

5. NUMERICAL EXAMPLES 

We have constructed 5 sets of data using two digit random numbers and 

each set is treated as a stratum. In each stratum, N = 20 random numbers 

are first drawn (designated as x) and then independently another 20 

numbers are drawn (designated as y) so that y and x are unrelated. 

Further, the corresponding values of z are obtained by selecting 20 

single digit random numbers and adding them to the numbers designated as 

y in order that y and z are highly correlated. Relative efficiencies of 

the estimates v0 and Yp• are defined as: 
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v v 
epO 

p e p 
A pp' A 

mse(Y
0

) mse(Y ,) p 

and 
A 

mse (Y 0) 
eOp'= A 

mse(Y ,) p 

The following Table gives the bias and the relative efficency of the 

estimators. The correlation coefficients (oyx, oyz and oxz) and the 

coefficient of variations C , C and C are also given. The sample 
X y Z 

size in each stratum is assumed to be 2. 

Table: Relative Bias and Efficiency of Alternative Estimators 

Stratum 

2 3 4 5 

oyx 0.092 0.007 0.012 0.069 0.070 
oyz 0.998 0.995 0.997 0.998 0.998 
oxz 0.099 -0.031 0.008 0.074 0.069 

Cx 61 72 60 58 84 
Cy 60 39 40 65 51 
Cz 55 36 38 60 49 

ZY. 1 ,034 1 '160 1 '178 983 1 ,063 
I 

Bo 35.4 2.2 3.5 25.5 32.3 

B p' -44.8 6.3 -6.5 -103.7 -19.1 

epO 765 3,446 1 '184 342 2,530 

eOp' 1,194 4,581 8,732 455 5,824 

e pp' 9,137 157,895 103,480 1 '572 147,393 

Although Rao's estimate is highly efficient compared to the usual PPS 

estimator (epO) ' substantial gains are further achieved by utilizing 

information on z in the suggested estimator (e0p,) for a 11 the 5 strata. 
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The correlation patterns in the 5 strata are the same, that is, 8 yx 
and 8 are around zero and 8 is around 0.99 but stratum 2, 3 and 5 xz yz 
show considerably higher gains than those in stratum 1 and 4. This 

may be explained by the relative magnitude of coefficient of variation 

in these strata. In strata 1 and 4, C , C and C are approximately 
X y Z 

equal, but for strata 2, 3 and 5, we have C = C = C 12 , which implies y Z X 

that the alternative estimators will perform much better if the model 

is satisfied and in addition if C is relatively higher than C and C 
X Y Z 

Bias in both the estimators seems to be usually small relative to the 

population total being estimated. 
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RESUME 

On suggere dans cet article que certains estimateurs 
pourraient remplacer l'estimateur habituel base sur 
l'echantillonnage avec probabilite proportionnelle ala 
taille dans le cas au la mesure de taille utilisee dans 
l'echantillonnage avec probabilite proportionnelle ala taille 
n'est pas correlee avec la variable etudiee et ou l'on 
dispose de donnees sur une autre variable supplementaire 
(mesure de taille) . On etudie les proprietes de ces 
estimateurs dans le contexte des modeles bases sur une 
population infinie, ainsi qu'empiriquement. 
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APPENDIX 

Approximate expressions for bias and variance are derived here using 

Taylor 1 s series expansion and considering terms of second order only, 

as is usually the case with ratio estimation. 

( 1 ) Bias of Y 1 in (4.4). 
p 

A A 

B (Y I) B E(Y -Y) = PI p p 

E [~ 
n 
L: = n l 

E (I 
n y. 
L: 

I = n 
I 

z. 
I 

Y) 

y ./p. 
I I - Y] z./p. 
I I 

where e 1.= (y./p.-Y)/Y and e2.= (z./p.-Z)Z. Thus, assuming le2 .
1 

\<1, under 
1 I I I I I 

usual approximation 

B I p 

For PPS with replacement sampling, we have 

2 -2 2 -2 E ( e
2 

·
1 

= Z E ( z ./ p . - Z) = Z V ( z ./ p . ) 
I I I I 

(A. l) 
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Thus, under usual approximation B 1 for PPS with replacement sampling p 
is 

B 
-1 

[R V(z.lp.) - Cov ( y. I p. , z. I p.) ] 
PI 

= z where R I I I I I I ' 
YIZ. (A.2) 

. 
Similarly, it is 

y2 2 
easy to show that v = - E (e

1
. -e

2
.) PI . n I I 

VRP in (4.3). 

(2) Bias of y RO in ( 4. 6) : 

~ 
y 

B(YRO) E[~ Z - Y] 

zo 
n 

-1 I Ny. n 1 I 

E [ 
n 

Z - Y] 
-1 n I Nz. 

1 I 

-1 
1 ] YE[(l+e

3
) (l+e

4
) -

~ ~ ~ 

where e
3 

= (Y0-Y) IY, e4 (z0-z)IZ. Again assuming /e4 /<l, B(YR0) 

is approximated by 

Expressions for the expections involved in (A.3) are computed below 

for cases of PPS with replacement scheme. 

-1 n 
E(n I Ny.-Y) 

1 I 

N 
~ 

I y. (Np.-1) B(Y0) = B 
1 

I I 0 

n ·'-
I z. (Np.-1) B(z

0
) B~ 

1 
I I 

n 
E[n-l I Nz.-ENz. + ENz.-z] 2 

l I I I 

(A. 3) 

(A. 4) 

(A. 5) 
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n 
E[n-l I Nzi - ENzi + B~] 2 

1 

n 
E(n -l I Nz.) 2 - (ENz.) 2 + s''' 2 

I I 0 
1 

N
2 N N 2 2 ~z 

=-[I z. p. - (I z.p.) ] + B
0
" 

n l I I l I I 

Similarly, v2 E(e~) 

-1 n -1 
n 

YZ E(e
3

e4) = E(n I Ny. -Y) (n I Nz. 
1 

I 
1 

I 

n 

- Z) 

n 
-1 -1 

= E(n I Ny. - E(Ny.) + B
0

) [n I Nz. - E(Nz.) 
I I 

1 
I I 

1 

-1 n -1 n 
= E[n I Ny. - E(Ny.)][n I Nz. - E(Nz.)] + B 

I 
I I 

I 
I I 

N2 N N N ,., 
=-[I y.z.p. - (I y.p.) (I z.p.)] + B0B0 n l I I I l I I l I I 

(A .6) 

(A. 7) 

·'-
+ B~] 

";'\. 

B 
0 0 

(A. 8) 
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Using A.4, A.5, A.6 and A.B bias for YRO in A.3 is 

Similarly, approximate expression for the mean square error of YRO is 

Again using A.6, A.7 and A.B, and ignoring the bias terms, approximate 

expression for the variance of YRO is 

where R Y/Z. 


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

