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APPROXIMATE TESTS OF INDEPENDENCE AND GOODNESS OF FIT 
BASED ON STRATIFIED MULTI-STAGE SAMPLES 

I.P. Fellegil 

The impact on linear statistics of the sample design used in 
obtaining survey data is the subject of much of sampling 
literature. Recently, more attention has been paid to the 
design's impact on non-linear statistics; the major factor 
inhibiting these investigations has been the problem of 
estimating at least the first two moments of such statistics. 
The present article examines the problem of estimating the 
variances of non-linear statistics from complex samples, in 
the light of existing literature. The behaviour of the chi
square statistic computed from a complex sample to test 
hypotheses of goodness of fit or independence is studied. 
Alternative tests are developed and their properties studied 
in simulation experiments. 

1. INTRODUCTION 

The impact of the actual sample design used in obtaining data from a 

given survey has been recognized and studied by a number of authors. 

Its impact on linear statistics (e.g. ~opulation means and totals) has, 

of course, been the main subject of a large part of sampling literature. 

In the last ten years, or so, increasing attention has been paid to 

this impact as it affects non-1 inear statistics -- regression coeffi

cients, correlations, multiple and partial correlations, etc. Among 

numerous related papers, the landmark contribution of Kish and Frankel [4] 
must be mentioned. 

The major limiting factor inhibiting the investigation of the impact of 

the actual sample design on non-1 inear statistics has been the problem 

of estimating at least the first two moments of such statistics. It is 

well known that even from complex stratified multi-stage cluster 

samples, if the design is self-weighting (i.e. the inclusion probability 

of each unit in the population is the same), approximately unbiased 
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estimates can be obtained of the population variances and covariances 

of the variables which were collected. Moreover, these estimates are 

formally identical to those derived under the assumption of simple 

random sampling. Therefore, consistent estimates are available for 

those non-linear statistics which can be constructed as functions of 

the estimated population variances and covariances. The estimation 

of the variance of such non-1 inear statistics has, however, been a 

major obstacle -- certainly variance estimators assuming simple random 

sampling can be quite misleading, as Kish and Frankel [4] have shown. 

For purposes of the present paper the most important development enabling 

the estimation of variances of non-linear statistics from complex samples 

is the paper by McCarthy [5]. McCarthy 1 s method of variance estimation, 

known as balanced repeated replication (BRR), is predicated only on the 

~vailability of two primary sampling units being selected in each stratum 

independently (or at least with a correlation between them which is 

negligible) and a within primary sampling unit sample design which is 

independent (although not necessarily identical) as between the two 

psu•s of each stratum. The procedure boils down to forming two overall 

half-samples by combining one of the two psu 1 s from each stratum. Any 

overall statistic which can be estimated from the complete stratum can 

also be estimated from each of the two half-samples. If there are L 

strata, there are 2L different ways of forming half-samples and each of 

these is called a replicate. The following points have been made by 

McCarthy or subsequent authors: 

a) If T(k) and T(k) are statistics based on the two half-samples of 

the k-th replicate, T is the corresponding estimate made from the 

full sample {we will use throughout the paper the symbols A and~ 

to refer to estimates derived from half-samples and - to estimates 

derived from the complete sample), then 

for all k ( 1 ) 
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-if Tis a linear statistic. However, even for non-linear statis-

tics (1) is found to apply approximately. 

b) The variance ofT can be estimated by each of the following expres-

sions: 

k (f (k) - r)2 vl = 
k er<k) - 2 

v2 = T) for a 11 k. 

k (r (k) - r<k) )2 /4 v3 = 

In the case of linear statistics the three expressions are identical 

and provide an unbiased estimate of Var(T). In the case of non-

1 inear statistics the three estimates are observed to be very close. 

c) In the case of linear statistics, there is a way of creating K 

replicates (L~~L+3), called balanced repeated replication (BRR), 

in such a fashion that these K out of the 2L possible replicates 

capture all the available L degrees of freedom for estimating the 

variance of T. In this case 

K 

K 
L 

k=l 

(k) v. 
I 

i=l, 2, 3 

provides an unbiased variance estimate of T with L degrees of 

freedom. The same phenomenon is conjectured to hold approximately 

for non-linear statistics. 

The main contribution of the present paper is to call attention to the 

fact that the chi square statistic, when computed from a complex sample 

to test a hypothesis of goodness of fit or of independence in a contin

gency table, behaves in a way which is fundamentally different from 

that of the many common descriptive statistics investigated by Kish 

and Frankel (e.g. regression coefficients, multiple and partial correla

tions) -- not only the dispersion of the statistic is altered (with the 
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mean being more or less unchanged) but the distribution is both shifted 

and the dispersion affected in a more or less predictable way. Alterna

tive tests are also developed and their behaviour is studied in simula

tion experiments. 

Consider, first of all, the chi square statistic as a test of goodness 

of fit. First, assume a simple random sample. Let there be m categories 

and denote the number of observations in the sample of n units which 

falls into the i-th category by 

T. 
I 

i=l, ... , m 

where E T. = n. 
I 

To test the null hypothesis H , that 
0 

E(r./n) = P. 
I I 

the statistic s is computed 

m 
s = E 

i=l 

("r.-nP.) 2 
I I 

nP. 
I 

i=l, ... , m, 

and, as is well known, it is distributed asymptotically under H as 
0 

chi square with m-1 degrees of freedom. 

