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AN ESTIMATE OF THE EFFICIENCY OF RAKING RATIO ESTIMATORS 
UNDER SIMPLE RANDOM SAMPLING 

M.D. Bankier1 

Raking ratio estimators give estimates of the population 
values of characteristics examined on a sample basis 
utilizing the row and column totals of a contingency table 
of characteristics examined on a 100% basis. In this paper, 
the asymptotic variance of the maximum likelihood estimator 
of a sample characteristic subject to the marginal constraints 
of the above contingency table is derived. From this, we 
are able to compute the loss in efficiency of the raking 
ratio estimators relative to the maximum likelihood 
estimator in an empir~cal study. 

1. INTRODUCTION 

Raking ratio estimators given estimates of the population values of 

characteristics examined on a sample basis utilizing the row and column 

totals of a contingency table of characteristics examined on a 100% basis. 

Arora and Brackstone [1] described the use of RRE in the 1971 and 1976 

Canadian Censuses of Population and Housing. They also derived formulae 

for the asymptotic variance of RRE under simple random sampling without 

replacement {s.r.s.w.o.r.) and presented an empirical study. Rao [3] 

found the asymptotic variance-covariance (V-C) matrix of the maximum 

1 ikel ihood estimators (MLE) for those variables examined on a 100% basis 

where the estimators were subject to the marginal constraints of the above 

contingency table. He restricted himself to the special case of estimators 

of frequency counts. 

In this paper, Rao•s results are generalized to variables examined on a 

sample basis. The results are derived under the assumption of simple 

random sampling with replacement (s.r.s.w.r.) since assuming sampling 

without replacement makes the problem much more complex. Because the 
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MLE are asymptotically most efficient, we can compute the loss in 

efficiency of the RRE relative to the MLE. This has been done in an 

empirical study presented in Section 4. 

Variables examined on a 100% basis and variables examined on a sample 

basis will be known as 2A-categories and 28-categories respectively. 

2. DERIVATION OF THE ASYMPTOTIC VARIANCE OF THE MLE 

Suppose there are t 28-categories and let 

N .. k = 1 ' 2, ... ' r 
IJ 

j = 1 ' 2, ... ' s 

k = 1 ' 2, ... ' t 

be the number of individuals in the population that belong to the kth 

28-category and fall in the (i,j)th cell of the 2A-category cross­

classification table. Define 

= Nijk 
1Tijk N 

so that 

1T. 
I • • 

:::::l, ••• ,r-1 

1T • 
• J • 

j = 1, ... , s-1 ( 2. 1) 

N. N • 
where 1r. 

I • • 

I • • =--
N 

and 'TT • 
. J. 

= --=..L:.. 
N 

are the known marginal proportions. 
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In this section the asymptotic variance of the MLE ~*ijk of ~ijk 

is found subject to the constraints (2.1). 

Let us assume that we have taken an s.r.s.w.r. Then the likelihood of 

the sample frequencies n .. k•s is given by 
I J 

We maximize 

L a: II 

i 'j 'k 

n. "k 
c~ .. k) 'J 

I J 

In L =constant + ~ ~ ~ nijk In ~ijk 
j k 

(2 .2) 

(2.3) 

subject to the constraints ,(2.1) to find the MLE ~*ijk. To do this 

we would have to solve a system of non-1 inear equations iteratively. 

Silvey [4] has given a general method for finding the asymptotic 

v-c matrix of the MLE. Let 

B ( ~) 
l ln L 

= n ( E ( - ( a 1f .. k) ( a 1f . I • I k I ) ) ) 

I J I J 

(2.4) 

denote the (rst) x (rst) information matrix. Let H (~) be the (rst) x 
~ ~ 

(r + s - 1) matrix of derivatives of (2.1) with respect to the 1fijk•s. 

