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THE EFFECT OF A TWO-STAGE SAMPLE DESIGN ON 
TESTS OF INDEPENDENCE 

IN A 2 by 2 TABLE 

J. Cowan and D.A. Binder 1 

When a two-stage sample is used to collect data, the cor­
relations between the sampled units make the x2 test of in­
dependence invalid. Use of the ordinary x2 tables generally 
results in a test which is greater than the desired level of 
significance. The effect of the sample design comes from 
two main areas: the sample size within PSU's and the de­
gree to which the characteristics are independent within 
each PSU. The effect of the sample size within PSU's is 
greatest when there is no independence within each PSU, and 
diminishes as the degree of independence increases. 

I . INTRODUCTION 

Classical statistical inference has been developed through the years 

under the assumption of independent observations. In recent years, 

attention has turned to attempts to develop data analysis techniques 

for complex sampling procedures, especially in the area of social 

surveys (Kish & Frankel [5]). The Canada Health Survey has set up a 

data analysis group to monitor new developments in this field, to 

attempt to adapt existing techniques for its own use, and to look 

into new areas. This paper deals with one of these new areas. 

One of the basic statistical tools currently in popular use is con­

tingency table analysis for testing the independence of two or more 

characteristics in a population. One of the key assumptions in dev­

eloping the distributional theory is the independence of the observa­

tions. This leads to the multinomial distribution and, asymptotically, 

the chi-squared test. If the assumption of independence is violated, 

as in a complex sample survey, this theory loses its validity. Sev­

eral studies have been done on the analysis of contingency tables 
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when correlations are present between observations, notably by Cohen 

[4], Altham [1], and Nathan [6]. Shuster and Downing [7] have deriv­

ed a test statistic applicable for any sampling scheme. 

The question has been raised as to how much the sampling scheme af­

fects the inference. For example, is it possible to assume independ­

ent observations without distorting the true situation too much. The 

answer will depend, of course, on the sampling scheme and what the 

analysts consider "too much''. A study is currently being done which 

empirically investigates the effect that a two-stage sample has on 

inferences about independence of two characteristics in a population, 

although the theory developed can be applied to any self-weighting 

samp 1 i ng scheme. 

2. DISTRIBUTION OF TEST STATISTICS 

Denote the usual Pearson chi-square statistics by P: 
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p = E 
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I J " "I. .j 

nrr. II • 
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where the II are the MLE's of II in 
the case of i .i .d. sampling. 

Next, approximate P by taking its Taylor 

point {II: II .. = II. II .}, where the null 
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is true. It can easily be shown that if 

series expansion around the 

hypothesis of independence 
" II is unbiased for II, the 

constant and 1 inear terms are zero. To evaluate the quadratic term, 

we find that 
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Let A 
2n [orr oPen I IT = rr]; 

pq rs 

then P is approximated by: 

A A 

P :!: n (rr- rr)' A(rr- rr) = Q • 
.. 

Since rr is assumed to be asymptotically normal, the distribution of Q 

is the weighted sum of independent central chi-squared random variables, 

each on one degree of freedom, where the weights (A 1, A
2

, ... )are the 

eigenvalues of the matrix AV (~e Box [3], Theorem 2.1). Since the 

asymptotic distribution of Q is·.known, it is possible to perform an 

empirical study of the effect that the sample design has on inference 

by generating values of Q and calculating the proportion of these values 

which are greater than the a.-level critical point of the usual x2- test. 

This should give some idea how the probability of a Type 1 error is 

changed by the sampling scheme. 

3. SIMPLE TWO STAGE DESIGNS 

The distribution derived for the usual test of independence is used 

to examine the effect that a two-stage sample has on Type I errors in 

testing the independence of two characteristics, each with two cate­

gories. The population is divided into M primary sampling units (PSU), 

from which m are drawn. Each PSU contains H units from which h secon­

dary sampling units (SSU) are chosen. Each sampled unit is then clas­

sified according to the two characteristics, so a 2 by 2 table can be 

constructed displaying the proportions of the sample population falling 

into each of the four categories, and P can be calculated. If the ob­

servations had been independent, this statistic asymptotically would 

have a chi-squared distribution with one degree of freedom. The null 

hypothesis of independence of the characteristics in the population 

could be tested by comparing the observed value of the statistic with 
2 

the x tables. Since the observations are not independent, use of the 
2 

a.- level critical point from the x tables results in a test which is 



generally not at the desired level. Since the asymptotic distribution 

of P can be calculated for large m, the actual level of the test can 

be empirically investigated by generating random variables with this 

distribution and calculating the proportion which are greater than the 

critical value. With independent observations, this proportion will 

be a on the average. 