Now assume that the estimates T. arise from a complex self-weighting 
I -design. The variance ofT. is modified. Kish calls the quantity below 

I 

the design effect 

Deff. = Var(T.)/nP. (1-P.) 
I I I I 

The value of Deff depends on the nature of the sample design and the 

variables being measured, and in well-designed surveys it ranges 

typically between 1 and 3, although values as high as 6 have been 

reported and the most common values appear to be between 1.4 and 2. 

If all the values Deff. above are equal, then s does not have the chi 
I 

square distribution. It is conjectured {and supported by empirical 

(2) 
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investigations of the last section) that the distribution might be 

close to Deff times the x2 distribution. 

easily be shown to be multiplied by Deff. 

At least the mean of s can 

More generally, if Deff. 
I 

are not equal, then s is conjectured to have the distribution of chi 

square multiplied by a weighted average of the Deff .. The impact of 
I 

Deff (or its applicable weighted average) is profound on the achieved 

significance levels (under the null hypothesis) as the table below 

indicates. 

Table 1 

Achieved significance levels (as opposed to a nominal significance 
level of 0.05) for different values of Deff and different degrees of freedom 

~ f 
1.1 1.2 1.4 1.6 1.8 2.0 2.5 3 4 5 

1 0.062 0.074 0.098 0.121 0.144 0.166 0.215 0.258 0. 327 0.381 

2 0.066 0.082 0.118 0.154 0.189 0.224 0.302 0.368 0.473 0.549 

3 0.069 0.089 0.134 0.181 0.227 0.272 0.373 0.457 0.582 0.668 

4 0.071 0.095 0.148 0.204 0.261 0.315 0.434 0.531 0.668 0.755 

5 0.073 0.100 0.161 0.227 0.292 o. 354 .491 0.595 0.736 0.819 

6 0.076 .105 .174 .248 .321 .391 .539 .650 .790 .866 

7 .077 .110 .186 .268 .349 .425 .584 • 698 .833 .902 

8 .079 .115 .197 .287 .376 .458 .625 .739 .868 .928 

9 .081 .119 .209 . 306 .401 .489 .661 .775 .896 .947 

10 .083 .123 .219 .324 .426 .518 .695 .807 .918 .961 

- - - - - - - - - - - - - - - - - - - - - - t- - - - - - - 1- - - - - - -
15 .091 .142 .270 .408 .534 .641 .820 .910 .975 .992 

- - - 1- - - - - - - - - - - - - 1- - - - - - - r- - - - - - - 1- - - - - - -
20 .097 .160 .317 .481 .624 . 735 .874 .959 .993 .999 

- - - ~ - - - - - - - - - - - - - - - - - - - t- - - - - - - t- - - - - - -
25 .103 .177 .361 .546 • 697 .805 .940 .981 .998 1.000 

- - - t- - - - - - - - - - - - - - 1- - - - - - - t- - - - - - - 1- - - - - - -
30 .109 .193 .402 .604 . 757 .858 .955 .992 .999 1.000 

- - - .... - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - -

6 

0.424 

0.607 

o. 729 

0.812 

0.870 

.910 

.938 

.958 

.971 

.980 

1- - -

.997 

..... - -
1.000 

- - -
1.000 

- - -
1.000 

- - -
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A quick perusal of the table should indicate that the use of the standard 

chi square as a test of goodness of fit can be drastically misleading. 

It will be seen in subsequent sections of this paper (particularly the 

simulation results) that much the same holds for chi square tests of 

independence in contingency tables. In fact, the achieved significance 

levels are particularly misleading for higher degrees of freedom and, 

not surprisingly, for higher values of Deff. But even with the degrees 

of freedom only as large as 4 (or more) and with Deff as large as or 

larger than 1.6, the significance tests are practically useless: the 

null-hypothesis would be rejected with a probability of 0.2, rapidly 

rising to .5 or more with larger values of Deff and/or larger degrees 

of freedom. It should be kept in mind that large degrees of freedom 

arise quite commonly in the case of contingency tables: e.g. a 4x5 

table gives rise to 12 degrees of freedom, a 5x6 table to 20. 

One final introductory note on the chi square test is necessary. 

Conceptually, one can at least contemplate using the test in the case 

of self-weighting designs (although, as seen above, the results can be 

most misleading). However, in a not negligible proportion of sample 

designs actually used in practice the inclusion probability of all 

units in the population is not equal. In this case the unweighted 

sample frequencies will not provide unbiased estimates of the corres

ponding population statistics, thus even if H holds in the population 
0 

as a whole, one would expect that a chi square test based on the 

unweighted sample frequencies would be rejected far more often than 

the nominal significance level (whether used as a test of independence 

or of goodness of fit). However, the chi square statistic (2) does 

not lend itself to weighting at all, because the numerator increases 

with the square of any weight whereas the denominator increases 

linearly. 
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2. OBSERVATIONS ON RELATED WORK IN THE LITERATURE 

Cohen [3] investigates a very special case of the general problem of 

testing'goodness of fit from complex samples. He assumes a simple 

random sample of n clusters consisting of two units each. This sample 

of 2n units is classified into r cells. In the model studied by Cohen, 

if p. is the probability of unit 1 of a cluster being in cell i, then 
I 

the probability of the two units being in cells and j respectively is 

p .. = (1-a) p.p. 
I J I J 

if ifj 

p .. = p. [a + ( 1-a) p.] 
I I I I 

for values of a between 0 and 1. 