The derivatives are in the order that the 1r • • k•s fall in~ where 
IJ 

1f --= c1r• 1~· 1 .. -I~· 1~· 1~· l1r• > 
~ 1 .. ~ 2.. ~ r-1, .. ~ .s. ~ r .. ~ rs. ( 2. 5) 

1f: = (1f•.1 11f•.2 1···17T•. -1 ) 1.. _ I • ~ I • _ I,S ,. 
(2. 6) 
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nl. ={nil" ln~2. l···lnl 1.) 
- • J • - J • - J • - r- 'J • 

and 

7T
1 

•• = (n .. l' n .. 2, .•. , n .. t). 
- IJ. IJ IJ IJ 

1 
The asymptotic V-C matrix of the n~'.-ijk is given by n ~(~) where 

B ( n) 

H 1 (n) 

H ( n) 

0 _(r+s-l),(r+s-1) 

-1 

= 

D ( n) Q ( n) 

Ql{n) R ( n) 

(2.7) 

(2.8) 

( 2. 9) 

and 0 is a matrix of zeroes of order (r+s-1) x (r+s-1). _ ( r+s -1 ) , ( r+s -1 ) 

Using the formula for the inverse of a partitioned matrix, we find 

D(n) B- 1(n) -1 
( 1T) [H 1 (n) B-l (n) H ( n) 

-1 -1 
= - B (n) H ] H1 (n)B (n) 

B- 1(n) - A F 
-J AI ( 2. 1 0) 

where 

-J 
F=H 1 {n) B- 1(n) H(n). A = B {n)H{n) and 



Define 

where 
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rs submatr ices 

t columns 

( e k) 1 = [ 0, ... , 0, 1 , 0, .•. , 0] 
-t 

and the one is in the kth column. 

It can be shown that the asymptotic variance of 

v ( 1T* ) = 
•• k 

= 

L: L: L: L: 
j i I j I 

I (B-1 (7r) 
t 

c ( 1r* • • k f 1r* • I • I k) 
I J I J 

- AF-l A') 
t: 

n 

1 a• 
-1 

a) = - (1T - F 
n •• k 

F = ~~----+-11 ~12 -J 

r~l2 

(2.11) 

( 2. 12) 

1T* is 
•• k 

(2.13) 

( 2. 1 5) 



:1 
:3 

and 

:2 
= 
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= ( 7f 1 '7f2 ' •.. ' 7f -1 '7f 1 '7f 2 ' ••• , 7f -1 ) .. .. r ,.. . . . . .,s ,. 

= 

= 

~ 11 = [E _1 

E' _2 

~2 ] 

~3 

diag (7rl ,7f2 , ••• ,7f -1 • . • . r ' .. 
) 

diag (7r .1. ,7f . 2. ' ••• ' 7T .,s-1, . 
) 

1T 11 . 1T12. 

1T 21 . 1T22. 

1T r-1, 1 . 1T r-1, 2. 

1T 1,s-1,. 

1T 
2,s-1,. 

1T 
r-1,s-1. 

Rae [3] demonstrated that the inversion of F can be reduced to the 
-1 -

inversion of ~ 3 - ~z ~ 1 : 2 which is a (s-1) x (s-1) matrix. 

(2.16) 

( 2. 17) 

(2.18) 

(2.19) 

( 2. 20) 
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3. AN EMPIRICAL STUDY 

This empirical study uses the same data and categories as the paper by 

Arora and Brackstone [1]. The data came from one Electoral District (ED) 

that contained 15 Weighting Areas (WAs) and the data were gathered in the 

1974 Canadian Test Census. 

In the previous section, the asymptotic variance of the MLE 7P~ of •• k 
n .. k was derived under s.r.s.w.r. To allow efficiency comparisons with 

the RRE, the large-sample variances of the RRE without the f.p.c. are 

used. The estimate SE8 of the asymptotic standard error of Nn* •. k is 

"(0) n. 'k 
calculated using zero iteration raking ratio estimates n .. k = ~ for 

IJ n 

the n .. k 1 in (2.13). Because the zero iteration estimator of n .. k is 
I J S I j 

unbiased, it is felt that it is better to use it rather than the fourth 

iteration raking ratio 

SE (the estimated pth 
p 0 

will be denoted by RE . 
0 p 

ED level SE , RE (p=O, 
p p 

Class A(2B-Categories): 

Class B(2A-Categories) 

"(4) 
estimate nijk' SE6 expressed as a percentage of 

iteration RRE standard error under s.r.s.w.r.) 