3.1 Method 

The first step in calculating the distribution of P is to calculate A, 

the matrix of the quadratic form which approximates the statistic. 

This is done by specifying the parameter II, the population proportions 

falling into each category. The next step in calculating the distri­

bution of P is to derive V, the matrix of variances and covariances of 

liilh IT for this particular sample design. It was decided to take M 

as infinite, as this would be a fairly accurate approximation to the 

·Canada Health Survey, and the calculations are simplified. The deri­

vation of V is shown in Appendix A. It is necessary to specify the 

distribution of .II = (.rr 1, .rr2 , .rr
3

, .rr4} over all PSU's in order to 
I I I I I 

calculate V. For simplicity the Dirichlet distribution was used. 

Appendix B gives the properties of this distribution. 

The calculation of the eigenvalues of AV was done by a routine due to 

Sparks and Todd [8], and generation of normal random variables was 

done by a routine due to Marsagl ia and Bray (see [2]}. For fixed 

values of the parameters, the approximation to P was generated 10,000 

times and the proportions which were greater than the .10, .05, .01, 

and .001 level critical values were recorded. Many combinations of 

the parameters were tried and the results are given in the next 

section. 

3. 2 Results 

In all cases, three of the four eigenvalues are negligible and can be 

taken as zero, so the distribution of the Taylor series approximation 

to P reduces to that of a chi-squared random variable with one degree 
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of freedom multiplied by the largest eigenvalue (A
1

) of the matrix AV. 

This eigenvalue determines the level of the test. If it is greater 

than t, the null hypothesis will incorrectly be rejected more often 

than 100 a percent of the time, and if less than 1, the level drops 

below a. The effects of the parameters are described below. 

Appendix C gives the results of some of the simulations. Although 

this is far from a complete 1 isting of the possible combinations of 

parameters, it still gives some idea how the level of significance is 

changed by the two-stage design. 

a .. Uf..e£t_of_ I!_ _(_p~~l~t.!_o!!_ .e_r~or!_i£_n~ 

If all other parameters are fixed, a change in the population pro­

portions falling into each of the four categories results in a 

negligible change in A1. This means that the level of the test 

does not depend on II. Individually, the A, V and AV matrices.are 

changed as II changes, but the matrix AV will have the same eigen­

values. 

For fixed h, variation in H gives limited variation in Al but for 

fixed H, variation in h results in a great deal of variation in Al 

(see Appendix C). Table 1 displays the largest eigenvalues for 

various values of H and h. It can be seen that an increase in the 

PSU population size for fixed number of SSU's within each PSU re­

sults in a slight increase in the significance level. This is 

caused by an increase in the covariance between the elements of II 

as H increases. The table also shows that the effect of the sample 

size within PSU's is far greater than that of the PSU population 

size, and that the sampling fraction within PSU 1 s by itself is not 

informative. This is due to the clustering effect of taking more 

SSU's within PSU's. 
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TABLE 1: H h A. - -1-
1000 50 9.13 
500 50 9.08 
300 50 9.03 
100 50 8.75 

1000 40 7.47 
800 40 7.46 
100 40 7.17 1.. 1 = largest 

1000 30 5.81 eigenvalue of AV 400 30 5.77 
100 30 5.59 4 

1000 20 4.15 when ~ = E e. = 5 
750 20 4. 15 i=1 I 

500 20 4.13 
100 20 4.01 
700 15 3.32 
400 15 3.30 
100 15 3.22 

1000 10 2.49 
500 10 2.49 
250 10 2.47 
100 10 2.42 

4 
Small values of e.(= E e.) give large values ofA. 1, and as e. in­

i =1 I 

h creases to infinity, 1.. 1 decreases to (1- H). A typical example is 

h =50 (Table C4): - H = 0.833. for the case H 300, h 

e. _A.,_ 

5 9.030 
25 2. 727 

125 1 .226 
625 0.915 

3125 0.852 
15625 0.839 
78125 0.837 

This result shows that the more independent the characteristics 

are within strata, the less the size of the test. Notice that if 

all units within strata are sampled (h =H), then independence 
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within strata gives a value of 0 for the approximation toP, as 

it should. Another result is that for small a, variation in h 

causes wide variation in ~l' but for large a, the variation in 

~l becomes a great deal smaller. 