Under this model it can easily be shown that 

Va r ( T . ) = ( 1 +a ) 2 n p . ( 1 - p . ) 
I I I 

i=l, ... , m. 

So the design effect Deff is equal to l+a for all i. Cohen shows -that 

the statistic 

s/l+a 

is, in fact, distributed as chi square (under H ) with m-1 degrees of 
0 

freedom-- as is conjectured in the ir.troduction more generally. 

The most sustained work on tests of independence from complex samples 

has been carried out by Nathan ([6], [7], [8], [9], [10]). He also 

reviews the work of several other authors, such as Bhapkar and Koch [1] 

and Chapman [2]. 

Consider the usual contingency table: there are r rows, c columns, 

overall sample size n, P .. are the estimated proportions of frequencies 
lj 

in the (i,j}-th cell (i=l, ... , r; j=l, .•. ,c). The statistic 

( - - - )2 nP •. - nP. P . 
I J I • • J 

t = ~ 

i 'j nP. P . 
I • .J 

(3) 
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has approximately the chi square distribution under the null hypothesis 

if n is based on a simple random sample and is sufficiently large. The 

quantities P . and P. are obtained by summation over the missing sub-
• J I • 

scripts. Under the null hypothesis the expression 

- -p .. - p. p . 
I J I • • J 

has zero expected value but generally an expected value different from 

zero if the null hypothesis does not hold. The zero expected value of 

(4) is the result of a number of variance and covariance terms in 

E(P. · P .) cancelling. In effect, under simple random sampling and the 
I • .j 

null hypothesis 

E(P. p .) = P. p + Var (P .. > 
I • • J I • .j IJ 

+ L Cov(Pk.,P.k,) 
(k,k')f(i,j) J I 

1 = p .. +-P .. (l-P .. ) - L pkj pik' IJ n I J I J n 
(k,k') ( i 'j) 

= E (P .. ) • 
IJ 

In complex surveys the variances and covariances in the penultimate 

line of (5) would each have to be multiplied by their respective design 

effect multipliers and therefore may not cancel out-- thus the expected 
- - -value of P .. -P. P . may not be equal to zero even under H . 

I J I •• J 0 

The work of both Nathan and Bhapkar and Koch starts out with the con

struction of an expression involving estimates of P .. , P. and P . 
I J I • • J 

which has zero expected value under the null hypothesis, even in the 

case of complex samples. For this purpose they both resort to balanced 

repeated replication and make use of the fact that the two half-samples 

of any replicate are uncorrelated under the assumptions outlined in the 

introduction. Thus if P~~), P~k), P(~) are estimated, under a complex 
I J I. .J 

sample design, from the first half-sample of the k-th replicate and 

P~~), P~k), P(~) are the corresponding quantities estimated from the 
I J I. • J 

(4) 

{5) 
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second half-sample, Nathan•s test is based on the expression 

u~~)(N) = p~~) + p~~) - p~k)p(~) - ~~k)p(~) 
IJ IJ IJ I. .J I •• J 

and Bhapkar and Koch 1 s is based on 

u~~) (B) = p~~)p(k) - p~k)r(~) 
1 J 1 J rc 1 c r J 

Both (6) and (7) have zero expected values under the null hypothesis. 

Chapman•s test is based on 

u~~) (c) = p~~) - 'P~k)-p(~) 
I J I J I. • J 

and it does not necessarily have a zero expected value even under H . 
0 

.... 
Now if an estimate V can be constructed for the covariance matrix for 

u .. 
IJ 

the (r-l)x(c-1) linearly independent quantities among the rxc 

values, and if U is the corresponding vector of these values, then 

(6) 

(7) 

(8) 

(9) 

would, for large enough n, and apart from a suitable constant multiplier, 

be either distributed approximately as For a x2 -- depending on whether 
.... 
V is estimated from a large enough number of degrees of freedom. Note 

that (9) overcomes the problem of weighting in the case of dispropor

tionate sampling-- its effect would, so to speak, automatically be 
.... .... 

reflected in V. The problem, however, is to estimate V. 

In the case of simple random sampling each cell of the covariance matrix 

of (4) is readily estimated approximately as 

1 - - - -
v •. f - P. P . (1-P. ) (1-P .); 

IJ, g n I •• J I. .J 
(i ,j}=(f,g) 

1 - -= - P. p . pf p 
n 1 •• J •• g 

(i ,j}f(f,g} 

.... 
and the resulting estimate of V is based on a large number of degrees 

of freedom so (9) wo~ld be distributed as chi square. In the case of 
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complex samples the analogous estimation cannot be carried out without 

some very strong simplifying assumptions. 