The table at the end of this paper gives at the 

1, 2, 3, 4) and SEfi. The categories examined are: 

Al Househo 1 ds with Employed Heads 

A2 Households with Unemp 1 oyed Heads 

A3 Households with Heads Not in Labour Force 

A4 Household with Heads Not Moved in 5 Years 

AS Households with Heads Moved in Last 5 Years 

in Same Municipality 

A6 Highest Grade of Head is to 10 

A7 Heads with Bachelor Degree or Higher 

Bl Househo 1 ds with 3 or 4 Persons 

B2 Age of Head is Less Than 25 

B3 Age Of Head is 25 to 34 

B4 Head Who is \-iidowed, Divorced, or Separated 
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Class C(2A-Categories}: c 1 Households with 2 or Fewer Persons 

C2 Age of Head is 65 or More 

C3 Owned Owe 11 i ngs 

C4 Rented Apartments 

4. ANALYSIS OF THE RESULTS 

For all 2B-categories, it can be seen that RE~ ~ 98.6% andRE~~ 99.8%. 
These results indicate that the fourth iteration RRE is almost as 

efficient as the MLE and that the RRE do not gain much in efficiency 

after the second iteration. 

The results are similar for the 2A-categories with the exception of 

C3 and C4. For C3, the RRE at the third iteration and the MLE both have 

z~ro standard errors while for C4, RE~ = 99.9%. Thus for the 2A-categories 

there is near equality between the standard errors of the RRE at either 

the third or fourth iteration and the MLE. 

5. CONCLUSIONS 

The empirical study, which assumes s.r.s.w.r. and that n is large, 

indicates that the RRE by the second iteration is almost as efficient 

as the MLE for most categories and that generally only small gains in 

efficiency are made at the third and fourth iteration. 
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ESTIMATED EFFICIENCY OF THE RRE VERSUS THE MLE 

UNDER S.R.S.W.R. AT THE ED LEVEL 

Iteration 0 Iteration 1 Iteration 2 Iteration 3 Iteration 4 

SE
0 

REO 
0 

SE
1 

0 
RE1 SE

2 
0 

RE2 , SE
3 

0 
RE3 SE

4 
REO 
. 4 

102.9 77.4 101.7 78.3 79.8 99.8 79.9 99.8 79.7 99.9 

39.7 98.6 39.5 99.0 39.2 99.9 39.2 99.9 39.2 99.9 

99.1 75.1 98.2 75.8 74.6 99.8 74.7 99.7 74.5 99.9 

116.0 83.3 104.4 92.6 98.0 98.6 96.8 99.8 96.8 99.8 

103.6 94.2 100.8 96.9 98.0 99.6 97.8 99.9 97.8 99.9 

115.1 94.9 113.9 95.9 109.4 99.8 109.4 99.8 109.3 99.9 

59.6 97.3 59.2 97.9 58.1 99.8 58.1 99.9 58.0 99.9 

114.4 84.1 113.2 85.1 96.4 99.9 96.6 99.6 96.4 99.9 

61.1 83.9 57.7 88.'8 51.5 99.5 51.5 99.6 51.3 99.9 

98.0 51.1 96.0 52.1 50.2 99.7 51.1 98.0 50.1 99.9 

87.8 67.4 86.3 68.6 59.2 99.9 59.6 99.3 59.2 99.9 

112.5 40.4 106.7 42.7 45.6 99.8 47.7 95.4 
I 

45.5 99.9 
l 

82.8 25.0 81.7 25.4 20.8 99.7 21.4 96.8 20.7 99.9 

109.4 0.0 0.0 - 41.9 0.0 0.0 - 11.2 0.0 

80.1 17.6 14.7 96.4 34.7 40.7 14.2 I 99.9 17.0 83.4 

MLE 

SE* 
0 

79.7 

39.1 

74.5 

96.6 

97.7 

109.2 

58.0 

I 96.3 

51.3 

50.1 

59.2 

I 
I 45.5 
' 

20.7 
I 
; 0.0 
I 

14.1 
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RESUME 

Les estimateurs d'echantillon en formation donnent des estimations 
de la valeur, dans la population, des caracteristiques qui ont ete 
etudiees a partir d'un echantillon, en utilisant les totaux des 
rangees et des colonnes d'un tableau de contingence des carac­
teristiques qui ont ete etudiees pour toutes les unites de la 
population. Dans cet article, on donne la variance asymptotique 
de l'estimateur du maximum de vraisemblance d'une caracteristique 
echantillonne, soumise aux contraintes marginales dudit tableau 
de contingence. A partir de cette variance on peut calculer, dans 
une etude empirique, la diminution de l'efficacite des estimateurs 

·d'echantillon en formation relatifs a l'estimateur du maximum de 
vraisemblance. 
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