4. FUTURE DIRECTIONS 

The results here are very restrictive because the model is simple. 

The two-stage model was chosen to be as close to multinomial samp­

'ling as possible. However, because the usual chi-squared behaves 

so poorly here, we would expect things would get worse in a more 

realistic setting. 

One interesting point is that all the above results yielded only 

one dominant eigenvalue. Is this true for more realistic settings 

(e.g. unequal sized PSU 1 s, unequal probability samples)? If so 

then we may be able to estimate the largest eigenvalue and derive 

a statistic whose distribution is much closer to chi-squared. 

Also the use of the Dirichlet distribution is only one of many 

possible distributions that could be considered. 
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APPENDIX A: Derivation of V 

Let u. = 1 if PSU i, is in the sample i = 1, .•. ,co 
I 

= 0 otherwise 

Let Xij.k -- 1 "1f the J.th un"1t · h .th PSU b 1 k 1n t e 1 e ongs to category 

= 0 otherwise. 

Then X. k is the proportion of units in PSU that belong to 
I • 

category k, 

A 

and X. k is the proportion of sampled ssu•s in PSU that 
I • 

belong to category k. 

H 

Let siki = H~l "l:1 (x. "k - X. k) (x. ·.e - xi . .e). j= IJ I. I J 

00 
A 

l: u. h X. k = 
i =1 I I • 

total number of sampled units that 

belong to category k 

co 

u. x. k) 
I I. 

hm E(X. k). 
I • 

) H - - ( 
and since E(Siki = H-l E{<\,e Xi .k Xi .k Xi .l} oki = 1 if k=l 

= 0 otherwise) 

we have: 
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APPENDIX B: Distribution of .TI 
1-

Within PSU i, we know that the sum of the proportions in each cate-
4 

gory is 1, or 

average value 
1 M 

or 1 i m M ~ 
M-+oo i=1 

~ . TI. 
j=1 I J 

over all 

. TI. = TI. 
I J J 

= 1 for i = 

strata of 

for j = 1 ' 

1 ' 2, . . . oo • We also know that the 

the proportion in category j is TI . ' 
J 

2, 3, 4. One simple way to accom-

pl ish this is to let .TI follow a multivariate analogue of the Beta 
I 

distribution, called the Dirichlet distribution. 

If the random vector (y
1

, .•• , yk) follows a Dirichlet distribution 
k 

with parameters 81, ... , 8k' then: 

·the density is given by 

~ y. = 1; y1 ~o. i = 1, •.• , k, 
i =1 I 

r ( k l 
L~l8i 

k 
TI r ( 8.) 

i=l I 

8. 
I 

~8.' 
J 

k 8.-1 
TI y. 

i=l I 

2 
E (y.) 

I 

I 

8. (8.+1) 
I I 

= ...,...( ~-8....:.. • ......,)(~~-8 -. +-:-1..-) ' 
J J 

8 i 8k 
= -r( ~-8-. ,.....;.) .,.....( ~....;.8 .;..._. +-:-1...-) • 

J J 

To apply this distribution to the calculation of V, we specify Tik, 
8k 

k = 1, 2, 3, 4 and equate ~ 8 . to Tik. This determines (8 1, 82 , 8
3

, 84) 
J 

4 
to within a constant multiple. Various values for a= ~ 8. will then 

i=l I 

determine various degrees of independence of the two characteristics 

within PSU 1 s. As a increases, Var(.TI.) decreases to zero for all j 
I J 

so that the distribution of the proportions of units falling into each 

of the categories is identical from PSU to PSU. Since the average 

value over all PSU 1 s is Tik, the within PSU distribution must be 

identical to the population proportion, and since independence holds 

in the population, it necessarily holds within PSU. 
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APPENDIX C: Proportion of times the approximation to P is 
greater than the critical point at the given 
significance level 

Cl. # UNITS/PSU = 400 
# SSU /PSU = 30 

max eigenvalue : 5. 77277 2.04550 1.15805 .97376 .93662 .92918 
e. sums to + 5 25 125 625 3125 15625 
-1- significance level 

.10 .491 .250 .130 .094 .089 .088 

.05 .412 .168 .070 .046 .042 .043 

.01 .282 .071 .017 .008 .007 .008 

.001 .171 .021 .002 .0008 .0007 .0006 

C2. # UNITS/PSU = 400 
# SSU /PSU = 15 

max eigenvalue : 3.30409 1.50472 1.07630 .98733 .96940 . 9658J. 
e. sums to + 5 25 125 625 3125 15625 
-1- significance level 