Alternatively, one may observe that, even in the case of complex samples, 

the vectors u(k) in (6)-(8) are identically distributed and hope to 

derive estimates of variances and covariances from 

K 
E 

k=l 
U •. )(U-(k) U 

I J fg - fg) 

Now if the K replicate values of U~~) were independent, the expression 
I J 

(10) above, divided by K-1, would provide an unbiased estimate of 

vij,fg" However, far from being independent, they are very highly 

correlated. In the case of U(k) {N) the correlations are very close to 

one-- not too surprisingly, since Kish and Frankel noted that for all 

replicates the sum of two analogous non-1 inear statistics, computed 

respectively from the two half-samples, is very nearly the same for all 

( 1 0) 

K replicates and is identically the same in the case of linear statistics. 

In order to correct (10) for the correlations involved, one would have to 

estimate these correlations and that, in turn, again requires strong 

simplifying assumptions. Moreover, when the correlations are close to 

one the numerical behaviour of the estimates is very bad. 

Thus whichever of the two methods of estimating the covariance matrix 

is attempted, strong simplifying assumptions are needed in the case of 

complex samples. Nathan [9] is forced to make the assumption, among 

others, that for each stratum h there is a number nh which depends only 

on the number of final units selected in stratum h in each of the two 

primary sampling units (psu), and if P. "h is the estimate of the pro-
' J a 

portions in cell (i ,j) derived from psu a (a=l ,2) of stratum h, then -nh P. "h has approximately the multinomial distribution with parameters 
IJ a 

nh and Pijh" However, this assumption implies that the expected value 

of an estimate P. "h derived from any selected psu, conditional on 
1 J a 

that psu being in the sample, depends on the stratum only and not on 
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the selected psu. Thus the total between-psu component of variance is 

assumed away. But, for example, in the case of two stage stratified 

sampling, with simple random sampling within each of the psu•s, this 

assumes away all the within-stratum design effects. Other assumptions 

of Nathan, less important to his development, assume away the effects 

of stratification and disproportionate sampling in different strata as 

well. 

In light of the comments above, it is not too surprising to find that 

the test statistic proposed by Nathan behaves very badly with respect 

to its achieved significance levels. The simulation results reported 

in his paper [9] are flawed, as pointed out by the author in his own 

subsequent paper, Nathan [10]. The results reported in [10] refer to 

stratified cluster sampling with a self-weighting design, so the 

traditional chi square test can be applied and serves as a measure of 

comparison. The achieved significance levels of his test statisti~ 

under H are .038, . 144 and . 190 for the nominal significance levels of 
0 

.01, .05 and . 10 respectively. However, these are almost identical to 

the achieved significance levels of the traditional chi square test: 

the latter differ from those of Nathan 1 s test by at most 0.002. It may 

be noted for interest that if one assumed that the statistic t of (3) 

is distributed as chi square multiplied by a factor of 1.4, the 

achieved significance level of this hypothetical variable at the nominal 

levels of .01, .05 and . 10 would be .037, . 118 and . 193 respectively 

quite remarkably close to the values reported by Nathan. One might 

conjecture that Deff in his example was about 1.4. 

Finally, a few comments will be made relating to the special case of 

stratified simple random sampling with proportional allocation. 

Nathan in [10] claims* that in this case the traditional chi square 

statistic is asymptotically distributed under H as chi square with 
0 

* In a private communication with the author, Nathan identified the 
error in his proof. 
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(r-l)x(c-1) degrees of freedom. This is not generally true, as a 

simple counter-example proves. Indeed, suppose that there are exactly 

rxc strata, each of equal size. Suppose also that corresponding to 

each cell of the contingency table there is one and only one stratum 

which contributes to that cell and, conversely, every unit in a stratum 

is classified to exactly one cell of the contingency table. Now, pro

portional allocation is equivalent to selecting the same number of units 

in each stratum, say d, the total sample size being n=rcd. Then every 

cell of the contingency table will contain exactly d entries with 

probability equal to one. Thus the statistic t in (3) will be equal to 

zero with probability equal to one-- no matter how large n becomes. 

Parenthetically, one may observe that the design effect in this case is 

equal to zero. 

In the relatively simple case of stratified simple random sampling with 

proportional allocation to strata, it is easy to prove under H for the 
0 

test of goodness of fit, s 

E ( s) 

where Pih is the proportion of units in stratum h belonging to category 

and nh is the sample size in stratum h. Since the expected value of s 

under simple random sampling is m-1, a reduction is observed in the 

expected value of s --as indeed in such cases Deff is known to be less 

than or equal to 1, the extent of the reduction increasing, roughly 

speaking, with the between stratum differences in the proportions Pih. 

In the case of the example of the previous paragraph E(s) = 0 which, 

given that s~O, is only possible if s=O with probability equal to one. 

3. TWO ALTERNATIVE TESTS 

The desirable feature of the two half-samples of a replicate is that 

they have the same distribution and are uncorrelated. This can either 
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be used to construct, in the case of complex samples, a quantity like 

Nathan•s or Bhapkar and Koch 1 s U(N) or U(B) in (6) or (7) whose expec

tation is zero under H , or it can be used to estimate the variance of 
0 

linear or non-linear statistic-- but two half-samples cannot be used 

for both purposes. A simple way out would be available if more than 

two psu•s were selected per stratum, but this is so rarely the case 

that it is hardly worth considering. 

Given the difficulties of variance estimation when the half-samples are 

used for another purpose, it is a natural motivation to go back to the 

question: how far away from zero is actually the expected value under 

H of the quantity 
0 

- -U •. = P .• - P. P • 
I J I J I. .j 

when it is based on the whole sample or, in fact, on one of the two half

samples of a replicate? 

Several observations will be made on this question. 

a) The expected value of U .. is zero under simple random sampling or, 
IJ 

slightly more generally, if the Deff of all the variances and 

covariances in (5) is equal to one. Actually, an even more general 

sufficient condition is that all the Deff 1 s are equal. While this 

cannot be assumed to be the case generally, it is often the case 

that Deff•s from the same survey for a wide variety of variables 

are within a quite narrow range of one another. 

b) Under the most general conditions, 

-
E u .. = 0 

IJ 
j=l, 2, ... , c 

and 

E u .. = 0 
j IJ 

for all i=l, 2, ... , r 
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so that the expectations of U .. are subject to r+c-1 linear con
IJ 

straints. Whereas this does not exclude the possibility that 

E(U •. ) may be quite large in absolute value, it most certainly 
IJ 

ensures that they are not all of the same sign. 

c) Most important of all, it can easily be shown that so long as all 

Deff values are bounded for all variances and covariances considered 

(i.e. !maximum Deffl ~ B for some B in whatever way n+oo), 

( - 2) ( - ) (-1 ' E U. . = Va r U. • + 0 1 
I J IJ n2 

where the left hand side is of 0 (l). 
n 

Indeed, 

E(U •. ) =- Cov (P. ,P .). 
I J I. • J 

The right hand side of (12) is obviously 0 (l) in the case of simple 
n 

random sampling, but in the case of complex designs it will only be 

multiplied by the appropriate Deff. Now there are no reported values 

in the survey literature of Deff exceeding 10, in fact values above 

3 or 4 are exceedingly rare -- for the simple reason that the survey 

would never be allowed if it was that inefficiently designed. At any 

rate, so long as maximum!Deff I ~Bas n+oo over any class of designs 

subject only to the independent selection of two psu's per stratum and 

the availability of unbiased stratum-level estimates of 1 inear statis

tics from each of the two psu's, 

- B 
IE(U •. )I ~-P. p .• 

IJ - n I •• J 

Further, 

- 2 - - 2 
E(U .. ) = Var U .. + [E(U •. )] 

I J I J I J 

and (11) follows immediately from (13) and (14). 

( 11) 

( 12) 

( 1 3) 

( 14) 
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Since, however, under the same conditions 

0 (.!..) Var U .. = 
IJ n 

it follows that for sufficiently large none may well be able to treat 

U .. as if it did have a zero expected value. Typically, in complex 
IJ 

surveys n is quite large: at least of the order 1000-2000 and very 

often, in the case of large national surveys, tens of thousands. 

That being the case, one can construct U .. from each of the two half
IJ 

samples of the k-th replicate. Consider the vector of U .. values 
I J 

corresponding to the (r-l)x(c-1) upper left hand corner of a contingency 

table, constructed from one of the two half samples of the k-th replicate 

-(k) "'(k) -(k) "'(k) -(k) "'(k) u = u u u u u 1,1, 1,2, ... , l,c-1, 2,1, ... , r-l,c-1 

and similarly uk constructed analogously from the second half sample 

of the same replicate 

provides an approximately unbiased estimate of the variance of 

K -
U = l: 

k=l 

where K is the number of orthogonal replicates. 

Therefore, under the null hypothesis, the statistic 

is approximately distributed as Hotell ing 1 s T2 , or multiplied by an 

appropriate constant, as F. From standard textbooks this constant 

is easily seen as (L-m)/m(L-1) where L is the number of strata and 

m=(r-l)x(c-1). It follows that 

(15) 

( 16) 

( 17) 

( 18) 
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is approximately distributed as F(m,L-m). It is easy to see that 

(18) also provides a test of goodness of fit: the vector U has to 

be replaced with the vector P-P0
, where P is the vector of observed 

proportions, P0 the proportions under H , V is the covariance matrix 
- 0 

of P estimated through BRR and m=rc-1. 

The second test is more heuristically constructed than the first. 

Consider first the test of goodness of fit 

(nP.-n P?) 2 n(P.-P?) 2 
L __ 1 ___ 1_= L __ 1 __ 1_ 

Po Po. n • 
I I 

As discussed above, when H holds the expected value of the numerator 
0 

of each term in (19) under the given design is the appropriate Deff 

times its expected value under simple random sampling. Assume that 

not only the expected value of the numerator but its distribution 

( 19) 

was also equal to that obtained by multiplying by Deff the corresponding 

statistic under simple random sampling. This would then suggest that 

dividing each term by the estimated Deff of the numerator would restore 

the distribution (under H ) to chi square. 
0 

In effect, by dividing each term in the numerator by its corresponding 

Deff, the multiplier n becomes what is known as the effective sample 

size 

1 n 
n i = deff. 