.10 .364 .175 .110 .098 .093 .093 

.05 .283 .108 .057 .049 .047 .044 

.01 .157 .035 .012 .009 .009 .009 

.001 .068 .007 .002 .0009 .0008 .0007 

C3. # UNITS/PSU = 500 
# SSU /PSU = 10 

max eigenvalue : 2.48497 1. 32881 1.05353 .99637 • 98485 .98254 
e. sums to + 5 25 125 625 3125 15625 
-1- significane level 

.10 .300 .155 .108 .097 .095 .095 

.05 .215 .088 .055 .049 .048 .048 

.01 .102 .025 .012 .009 .009 .009 

.001 .037 .004 .0012 .0009 .0009 .0009 

.92769 
78125 

.088 

.042 

.006 

.0006 

.96509 
78125 

.093 

.045 

.008 

.0009 

.98208 
78125 

.094 

.047 

.009 

.0008 
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C4. # UNITS/PSU = 300 
II SSU /PSU = 50 

max eigenvalue : 9.03010 2. 72704 1.22631 .91466 .85185 .83927 .83675 
e. sums to -+ 5 25 125 625 3125 15625 78125 
+ significance level 

.10 .587 .320 .136 .084 .073 .068 .069 

.05 .516 .236 .077 .041 .033 .030 .031 

.01 .395 .119 .019 .007 .005 .005 .005 

.001 .274 .046 .0025 .0004 .0004 .0002 .0004 

cs. II lJNITS/PSU = 250 
II SSU /PSU = 10 

max eigenvalue : 2.46988 1.31140 1.03557 .97829 .96674 .96443 .96397 
e. sums to -+ 5 25 125 625 3125 15625 78125 
+ significance level 

.10 .293 .150 .104 .096 .095 .092 .092 

.05 .212 .086 .053 .047 .045 .045 .045 

.01 .099 .025 .011 .009 .008 .008 .008 

.001 .035 .004 .0013 .0010 .0007 .0007 .0008 

C6. II UNITS/PSU = 500 
II SSU /PSU = 20 

max eigenvalue : 4.13494 1.69416 1.11302 .99234 .96801 .96314 .96217 
e. sums to -+ 5 25 125 625 3125 15625 78125 
+ significance level 

.10 .415 .204 .117 .098 .095 .092 .092 

.05 .333 .131 .062 .048 .045 .046 .044 

.01 .204 .048 .014 .009 .008 .008 .008 

.001 .105 .012 .0020 .0011 .0008 .0008 .0009 

C7. II UNITS/PSU = 750 
II SSU /PSU = 20 

max eigenvalue : 4.14553 1.70638 1.12563 1.00502 • 98072 . 97585 .97487 
e. sums to -+ 5 25 125 625 3125 15625 78125 
+ significance level 

.10 .417 .211 .120 .100 .093 .095 .093 

.05 .337 .138 .064 .051 .048 .047 .047 

.01 .207 .051 .017 .010 .009 .008 .008 

.001 .108 .012 .002 .0012 .0010 .0009 .0007 
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ca. # UNITS/PSU = 500 
# SSU /PSU = 50 

max eigenvalue : 9.08484 2.79020 1.29147 • 98023 .91751 .90494 .90243 
8. sums to -+ 5 25 125 625 3125 15625 78125 
-1- significance level 

.10 .582 .325 .148 .095 .083 .082 .083 

.05 .513 .244 .086 .047 .040 .037 .038 

.01 .393 .125 .023 .010 .008 .007 .007 

.001 .275 .050 .004 .0009 .0007 .0006 .0005 
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RESUME 

Quand on utilise un echantillon a deux degres pour rassembler 
des donnees, les correlations entre les unites echantillonnees 
rendent le test d'independance x2 invalide. Si on utilise les 
tables ordinaires de x2 , on obtient generalement un test qui 
est plus grand que le seuil significatif voulu. L'effet du plan 
d'echantillonnage provient de deux facteurs principaux: la 
taille de l'echantillon dans les UPE et le degre d'independance 
des caracteristiques dans chaque UPE. L'effet de la taille de 
l'echantillon dans les UPE est a son maximum quand il n'y a pas 
d'independance dans chaque UPE, et diminue a mesure que le degre 
q'independance augrnente. 
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