I 

so that the statistic 

1 - o)2 n. (P.-P. 
I I I 

P? 
I 

is distributed as chi square. 
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Since 

for a 11 k 

and the variance of the expression above can be estimated as 

and since the variance of P. under simple random sampling (under H) 
I 0 

is estimated as 

1 - -- P. (1-P.) 
n I I 

it follows that (20) divided by (21) provides an estimator of Deff .. 
I 

In fact, 

b. = a ./P. ( 1-i>.) 
I I I I 

is an estimator of the inverse of the effective sample size, 

Thus 
- 0 2 (P.-P.) 

I I 

0 
b. p. 

I I 

I 
n •• 

I 

might be distributed approximately as chi square. In simulation 

studies the statistic above tended to be too large. However, by using 

the average of the b. values, good results were obtained. So the 
I 

second statistic proposed as a test of goodness of fit and evaluated 

through simulation studies is 

where 

- 0 2 
1 

(P.-P.) 
= =- E _.;_1 __;_I_ t I I 

b i 

1 r 
b =- E 

r i=l 

P? 

b •• 
I 

I 

(20) 

(21 ) 

(22) 

(23) 
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Note that (22) can be computed whether or not disproportionate sampling 

among the strata has been used. 

The test (22) can readily be generalized to obtain a test of indepen

dence. Let a .. , b .. and b be defined, respectively, as 
I j I J 

then 

1 K (r ~~) - p~~))2 a .. = 
4K k:l lj lj lj 

b .• = a .. /P .. ( 1-P .. ) 
I J I J I J I J 

r c 
b = rc L L b •• 

i=l j=l lj 

- - - 2 
(P .. -P. P .) 

(24) 

t I I 1 
=- L 

b 
I J I. • J 
- (25) 

i 'j p. p . 
I • • J 

Note that (25) differs from Pearson 1 s chi square test simply by the 

replacement of the actual sample size by the average effective sample 

size under complex designs. Note also that (25) can be computed 

whether or not proportionate allocation among the strata has been 

used. Also, since P .. are linear statistics, their variances (hence 
IJ 

their Deff 1 s) can be estimated through traditional methods, i.e. 

without BRR. This makes the calculation of t 1 1 quite easy: apart 

from a package to compute the traditional chi square statistic, only 

an efficient variance estimation program is needed. 

4. EMPIRICAL RESULTS 

The results of seven simulated examples are presented in this concluding 

section. In every instance the simulated sample design is stratified, 

two primary sampling units are selected with equal probabilities and 

replacement, and the sampling within the psu 1 s is simple random, also 
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with replacement. Except for the with replacement sampling of psu•s 

(which may well enough be approximated in practice if there are a 

large number of psu's, say 20, and no more than two of them are 

selected), the remaining simp! ifications in the simulations were 

imposed by the need to keep the programs simple -- as opposed to 

theoretical restrictions. All examples, except example 7, are based 

on 500 simulations, example 7 on 250. In all simulations, except 

example 6, the contingency tables are based on 2 rows and 3 columns. 

In examples 1 and 6 proportional allocation to the strata was used, 

in the others the sampling rates differed in the proportions 1:2:3. 

The total sample size in all examples was 1200. 

The features of the examples are summarized in Table 2 below while the 

behaviour of the unweighted chi square test values is shown in Table 3. 

Table 2 

Summary of features of seven examples 

No. of No. of No. of Relative Range of Range of No. of 
rows colunms strata sampling 

p ij (H ) Deff simulations rates 0 

Example 1 2 3 6 1:1:1 1/6 1.98 500 

Example 2 2 3 6 1:2:3 .161- 1.49- 500 .172 2.07 

Example 3 2 3 6 1:2:3 .158- 1.57- 500 .173 2.55 

Example 4 2 3 6 1:2:3 .158- 1.62- 500 .175 3.03 
-

Example 5 2 3 6 1:2:3 .156- 1.66- 500 .178 3.51 

Example 6 3 4 12 1:1:1 1/12 1.89 500 

2 3 30 1:2:3 .150- 2.07- 250 Example 7 .180 3.09 
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Tab 1 e 3 

Observed significance level (under H ) of unweighted sample 
0 

counts in Pearson's chi square test 

.01 .05 .1 .2 0 3 .4 .5 .6 0 7 .8 .9 Avg. test 
d. of f. 

.090 .198 .290 .420 .536 .604 .696 .770 .826 .886 .938 1.87 

.100 .212 .290 .426 .542 .596 .656 .728 .778 .868 .936 1.91 

.150 .294 0 388 .502 .566 0 636 0 702 .772 .846 .914 .962 2.45 

.190 .330 .416 .528 .594 .666 0 734 .810 0 870 .918 .958 2 0 75 

.232 .362 0 436 .556 .632 .688 .740 .820 .880 .922 .964 3.08 

.174 .350 .452 .606 .706 .782 0 856 .896 .938 .960 .978 1.90 

.212 .324 .416 .532 .616 .684 .776 .860 .900 .940 .976 2.81 

Looking at Table 3, one's immediate observation is the rising level of 

nominal significances from examples to 5 with the rising level of 

average Deff. However, in examples 2 to 5 another consideration is 

also important: the unweighted counts do not have an expected value 

which is consistent with H: i.e. H is valid over all strata but not 
0 0 

in each stratum, hence the unweighted counts are inconsistent with H 
0 

in the case of disproportional allocation. The simulation model used 

was such that, going from examples 2 to 5, not only the range and 

average of Deff values but also the within stratum departures from H 

increased. This explains the reason why within these examples the 
0 

average test value divided by the degrees of freedom (which for a valid 

chi square test, of course, ought to be 1), rises faster than the average 

of the Deff values. 

It is interesting to note the entries in examples 1 and 6 (for which 

proportional allocation was used) at the nominal significance level .05: 

. 198 and .350 respectively. Compare these with the corresponding 

Avg. 
Deff 

1.98 

1,76 

2,10 

2.29 

2.48 

1.89 

2.60 
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proportions 11 predicted11 by Table 1: for Deff = 1.87 and 2 degrees of 

freedom it is .201; for Deff = I .90 and 6 degrees of freedom it is .356. 
The asreement is, indeed, very close. Also very close for these two 

examples is the average value of the test statistic divided by the 

degrees of freedom: 1.87 and 1.98, and 1.90 and 1.89 respectively. 

Finally, it should be emphasized that, as predicted, the classical chi 

square test provides totally misleading results in the presence of Deff 1 s 

which are moderately large, even in the case of proportional allocation-

and more so otherwise. 

Table 4 shows the observed significance level (under H) of the test t 1 , 
0 

i.e. the F test. 

Observed significance level 

.01 .OS .1 .2 . 3 .4 

.008 .038 .068 .152 .240 . 346 

.012 .052 .080 .178 .276 .374 

.016 .054 .102 .188 .280 . 384 

.014 .058 .108 .184 .270 .384 

.018 .058 .104 .184 .278 .388 

.018 .072 .124 .222 . 336 .430 

.004 .040 .112 .228 .304 .404 

Table 4 

(under H ) of the test t 1 (F test)· 
0 

I 

.s .6 . 7 .8 . 9 Avg. test + 
Exp. value 

.452 .554 .664 .768 .870 0.81 

.482 .570 .670 .776 . 888 0.96 

. 474 .578 .688 .804 .906 1.04 

.478 .560 .676 . 790 .894 0.99 

.484 .564 .658 .786 .906 1.03 

.500 .604 .708 .786 .872 0.83 

.500 .612 .696 .788 .900 1.00 

The one before the last column contains entries obtained by dividing the 

average of our test statistic by its theoretical expected value (if d is 

Chi 
square 

(deciles) 

12.60 

4. 72 

3.96 

8.38 

11.12 

16.04 

4.00 
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the degrees of freedom for the denominator of the F test, this value is 

d + d-2). The last column is the chi square test statistic for goodness 

of fit applied to the decile values of the table above. The critical 

value of chi square with 9 degrees of freedom at the 5% level is 16.92, 

thus at least this test is consistent with the hypothesis that t 1 is 

distributed as F. The nominal significance levels, particularly at 

the .01 and .05 levels, which are usually of greatest interest, behave 

very well -- their average over the seven examples is .013 and .053 

respectively. 

Notwithstanding the non-significant values of the chi square goodness 

of fit test, particularly the first five examples show what appear to 

be consistent departures from the nominal levels in the range .3 - .8. 

It appears, however, that this is not due to the approximation whereby 

(13) is assumed to be zero (i.e. E (U .. ) = 0). Indeed, this approxi-
. I J 
mation holds exactly if all the Deff's in (5) are equal --as noted 

before. This is the case in examples I and 6. Yet, in many requests, 

they appear to follow the F test worst (although still well enough at 

the .OJ and .05 levels). Thus it would appear that the problem, if it 

can be called that, is due to the normal approximation, as opposed to 

the approximation (13). Note that n = 1200 --small by standards of 

survey sampling. 

Next the behaviour of the test t' 1 is shown, still under H . 
0 
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Table 5 

Observed significance 1 eve 1 (under H ) of the test t 1 1 

0 

(adjusted chi square} 

.1 .2 . 3 .4 .5 .6 • 7 .8 .9 Avg. test .;. Chi 
square d. of f. (deciles) 

.034 .068 .104 .216 .306 .390 .496 .600 .698 • 782 .892 1.10 

.028 .092 .146 .248 .340 .408 .494 .612 .680 .790 .898 1.16 

.040 .102 .164 .250 .324 .416 .510 .600 .696 .790 .906 1.23 

.042 .100 .158 .244 . 326 .416 .510 .600 . 676 • 796 .902 1.25 

.048 .112 .156 .250 • 324 .420 .506 .600 .670 • 772 .896 1.28 

.032 .072 .126 .238 .326 .412 .502 .610 .696 .816 .912 1.07 

.008 .068 .124 .216 .296 .400 .504 .596 .684 .780 .908 1.02 

Clearly, t 1 1 has a distribution which in four of the seven examples is 

significantly different from chi square at the 5% level of significance. 

However, in exploring the results in Table 5 somewhat further, the 

following might be observed. 

a) Most notably, if the alternative is between using the unadjusted 

chi square test (Table 3) or using the simple adjustment which leads 

to t 1 1
, clearly t 1

' is very much closer to chi square. While the 

statistics corresponding in Table 3 to the last column of Table 5 

were not computed, this much is clear to the naked eye. 

b) The extent to which the distribution of t 1 1 departs from chi square 

seems to follow closely the extent to which the expected value of 

t 1 1 departs from the expected value of the corresponding chi square 

distribution (penultimate column of Table 5). However, t 1 1 was con

structed in such a manner that its expected value would asymptotically 

4.96 

17.40 

27.56 

25.68 

27.96 

9.64 

10.88 
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be equal to that of chi square. The convergence, however, depends 

on the number of available replications from which to compute b 
of (25) -- not on n. In fact, we are faced with the usual bias of 

a ratio estimate whose magnitude heavily depends on the variance 

of the denominator, i.e. of b, which in turn depends on the number 

of replicates or, since BRR need not be used, on the number of 

strata. The good behaviour of t 1 1 in examples 6 and 7, where the 

number of strata is 12 and 30 respectively, is consistent with this 

line of reasoning. Thus one might expect t 1 1 to behave acceptably 

well for the survey designs encountered in practice, where the 

number of strata is usually quite large. 

c) While t 1 behaves consistently better than t 1 1
, one has to note that 

t 1 is not applicable if the degrees of freedom is greater than or 

equal to the number of strata. This may well occur in multi-level 

consistency tables. 

Finally, Table 6 is a tentative attempt to compare the power of t 1 and 

t 1 1 under an alternative hypothesis H1. Since H1 could not be consis

tently chosen across the examples, the comparison of the results in 

Table 6 should be restricted to comparing t 1 and t 1 1 within the same 

example. 
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Table 6 

Observed proportion of times t 1 and t 11 exceed their respective 
significance levels, under H

1 

Nominal level .01 .05 .10 

Example 1 t' .026 .178 .340 
t'' .250 .418 .510 

Example 2 t' .060 .232 .406 
t'' .282 .498 .632 

Example 3 tl .062 .214 .394 
t I I .242 .438 .568 

Example 4 tl .066 .212 .380 
tl I .218 .408 .552 

Example 5 tl .062 .206 .382 
tl I .220 .378 .524 

Example 6 tl .160 .480 .686 
t I I .714 .866 .920 

Example 7 tl .148 .332 .476 
t I I .136 .316 .452 

No authoritative conclusions can be drawn from the above, primarily 

because of the fact that t 11 is biased upward under H at least for 
0 

the first six examples. In fact, for this reason a comparison of the 

two test statistics at their respective nominal level is misleading -

it would make t 1 1 appear to have considerably more power than it actu

ally does. Analyzing Table 6 together with Tables 4 and 5 is more 

realistic. By and large t 1 at the . 10 nominal level would appear to 

be more comparable with t 1 1 at the .05 nominal level. Even so, t 1 1 

would appear to have somewhat more power than t 1
, except for example 7. 

This is more or less what one could expect, since t 1
, based on the F 

test, will asymptotically be distributed as chi square if the degrees 
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of freedom for the denominator is large, i.e. if the number of strata 

is large compared to the number of subclasses. 

In summary, the unadjusted chi square is subject to intolerable biases 

under complex designs even with moderate Deff 1 s; t 1 appears to be dis

tributed as expected even for values of n as small as 1200; t 1 1 behaves 

incomparably better than the unadjusted chi square test but still appears 

to have higher than nominal significance levels particularly when the 

number of strata is small; t 1 1 is much easier to calculate than t 1
; 

t 1 I appearS tO haVe greater pOWer than t 1 unleSS the number Of Strata 

is large compared to the number of subclasses. 

RESUME 

Une grande partie de la litterature sur l'echantillonnage se 
concentre sur l'effet que le plan d'echantillonnage utilise 
pour rassembler des donnees dans une enquete porte sur les 
statistiques lineaires. Recemment, on a considere davantage 
l'effet du plan d'echantillonnage sur les statistiques non
lineaires. Le facteur le plus important qui empeche ces 
recherches a ete le probleme de !'estimation d'au mains les 
deux premiers moments de ces statistiques. Le present article 
etudie le probleme de !'estimation des variances des statistiques 
non-lineaires des echantillons complexes, en considerant la 
litterature existante. On etudie les attributs de la statistique 
chi-carre calculee a partir d'un echantillon complexe pour tester 
des hypotheses de la qualite de l'ajustement ou d'independance. 
On developpe des tests alternatifs et on etudie leurs attributs 
en faisant des experiences simulees. 
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